| author | wenzelm | 
| Fri, 24 Oct 1997 17:18:49 +0200 | |
| changeset 3998 | 6ec8d42082f1 | 
| parent 3889 | 59bab7a52b4c | 
| child 4091 | 771b1f6422a8 | 
| permissions | -rw-r--r-- | 
| 1461 | 1  | 
(* Title: ZF/epsilon.ML  | 
| 0 | 2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 4  | 
Copyright 1993 University of Cambridge  | 
5  | 
||
6  | 
For epsilon.thy. Epsilon induction and recursion  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
open Epsilon;  | 
|
10  | 
||
11  | 
(*** Basic closure properties ***)  | 
|
12  | 
||
13  | 
goalw Epsilon.thy [eclose_def] "A <= eclose(A)";  | 
|
14  | 
by (rtac (nat_rec_0 RS equalityD2 RS subset_trans) 1);  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
15  | 
by (rtac (nat_0I RS UN_upper) 1);  | 
| 760 | 16  | 
qed "arg_subset_eclose";  | 
| 0 | 17  | 
|
18  | 
val arg_into_eclose = arg_subset_eclose RS subsetD;  | 
|
19  | 
||
20  | 
goalw Epsilon.thy [eclose_def,Transset_def] "Transset(eclose(A))";  | 
|
21  | 
by (rtac (subsetI RS ballI) 1);  | 
|
22  | 
by (etac UN_E 1);  | 
|
23  | 
by (rtac (nat_succI RS UN_I) 1);  | 
|
24  | 
by (assume_tac 1);  | 
|
25  | 
by (etac (nat_rec_succ RS ssubst) 1);  | 
|
26  | 
by (etac UnionI 1);  | 
|
27  | 
by (assume_tac 1);  | 
|
| 760 | 28  | 
qed "Transset_eclose";  | 
| 0 | 29  | 
|
30  | 
(* x : eclose(A) ==> x <= eclose(A) *)  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
31  | 
bind_thm ("eclose_subset",
 | 
| 
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
32  | 
rewrite_rule [Transset_def] Transset_eclose RS bspec);  | 
| 0 | 33  | 
|
34  | 
(* [| A : eclose(B); c : A |] ==> c : eclose(B) *)  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
35  | 
bind_thm ("ecloseD", eclose_subset RS subsetD);
 | 
| 0 | 36  | 
|
37  | 
val arg_in_eclose_sing = arg_subset_eclose RS singleton_subsetD;  | 
|
38  | 
val arg_into_eclose_sing = arg_in_eclose_sing RS ecloseD;  | 
|
39  | 
||
40  | 
(* This is epsilon-induction for eclose(A); see also eclose_induct_down...  | 
|
41  | 
[| a: eclose(A); !!x. [| x: eclose(A); ALL y:x. P(y) |] ==> P(x)  | 
|
42  | 
|] ==> P(a)  | 
|
43  | 
*)  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
44  | 
bind_thm ("eclose_induct", Transset_eclose RSN (2, Transset_induct));
 | 
| 0 | 45  | 
|
46  | 
(*Epsilon induction*)  | 
|
47  | 
val prems = goal Epsilon.thy  | 
|
48  | 
"[| !!x. ALL y:x. P(y) ==> P(x) |] ==> P(a)";  | 
|
49  | 
by (rtac (arg_in_eclose_sing RS eclose_induct) 1);  | 
|
50  | 
by (eresolve_tac prems 1);  | 
|
| 760 | 51  | 
qed "eps_induct";  | 
| 0 | 52  | 
|
53  | 
(*Perform epsilon-induction on i. *)  | 
|
54  | 
fun eps_ind_tac a =  | 
|
55  | 
    EVERY' [res_inst_tac [("a",a)] eps_induct,
