| author | wenzelm | 
| Tue, 14 Jul 2009 12:18:52 +0200 | |
| changeset 32004 | 6ef7056e5215 | 
| parent 31790 | 05c92381363c | 
| child 33296 | a3924d1069e5 | 
| permissions | -rw-r--r-- | 
| 23252 | 1 | (* Title: HOL/Groebner_Basis.thy | 
| 2 | Author: Amine Chaieb, TU Muenchen | |
| 3 | *) | |
| 4 | ||
| 5 | header {* Semiring normalization and Groebner Bases *}
 | |
| 28402 | 6 | |
| 23252 | 7 | theory Groebner_Basis | 
| 30925 | 8 | imports Nat_Numeral | 
| 23252 | 9 | uses | 
| 10 | "Tools/Groebner_Basis/misc.ML" | |
| 11 | "Tools/Groebner_Basis/normalizer_data.ML" | |
| 12 |   ("Tools/Groebner_Basis/normalizer.ML")
 | |
| 23312 | 13 |   ("Tools/Groebner_Basis/groebner.ML")
 | 
| 23252 | 14 | begin | 
| 15 | ||
| 16 | subsection {* Semiring normalization *}
 | |
| 17 | ||
| 18 | setup NormalizerData.setup | |
| 19 | ||
| 20 | ||
| 23258 
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
 wenzelm parents: 
23252diff
changeset | 21 | locale gb_semiring = | 
| 23252 | 22 | fixes add mul pwr r0 r1 | 
| 23 | assumes add_a:"(add x (add y z) = add (add x y) z)" | |
| 24 | and add_c: "add x y = add y x" and add_0:"add r0 x = x" | |
| 25 | and mul_a:"mul x (mul y z) = mul (mul x y) z" and mul_c:"mul x y = mul y x" | |
| 26 | and mul_1:"mul r1 x = x" and mul_0:"mul r0 x = r0" | |
| 27 | and mul_d:"mul x (add y z) = add (mul x y) (mul x z)" | |
| 28 | and pwr_0:"pwr x 0 = r1" and pwr_Suc:"pwr x (Suc n) = mul x (pwr x n)" | |
| 29 | begin | |
| 30 | ||
| 31 | lemma mul_pwr:"mul (pwr x p) (pwr x q) = pwr x (p + q)" | |
| 32 | proof (induct p) | |
| 33 | case 0 | |
| 34 | then show ?case by (auto simp add: pwr_0 mul_1) | |
| 35 | next | |
| 36 | case Suc | |
| 37 | from this [symmetric] show ?case | |
| 38 | by (auto simp add: pwr_Suc mul_1 mul_a) | |
| 39 | qed | |
| 40 | ||
| 41 | lemma pwr_mul: "pwr (mul x y) q = mul (pwr x q) (pwr y q)" | |
| 42 | proof (induct q arbitrary: x y, auto simp add:pwr_0 pwr_Suc mul_1) | |
| 43 | fix q x y | |
| 44 | assume "\<And>x y. pwr (mul x y) q = mul (pwr x q) (pwr y q)" | |
| 45 | have "mul (mul x y) (mul (pwr x q) (pwr y q)) = mul x (mul y (mul (pwr x q) (pwr y q)))" | |
| 46 | by (simp add: mul_a) | |
| 47 | also have "\<dots> = (mul (mul y (mul (pwr y q) (pwr x q))) x)" by (simp add: mul_c) | |
| 48 | also have "\<dots> = (mul (mul y (pwr y q)) (mul (pwr x q) x))" by (simp add: mul_a) | |
| 49 | finally show "mul (mul x y) (mul (pwr x q) (pwr y q)) = | |
| 50 | mul (mul x (pwr x q)) (mul y (pwr y q))" by (simp add: mul_c) | |
| 51 | qed | |
| 52 | ||
| 53 | lemma pwr_pwr: "pwr (pwr x p) q = pwr x (p * q)" | |
| 54 | proof (induct p arbitrary: q) | |
| 55 | case 0 | |
| 56 | show ?case using pwr_Suc mul_1 pwr_0 by (induct q) auto | |
| 57 | next | |
| 58 | case Suc | |
| 59 | thus ?case by (auto simp add: mul_pwr [symmetric] pwr_mul pwr_Suc) | |
| 60 | qed | |
| 61 | ||
| 62 | ||
| 63 | subsubsection {* Declaring the abstract theory *}
 | |
| 64 | ||
| 65 | lemma semiring_ops: | |
| 66 | shows "TERM (add x y)" and "TERM (mul x y)" and "TERM (pwr x n)" | |
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28823diff
changeset | 67 | and "TERM r0" and "TERM r1" . | 
| 23252 | 68 | |
| 69 | lemma semiring_rules: | |
| 70 | "add (mul a m) (mul b m) = mul (add a b) m" | |
| 71 | "add (mul a m) m = mul (add a r1) m" | |
| 72 | "add m (mul a m) = mul (add a r1) m" | |
| 73 | "add m m = mul (add r1 r1) m" | |
| 74 | "add r0 a = a" | |
| 75 | "add a r0 = a" | |
| 76 | "mul a b = mul b a" | |
| 77 | "mul (add a b) c = add (mul a c) (mul b c)" | |
