| author | paulson | 
| Thu, 14 Sep 2000 11:34:13 +0200 | |
| changeset 9955 | 6ed42bcba707 | 
| parent 9811 | 39ffdb8cab03 | 
| child 10163 | d1972b445ece | 
| permissions | -rw-r--r-- | 
| 2080 | 1 | <!-- $Id$ --> | 
| 3279 | 2 | <HTML><HEAD><TITLE>HOL/README</TITLE></HEAD><BODY> | 
| 1339 | 3 | |
| 3279 | 4 | <H2>HOL: Higher-Order Logic</H2> | 
| 1339 | 5 | |
| 3279 | 6 | This directory contains the ML sources of the Isabelle system for | 
| 7 | Higher-Order Logic.<P> | |
| 1339 | 8 | |
| 3279 | 9 | There are several subdirectories with examples: | 
| 2080 | 10 | <DL> | 
| 1339 | 11 | <DT>ex | 
| 2080 | 12 | <DD>general examples | 
| 13 | ||
| 14 | <DT>Auth | |
| 15 | <DD>a new approach to verifying authentication protocols | |
| 16 | ||
| 7303 | 17 | <DT>AxClasses | 
| 18 | <DD>a few axiomatic type class examples: | |
| 19 | <DL> | |
| 20 | ||
| 21 | <DT> Tutorial <DD> Some simple axclass demos that go along with the | |
| 22 | <em>axclass</em> Isabelle document (<tt>isatool doc axclass</tt>). | |
| 23 | ||
| 24 | <DT> Group | |
| 25 | <DD> Some bits of group theory. | |
| 26 | ||
| 27 | <DT> Lattice | |
| 28 | <DD> Basic theory of lattices and orders. | |
| 29 | ||
| 30 | </DL> | |
| 31 | ||
| 7691 | 32 | <DT>BCV | 
| 33 | <DD>generic model of bytecode verification, i.e. data-flow analysis | |
| 34 | for assembly languages with subtypes. | |
| 35 | ||
| 7291 | 36 | <DT>Hoare | 
| 37 | <DD>verification of imperative programs; verification conditions are | |
| 38 | generated automatically from pre/post conditions and loop invariants. | |
| 39 | ||
| 2080 | 40 | <DT>IMP | 
| 41 | <DD>mechanization of a large part of a semantics text by Glynn Winskel | |
| 42 | ||
| 3125 | 43 | <DT>Induct | 
| 44 | <DD>examples of (co)inductive definitions | |
| 45 | ||
| 7290 | 46 | <DT>Integ | 
| 47 | <DD>a development of the integers including efficient integer | |
| 48 | calculations (part of the standard HOL environment) | |
| 2080 | 49 | |
| 50 | <DT>IOA | |
| 7291 | 51 | <DD>a simple theory of Input/Output Automata | 
| 2080 | 52 | |
| 7303 | 53 | <DT>Isar_examples | 
| 7983 | 54 | <DD>several introductory Isabelle/Isar examples | 
| 7303 | 55 | |
| 2080 | 56 | <DT>Lambda | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
7983diff
changeset | 57 | <DD>fundamental properties of lambda-calculus (Church-Rosser and termination) | 
| 1339 | 58 | |
| 7291 | 59 | <DT>Lex | 
| 60 | <DD>verification of a simple lexical analyzer generator | |
| 61 | ||
| 62 | <DT>MiniML | |
| 63 | <DD>formalization of type inference for the language Mini-ML | |
| 64 | ||
| 7290 | 65 | <DT>Real | 
| 66 | <DD>a development of the reals and hyper-reals, which are used in | |
| 67 | non-standard analysis. Also includes the positive rationals. Used to build | |
| 68 | the image HOL-Real. | |
| 69 | ||
| 7662 | 70 | <DT>Real/HahnBanach | 
| 71 | <DD>the Hahn-Banach theorem for real vectorspaces (Isabelle/Isar). | |
| 72 | ||
| 1339 | 73 | <DT>Subst | 
| 7290 | 74 | <DD>defines a theory of substitution and unification. | 
| 75 | ||
| 7291 | 76 | <DT>TLA | 
| 77 | <DD>Lamport's Temporal Logic of Actions | |
| 78 | ||
| 7290 | 79 | <DT>Tools | 
| 80 | <DD>holds code used to provide support for records, datatypes, induction, etc. | |
| 81 | ||
| 82 | <DT>UNITY | |
| 83 | <DD>Chandy and Misra's UNITY formalism. | |
| 7291 | 84 | |
| 85 | <DT>W0 | |
| 86 | <DD>a precursor of MiniML, without let-expressions | |
| 1339 | 87 | </DL> | 
| 88 | ||
| 89 | Useful references on Higher-Order Logic: | |
| 90 | ||
| 91 | <UL> | |
| 4622 | 92 | |
| 93 | <LI> P. B. Andrews,<BR> | |
| 1341 | 94 | An Introduction to Mathematical Logic and Type Theory<BR> | 
| 95 | (Academic Press, 1986). | |
| 1339 | 96 | |
| 4622 | 97 | <P> | 
| 98 | ||
| 99 | <LI> A. Church,<BR> | |
| 100 | A Formulation of the Simple Theory of Types<BR> | |
| 101 | (Journal of Symbolic Logic, 1940). | |
| 102 | ||
| 103 | <P> | |
| 104 | ||
| 105 | <LI> M. J. C. Gordon and T. F. Melham (editors),<BR> | |
| 106 | Introduction to HOL: A theorem proving environment for higher order logic<BR> | |
| 107 | (Cambridge University Press, 1993). | |
| 108 | ||
| 109 | <P> | |
| 110 | ||
| 111 | <LI> J. Lambek and P. J. Scott,<BR> | |
| 112 | Introduction to Higher Order Categorical Logic<BR> | |
| 113 | (Cambridge University Press, 1986). | |
| 114 | ||
| 1339 | 115 | </UL> | 
| 116 | ||
| 117 | </BODY></HTML> |