 | 
|
| 1461 | 56  | 
rename_last_tac a ["1"]];  | 
| 0 | 57  | 
|
58  | 
||
59  | 
(*** Leastness of eclose ***)  | 
|
60  | 
||
61  | 
(** eclose(A) is the least transitive set including A as a subset. **)  | 
|
62  | 
||
63  | 
goalw Epsilon.thy [Transset_def]  | 
|
64  | 
"!!X A n. [| Transset(X); A<=X; n: nat |] ==> \  | 
|
65  | 
\ nat_rec(n, A, %m r. Union(r)) <= X";  | 
|
66  | 
by (etac nat_induct 1);  | 
|
| 2469 | 67  | 
by (asm_simp_tac (!simpset addsimps [nat_rec_0]) 1);  | 
68  | 
by (asm_simp_tac (!simpset addsimps [nat_rec_succ]) 1);  | 
|
| 3016 | 69  | 
by (Blast_tac 1);  | 
| 760 | 70  | 
qed "eclose_least_lemma";  | 
| 0 | 71  | 
|
72  | 
goalw Epsilon.thy [eclose_def]  | 
|
73  | 
"!!X A. [| Transset(X); A<=X |] ==> eclose(A) <= X";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
74  | 
by (rtac (eclose_least_lemma RS UN_least) 1);  | 
| 0 | 75  | 
by (REPEAT (assume_tac 1));  | 
| 760 | 76  | 
qed "eclose_least";  | 
| 0 | 77  | 
|
78  | 
(*COMPLETELY DIFFERENT induction principle from eclose_induct!!*)  | 
|
79  | 
val [major,base,step] = goal Epsilon.thy  | 
|
| 1461 | 80  | 
"[| a: eclose(b); \  | 
81  | 
\ !!y. [| y: b |] ==> P(y); \  | 
|
82  | 
\ !!y z. [| y: eclose(b); P(y); z: y |] ==> P(z) \  | 
|
| 0 | 83  | 
\ |] ==> P(a)";  | 
84  | 
by (rtac (major RSN (3, eclose_least RS subsetD RS CollectD2)) 1);  | 
|
85  | 
by (rtac (CollectI RS subsetI) 2);  | 
|
86  | 
by (etac (arg_subset_eclose RS subsetD) 2);  | 
|
87  | 
by (etac base 2);  | 
|
88  | 
by (rewtac Transset_def);  | 
|
| 3016 | 89  | 
by (blast_tac (!claset addIs [step,ecloseD]) 1);  | 
| 760 | 90  | 
qed "eclose_induct_down";  | 
| 0 | 91  | 
|
92  | 
goal Epsilon.thy "!!X. Transset(X) ==> eclose(X) = X";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
93  | 
by (etac ([eclose_least, arg_subset_eclose] MRS equalityI) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
94  | 
by (rtac subset_refl 1);  | 
| 760 | 95  | 
qed "Transset_eclose_eq_arg";  | 
| 0 | 96  | 
|
97  | 
||
98  | 
(*** Epsilon recursion ***)  | 
|
99  | 
||
100  | 
(*Unused...*)  | 
|
101  | 
goal Epsilon.thy "!!A B C. [| A: eclose(B); B: eclose(C) |] ==> A: eclose(C)";  | 
|
102  | 
by (rtac ([Transset_eclose, eclose_subset] MRS eclose_least RS subsetD) 1);  | 
|
103  | 
by (REPEAT (assume_tac 1));  | 
|
| 760 | 104  | 
qed "mem_eclose_trans";  | 
| 0 | 105  | 
|
106  | 
(*Variant of the previous lemma in a useable form for the sequel*)  | 
|
107  | 
goal Epsilon.thy  | 
|
108  | 
    "!!A B C. [| A: eclose({B});  B: eclose({C}) |] ==> A: eclose({C})";
 | 
|
109  | 
by (rtac ([Transset_eclose, singleton_subsetI] MRS eclose_least RS subsetD) 1);  | 
|
110  | 
by (REPEAT (assume_tac 1));  | 