| 78 | "mul r0 a = r0" | |
| 79 | "mul a r0 = r0" | |
| 80 | "mul r1 a = a" | |
| 81 | "mul a r1 = a" | |
| 82 | "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)" | |
| 83 | "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))" | |
| 84 | "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)" | |
| 85 | "mul (mul lx ly) rx = mul (mul lx rx) ly" | |
| 86 | "mul (mul lx ly) rx = mul lx (mul ly rx)" | |
| 87 | "mul lx (mul rx ry) = mul (mul lx rx) ry" | |
| 88 | "mul lx (mul rx ry) = mul rx (mul lx ry)" | |
| 89 | "add (add a b) (add c d) = add (add a c) (add b d)" | |
| 90 | "add (add a b) c = add a (add b c)" | |
| 91 | "add a (add c d) = add c (add a d)" | |
| 92 | "add (add a b) c = add (add a c) b" | |
| 93 | "add a c = add c a" | |
| 94 | "add a (add c d) = add (add a c) d" | |
| 95 | "mul (pwr x p) (pwr x q) = pwr x (p + q)" | |
| 96 | "mul x (pwr x q) = pwr x (Suc q)" | |
| 97 | "mul (pwr x q) x = pwr x (Suc q)" | |
| 98 | "mul x x = pwr x 2" | |
| 99 | "pwr (mul x y) q = mul (pwr x q) (pwr y q)" | |
| 100 | "pwr (pwr x p) q = pwr x (p * q)" | |
| 101 | "pwr x 0 = r1" | |
| 102 | "pwr x 1 = x" | |
| 103 | "mul x (add y z) = add (mul x y) (mul x z)" | |
| 104 | "pwr x (Suc q) = mul x (pwr x q)" | |
| 105 | "pwr x (2*n) = mul (pwr x n) (pwr x n)" | |
| 106 | "pwr x (Suc (2*n)) = mul x (mul (pwr x n) (pwr x n))" | |
| 107 | proof - | |
| 108 | show "add (mul a m) (mul b m) = mul (add a b) m" using mul_d mul_c by simp | |
| 109 | next show"add (mul a m) m = mul (add a r1) m" using mul_d mul_c mul_1 by simp | |
| 110 | next show "add m (mul a m) = mul (add a r1) m" using mul_c mul_d mul_1 add_c by simp | |
| 111 | next show "add m m = mul (add r1 r1) m" using mul_c mul_d mul_1 by simp | |
| 112 | next show "add r0 a = a" using add_0 by simp | |
| 113 | next show "add a r0 = a" using add_0 add_c by simp | |
| 114 | next show "mul a b = mul b a" using mul_c by simp | |
| 115 | next show "mul (add a b) c = add (mul a c) (mul b c)" using mul_c mul_d by simp | |
| 116 | next show "mul r0 a = r0" using mul_0 by simp | |
| 117 | next show "mul a r0 = r0" using mul_0 mul_c by simp | |
| 118 | next show "mul r1 a = a" using mul_1 by simp | |
| 119 | next show "mul a r1 = a" using mul_1 mul_c by simp | |
| 120 | next show "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)" | |
| 121 | using mul_c mul_a by simp | |
| 122 | next show "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))" | |
| 123 | using mul_a by simp | |
| 124 | next | |
| 125 | have "mul (mul lx ly) (mul rx ry) = mul (mul rx ry) (mul lx ly)" by (rule mul_c) | |
| 126 | also have "\<dots> = mul rx (mul ry (mul lx ly))" using mul_a by simp | |
| 127 | finally | |
| 128 | show "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)" | |
| 129 | using mul_c by simp | |
| 130 | next show "mul (mul lx ly) rx = mul (mul lx rx) ly" using mul_c mul_a by simp | |
| 131 | next | |
| 132 | show "mul (mul lx ly) rx = mul lx (mul ly rx)" by (simp add: mul_a) | |
| 133 | next show "mul lx (mul rx ry) = mul (mul lx rx) ry" by (simp add: mul_a ) | |
| 134 | next show "mul lx (mul rx ry) = mul rx (mul lx ry)" by (simp add: mul_a,simp add: mul_c) | |
| 135 | next show "add (add a b) (add c d) = add (add a c) (add b d)" | |
| 136 | using add_c add_a by simp | |
| 137 | next show "add (add a b) c = add a (add b c)" using add_a by simp | |
| 138 | next show "add a (add c d) = add c (add a d)" | |
| 139 | apply (simp add: add_a) by (simp only: add_c) | |
| 140 | next show "add (add a b) c = add (add a c) b" using add_a add_c by simp | |