|
| 760 | 111  | 
qed "mem_eclose_sing_trans";  | 
| 0 | 112  | 
|
113  | 
goalw Epsilon.thy [Transset_def]  | 
|
114  | 
    "!!i j. [| Transset(i);  j:i |] ==> Memrel(i)-``{j} = j";
 | 
|
| 3016 | 115  | 
by (blast_tac (!claset addSIs [MemrelI] addSEs [MemrelE]) 1);  | 
| 760 | 116  | 
qed "under_Memrel";  | 
| 0 | 117  | 
|
118  | 
(* j : eclose(A) ==> Memrel(eclose(A)) -`` j = j *)  | 
|
119  | 
val under_Memrel_eclose = Transset_eclose RS under_Memrel;  | 
|
120  | 
||
| 2469 | 121  | 
val wfrec_ssubst = standard (wf_Memrel RS wfrec RS ssubst);  | 
| 0 | 122  | 
|
123  | 
val [kmemj,jmemi] = goal Epsilon.thy  | 
|
124  | 
    "[| k:eclose({j});  j:eclose({i}) |] ==> \
 | 
|
125  | 
\    wfrec(Memrel(eclose({i})), k, H) = wfrec(Memrel(eclose({j})), k, H)";
 | 
|
126  | 
by (rtac (kmemj RS eclose_induct) 1);  | 
|
127  | 
by (rtac wfrec_ssubst 1);  | 
|
128  | 
by (rtac wfrec_ssubst 1);  | 
|
| 2469 | 129  | 
by (asm_simp_tac (!simpset addsimps [under_Memrel_eclose,  | 
| 1461 | 130  | 
jmemi RSN (2,mem_eclose_sing_trans)]) 1);  | 
| 760 | 131  | 
qed "wfrec_eclose_eq";  | 
| 0 | 132  | 
|
133  | 
val [prem] = goal Epsilon.thy  | 
|
134  | 
    "k: i ==> wfrec(Memrel(eclose({i})),k,H) = wfrec(Memrel(eclose({k})),k,H)";
 | 
|
135  | 
by (rtac (arg_in_eclose_sing RS wfrec_eclose_eq) 1);  | 
|
136  | 
by (rtac (prem RS arg_into_eclose_sing) 1);  | 
|
| 760 | 137  | 
qed "wfrec_eclose_eq2";  | 
| 0 | 138  | 
|
139  | 
goalw Epsilon.thy [transrec_def]  | 
|
140  | 
"transrec(a,H) = H(a, lam x:a. transrec(x,H))";  | 
|
141  | 
by (rtac wfrec_ssubst 1);  | 
|
| 2469 | 142  | 
by (simp_tac (!simpset addsimps [wfrec_eclose_eq2, arg_in_eclose_sing,  | 
| 1461 | 143  | 
under_Memrel_eclose]) 1);  | 
| 760 | 144  | 
qed "transrec";  | 
| 0 | 145  | 
|
146  | 
(*Avoids explosions in proofs; resolve it with a meta-level definition.*)  | 
|
147  | 
val rew::prems = goal Epsilon.thy  | 
|
148  | 
"[| !!x. f(x)==transrec(x,H) |] ==> f(a) = H(a, lam x:a. f(x))";  | 
|
149  | 
by (rewtac rew);  | 
|
150  | 
by (REPEAT (resolve_tac (prems@[transrec]) 1));  | 
|
| 760 | 151  | 
qed "def_transrec";  | 
| 0 | 152  | 
|
153  | 
val prems = goal Epsilon.thy  | 
|
154  | 
    "[| !!x u. [| x:eclose({a});  u: Pi(x,B) |] ==> H(x,u) : B(x)   \
 | 
|
155  | 
\ |] ==> transrec(a,H) : B(a)";  | 
|
156  | 
by (res_inst_tac [("i", "a")] (arg_in_eclose_sing RS eclose_induct) 1);
 | 
|
| 2033 | 157  | 
by (stac transrec 1);  | 
| 0 | 158  | 
by (REPEAT (ares_tac (prems @ [lam_type]) 1 ORELSE etac bspec 1));  | 
| 760 | 159  | 
qed "transrec_type";  | 
| 0 | 160  | 
|
161  | 
goal Epsilon.thy "!!i. Ord(i) ==> eclose({i}) <= succ(i)";
 | 
|
162  | 
by (etac (Ord_is_Transset RS Transset_succ RS eclose_least) 1);  | 
|
163  | 
by (rtac (succI1 RS singleton_subsetI) 1);  | 
|
| 760 | 164  | 
qed "eclose_sing_Ord";  | 
| 0 | 165  | 
|
166  | 
val prems = goal Epsilon.thy  | 
|
167  | 
"[| j: i; Ord(i); \  | 
|
168  | 
\ !!x u. [| x: i; u: Pi(x,B) |] ==> H(x,u) : B(x) \  | 
|
169  | 
\ |] ==> transrec(j,H) : B(j)";  | 
|
170  | 
by (rtac transrec_type 1);  | 
|
171  | 
by (resolve_tac prems 1);  | 
|
172  | 
by (rtac (Ord_in_Ord RS eclose_sing_Ord RS subsetD RS succE) 1);  | 
|
173  | 
by (DEPTH_SOLVE (ares_tac prems 1 ORELSE eresolve_tac [ssubst,Ord_trans] 1));  | 
|
| 760 | 174  | 
qed "Ord_transrec_type";  | 
| 0 | 175  | 
|
176  | 
(*** Rank ***)  | 
|
177  | 
||
178  | 
(*NOT SUITABLE FOR REWRITING -- RECURSIVE!*)  | 
|
179  | 
goal Epsilon.thy "rank(a) = (UN y:a. succ(rank(y)))";  | 
|
| 2033 | 180  | 
by (stac (rank_def RS def_transrec) 1);  | 
| 2469 | 181  | 
by (Simp_tac 1);  | 
| 760 | 182  | 
qed "rank";  | 
| 0 | 183  | 
|
184  | 
goal Epsilon.thy "Ord(rank(a))";  | 
|
185  | 
by (eps_ind_tac "a" 1);  | 
|
| 2033 | 186  | 
by (stac rank 1);  | 
| 0 | 187  | 
by (rtac (Ord_succ RS Ord_UN) 1);  | 
188  | 
by (etac bspec 1);  | 
|
189  | 
by (assume_tac 1);  | 
|
| 760 | 190  | 
qed "Ord_rank";  | 
| 0 | 191  | 
|
192  | 
val [major] = goal Epsilon.thy "Ord(i) ==> rank(i) = i";  | 
|
193  | 
by (rtac (major RS trans_induct) 1);  | 
|
| 2033 | 194  | 
by (stac rank 1);  | 
| 2469 | 195  | 
by (asm_simp_tac (!simpset addsimps [Ord_equality]) 1);  | 
| 760 | 196  | 
qed "rank_of_Ord";  | 
| 0 | 197  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
198  | 
goal Epsilon.thy "!!a b. a:b ==> rank(a) < rank(b)";  | 
| 0 | 199  | 
by (res_inst_tac [("a1","b")] (rank RS ssubst) 1);
 | 
| 129 | 200  | 
by (etac (UN_I RS ltI) 1);  | 
| 0 | 201  | 
by (rtac succI1 1);  | 
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
202  | 
by (REPEAT (ares_tac [Ord_UN, Ord_succ, Ord_rank] 1));  | 
| 760 | 203  | 
qed "rank_lt";  | 
| 0 | 204  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
205  | 
val [major] = goal Epsilon.thy "a: eclose(b) ==> rank(a) < rank(b)";  | 
| 0 | 206  | 
by (rtac (major RS eclose_induct_down) 1);  | 
207  | 
by (etac rank_lt 1);  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
208  | 
by (etac (rank_lt RS lt_trans) 1);  | 
| 0 | 209  | 
by (assume_tac 1);  | 
| 760 | 210  | 
qed "eclose_rank_lt";  | 
| 0 | 211  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
212  | 
goal Epsilon.thy "!!a b. a<=b ==> rank(a) le rank(b)";  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
213  | 
by (rtac subset_imp_le 1);  | 
| 2033 | 214  | 
by (stac rank 1);  | 
215  | 
by (stac rank 1);  | 
|
| 0 | 216  | 
by (etac UN_mono 1);  | 