| 141 | next show "add a c = add c a" by (rule add_c) | |
| 142 | next show "add a (add c d) = add (add a c) d" using add_a by simp | |
| 143 | next show "mul (pwr x p) (pwr x q) = pwr x (p + q)" by (rule mul_pwr) | |
| 144 | next show "mul x (pwr x q) = pwr x (Suc q)" using pwr_Suc by simp | |
| 145 | next show "mul (pwr x q) x = pwr x (Suc q)" using pwr_Suc mul_c by simp | |
| 146 | next show "mul x x = pwr x 2" by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c) | |
| 147 | next show "pwr (mul x y) q = mul (pwr x q) (pwr y q)" by (rule pwr_mul) | |
| 148 | next show "pwr (pwr x p) q = pwr x (p * q)" by (rule pwr_pwr) | |
| 149 | next show "pwr x 0 = r1" using pwr_0 . | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30042diff
changeset | 150 | next show "pwr x 1 = x" unfolding One_nat_def by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c) | 
| 23252 | 151 | next show "mul x (add y z) = add (mul x y) (mul x z)" using mul_d by simp | 
| 152 | next show "pwr x (Suc q) = mul x (pwr x q)" using pwr_Suc by simp | |
| 153 | next show "pwr x (2 * n) = mul (pwr x n) (pwr x n)" by (simp add: nat_number mul_pwr) | |
| 154 | next show "pwr x (Suc (2 * n)) = mul x (mul (pwr x n) (pwr x n))" | |
| 155 | by (simp add: nat_number pwr_Suc mul_pwr) | |
| 156 | qed | |
| 157 | ||
| 158 | ||
| 26462 | 159 | lemmas gb_semiring_axioms' = | 
| 26314 | 160 | gb_semiring_axioms [normalizer | 
| 23252 | 161 | semiring ops: semiring_ops | 
| 26314 | 162 | semiring rules: semiring_rules] | 
| 23252 | 163 | |
| 164 | end | |
| 165 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30654diff
changeset | 166 | interpretation class_semiring: gb_semiring | 
| 31017 | 167 |     "op +" "op *" "op ^" "0::'a::{comm_semiring_1}" "1"
 | 
| 29667 | 168 | proof qed (auto simp add: algebra_simps power_Suc) | 
| 23252 | 169 | |
| 170 | lemmas nat_arith = | |
| 28987 | 171 | add_nat_number_of | 
| 172 | diff_nat_number_of | |
| 173 | mult_nat_number_of | |
| 174 | eq_nat_number_of | |
| 175 | less_nat_number_of | |
| 23252 | 176 | |
| 177 | lemma not_iszero_Numeral1: "\<not> iszero (Numeral1::'a::number_ring)" | |
| 178 | by (simp add: numeral_1_eq_1) | |
| 28986 | 179 | |
| 29039 | 180 | lemmas comp_arith = | 
| 181 | Let_def arith_simps nat_arith rel_simps neg_simps if_False | |
| 23252 | 182 | if_True add_0 add_Suc add_number_of_left mult_number_of_left | 
| 31790 | 183 | numeral_1_eq_1[symmetric] Suc_eq_plus1 | 
| 28986 | 184 | numeral_0_eq_0[symmetric] numerals[symmetric] | 
| 185 | iszero_simps not_iszero_Numeral1 | |
| 23252 | 186 | |
| 187 | lemmas semiring_norm = comp_arith | |
| 188 | ||
| 189 | ML {*
 | |
| 23573 | 190 | local | 
| 23252 | 191 | |
| 23573 | 192 | open Conv; | 
| 193 | ||
| 30866 | 194 | fun numeral_is_const ct = can HOLogic.dest_number (Thm.term_of ct); | 
| 23252 | 195 | |
| 23573 | 196 | fun int_of_rat x = | 
| 197 | (case Rat.quotient_of_rat x of (i, 1) => i | |
| 198 | | _ => error "int_of_rat: bad int"); | |
| 23252 | 199 | |
| 23573 | 200 | val numeral_conv = | 
| 201 |   Simplifier.rewrite (HOL_basic_ss addsimps @{thms semiring_norm}) then_conv
 | |
| 202 | Simplifier.rewrite (HOL_basic_ss addsimps | |
| 203 |     (@{thms numeral_1_eq_1} @ @{thms numeral_0_eq_0} @ @{thms numerals(1-2)}));
 | |
| 204 | ||
| 205 | in | |
| 206 | ||
| 207 | fun normalizer_funs key = | |
| 208 | NormalizerData.funs key | |
| 23252 | 209 |    {is_const = fn phi => numeral_is_const,
 | 
| 210 | dest_const = fn phi => fn ct => | |
| 211 | Rat.rat_of_int (snd | |