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
217  | 
by (REPEAT (resolve_tac [subset_refl, Ord_rank] 1));  | 
| 760 | 218  | 
qed "rank_mono";  | 
| 0 | 219  | 
|
220  | 
goal Epsilon.thy "rank(Pow(a)) = succ(rank(a))";  | 
|
221  | 
by (rtac (rank RS trans) 1);  | 
|
| 437 | 222  | 
by (rtac le_anti_sym 1);  | 
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
223  | 
by (DO_GOAL [rtac (Ord_rank RS Ord_succ RS UN_least_le),  | 
| 1461 | 224  | 
etac (PowD RS rank_mono RS succ_leI)] 1);  | 
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
225  | 
by (DO_GOAL [rtac ([Pow_top, le_refl] MRS UN_upper_le),  | 
| 1461 | 226  | 
REPEAT o rtac (Ord_rank RS Ord_succ)] 1);  | 
| 760 | 227  | 
qed "rank_Pow";  | 
| 0 | 228  | 
|
229  | 
goal Epsilon.thy "rank(0) = 0";  | 
|
230  | 
by (rtac (rank RS trans) 1);  | 
|
| 3016 | 231  | 
by (Blast_tac 1);  | 
| 760 | 232  | 
qed "rank_0";  | 
| 0 | 233  | 
|
234  | 
goal Epsilon.thy "rank(succ(x)) = succ(rank(x))";  | 
|
235  | 
by (rtac (rank RS trans) 1);  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
236  | 
by (rtac ([UN_least, succI1 RS UN_upper] MRS equalityI) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
237  | 
by (etac succE 1);  | 
| 3016 | 238  | 
by (Blast_tac 1);  | 
| 129 | 239  | 
by (etac (rank_lt RS leI RS succ_leI RS le_imp_subset) 1);  | 
| 760 | 240  | 
qed "rank_succ";  | 
| 0 | 241  | 
|
242  | 
goal Epsilon.thy "rank(Union(A)) = (UN x:A. rank(x))";  | 
|
243  | 
by (rtac equalityI 1);  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
244  | 
by (rtac (rank_mono RS le_imp_subset RS UN_least) 2);  | 
| 0 | 245  | 
by (etac Union_upper 2);  | 
| 2033 | 246  | 
by (stac rank 1);  | 
| 0 | 247  | 
by (rtac UN_least 1);  | 
248  | 
by (etac UnionE 1);  | 
|
249  | 
by (rtac subset_trans 1);  | 
|
250  | 
by (etac (RepFunI RS Union_upper) 2);  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
251  | 
by (etac (rank_lt RS succ_leI RS le_imp_subset) 1);  | 
| 760 | 252  | 
qed "rank_Union";  | 
| 0 | 253  | 
|
254  | 
goal Epsilon.thy "rank(eclose(a)) = rank(a)";  | 
|
| 437 | 255  | 
by (rtac le_anti_sym 1);  | 
| 0 | 256  | 
by (rtac (arg_subset_eclose RS rank_mono) 2);  | 
257  | 
by (res_inst_tac [("a1","eclose(a)")] (rank RS ssubst) 1);
 | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
258  | 
by (rtac (Ord_rank RS UN_least_le) 1);  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
259  | 
by (etac (eclose_rank_lt RS succ_leI) 1);  | 
| 760 | 260  | 
qed "rank_eclose";  | 
| 0 | 261  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
262  | 
goalw Epsilon.thy [Pair_def] "rank(a) < rank(<a,b>)";  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
263  | 
by (rtac (consI1 RS rank_lt RS lt_trans) 1);  | 
| 0 | 264  | 
by (rtac (consI1 RS consI2 RS rank_lt) 1);  | 
| 760 | 265  | 
qed "rank_pair1";  | 
| 0 | 266  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
267  | 
goalw Epsilon.thy [Pair_def] "rank(b) < rank(<a,b>)";  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
268  | 
by (rtac (consI1 RS consI2 RS rank_lt RS lt_trans) 1);  | 
| 0 | 269  | 
by (rtac (consI1 RS consI2 RS rank_lt) 1);  | 
| 760 | 270  | 
qed "rank_pair2";  | 
| 0 | 271  | 
|
272  | 
(*** Corollaries of leastness ***)  | 
|
273  | 
||
274  | 
goal Epsilon.thy "!!A B. A:B ==> eclose(A)<=eclose(B)";  | 
|
275  | 
by (rtac (Transset_eclose RS eclose_least) 1);  | 
|
276  | 
by (etac (arg_into_eclose RS eclose_subset) 1);  | 
|
| 760 | 277  | 
qed "mem_eclose_subset";  | 
| 0 | 278  | 
|
279  | 
goal Epsilon.thy "!!A B. A<=B ==> eclose(A) <= eclose(B)";  | 
|
280  | 
by (rtac (Transset_eclose RS eclose_least) 1);  | 
|
281  | 
by (etac subset_trans 1);  | 
|
282  | 
by (rtac arg_subset_eclose 1);  | 
|
| 760 | 283  | 
qed "eclose_mono";  | 
| 0 | 284  | 
|
285  | 
(** Idempotence of eclose **)  | 
|
286  | 
||
287  | 
goal Epsilon.thy "eclose(eclose(A)) = eclose(A)";  | 
|
288  | 
by (rtac equalityI 1);  | 
|
289  | 
by (rtac ([Transset_eclose, subset_refl] MRS eclose_least) 1);  | 
|
290  | 
by (rtac arg_subset_eclose 1);  | 
|
| 760 | 291  | 
qed "eclose_idem";  | 
| 2469 | 292  | 
|
293  | 
(*Transfinite recursion for definitions based on the three cases of ordinals.  | 
|
294  | 
*)  | 
|
295  | 
||
296  | 
goal thy "transrec2(0,a,b) = a";  | 
|
297  | 
by (rtac (transrec2_def RS def_transrec RS trans) 1);  | 
|
298  | 
by (Simp_tac 1);  | 
|
299  | 
qed "transrec2_0";  | 
|
300  | 
||
301  | 
goal thy "(THE j. i=j) = i";  | 
|
| 3016 | 302  | 
by (blast_tac (!claset addSIs [the_equality]) 1);  | 
| 2469 | 303  | 
qed "THE_eq";  | 
304  | 
||
305  | 
goal thy "transrec2(succ(i),a,b) = b(i, transrec2(i,a,b))";  | 
|
306  | 
by (rtac (transrec2_def RS def_transrec RS trans) 1);  | 
|
307  | 
by (simp_tac (!simpset addsimps [succ_not_0, THE_eq, if_P]  | 
|
| 3016 | 308  | 
setloop split_tac [expand_if]) 1);  | 
309  | 
by (Blast_tac 1);  | 
|
| 2469 | 310  | 
qed "transrec2_succ";  | 
311  | 
||
312  | 
goal thy "!!i. Limit(i) ==> transrec2(i,a,b) = (UN j<i. transrec2(j,a,b))";  | 
|
313  | 
by (rtac (transrec2_def RS def_transrec RS trans) 1);  | 
|
| 3016 | 314  | 
by (simp_tac (!simpset setloop split_tac [expand_if]) 1);  | 
315  | 
by (blast_tac (!claset addSDs [Limit_has_0] addSEs [succ_LimitE]) 1);  | 
|
| 2469 | 316  | 
qed "transrec2_Limit";  | 
317  | 
||
318  | 
Addsimps [transrec2_0, transrec2_succ];  | 
|
| 3016 | 319  |