| 212 | (HOLogic.dest_number (Thm.term_of ct) | |
| 213 | handle TERM _ => error "ring_dest_const")), | |
| 23573 | 214 | mk_const = fn phi => fn cT => fn x => Numeral.mk_cnumber cT (int_of_rat x), | 
| 23330 
01c09922ce59
Conversion for computation on constants now depends on the context
 chaieb parents: 
23327diff
changeset | 215 | conv = fn phi => K numeral_conv} | 
| 23573 | 216 | |
| 217 | end | |
| 23252 | 218 | *} | 
| 219 | ||
| 26462 | 220 | declaration {* normalizer_funs @{thm class_semiring.gb_semiring_axioms'} *}
 | 
| 23573 | 221 | |
| 23252 | 222 | |
| 23258 
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
 wenzelm parents: 
23252diff
changeset | 223 | locale gb_ring = gb_semiring + | 
| 23252 | 224 | fixes sub :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 225 | and neg :: "'a \<Rightarrow> 'a" | |
| 226 | assumes neg_mul: "neg x = mul (neg r1) x" | |
| 227 | and sub_add: "sub x y = add x (neg y)" | |
| 228 | begin | |
| 229 | ||
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28823diff
changeset | 230 | lemma ring_ops: shows "TERM (sub x y)" and "TERM (neg x)" . | 
| 23252 | 231 | |
| 232 | lemmas ring_rules = neg_mul sub_add | |
| 233 | ||
| 26462 | 234 | lemmas gb_ring_axioms' = | 
| 26314 | 235 | gb_ring_axioms [normalizer | 
| 236 | semiring ops: semiring_ops | |
| 237 | semiring rules: semiring_rules | |
| 238 | ring ops: ring_ops | |
| 239 | ring rules: ring_rules] | |
| 23252 | 240 | |
| 241 | end | |
| 242 | ||
| 243 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30654diff
changeset | 244 | interpretation class_ring: gb_ring "op +" "op *" "op ^" | 
| 31017 | 245 |     "0::'a::{comm_semiring_1,number_ring}" 1 "op -" "uminus"
 | 
| 28823 | 246 | proof qed simp_all | 
| 23252 | 247 | |
| 248 | ||
| 26462 | 249 | declaration {* normalizer_funs @{thm class_ring.gb_ring_axioms'} *}
 | 
| 23252 | 250 | |
| 251 | use "Tools/Groebner_Basis/normalizer.ML" | |
| 252 | ||
| 27666 | 253 | |
| 23252 | 254 | method_setup sring_norm = {*
 | 
| 30549 | 255 | Scan.succeed (SIMPLE_METHOD' o Normalizer.semiring_normalize_tac) | 
| 23458 | 256 | *} "semiring normalizer" | 
| 23252 | 257 | |
| 258 | ||
| 23327 | 259 | locale gb_field = gb_ring + | 
| 260 | fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | |
| 261 | and inverse:: "'a \<Rightarrow> 'a" | |
| 30866 | 262 | assumes divide_inverse: "divide x y = mul x (inverse y)" | 
| 263 | and inverse_divide: "inverse x = divide r1 x" | |
| 23327 | 264 | begin | 
| 265 | ||
| 30866 | 266 | lemma field_ops: shows "TERM (divide x y)" and "TERM (inverse x)" . | 
| 267 | ||
| 268 | lemmas field_rules = divide_inverse inverse_divide | |
| 269 | ||
| 26462 | 270 | lemmas gb_field_axioms' = | 
| 26314 | 271 | gb_field_axioms [normalizer | 
| 272 | semiring ops: semiring_ops | |
| 273 | semiring rules: semiring_rules | |
| 274 | ring ops: ring_ops | |
| 30866 | 275 | ring rules: ring_rules | 
| 276 | field ops: field_ops | |
| 277 | field rules: field_rules] | |
| 23327 | 278 | |
| 279 | end | |
| 280 | ||
| 23458 | 281 | |
| 23266 | 282 | subsection {* Groebner Bases *}
 | 
| 23252 | 283 | |
| 23258 
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
 wenzelm parents: 
23252diff
changeset | 284 | locale semiringb = gb_semiring + | 
| 23252 | 285 | assumes add_cancel: "add (x::'a) y = add x z \<longleftrightarrow> y = z" | 
| 286 | and add_mul_solve: "add (mul w y) (mul x z) = | |
| 287 | add (mul w z) (mul x y) \<longleftrightarrow> w = x \<or> y = z" | |
| 288 | begin | |
| 289 | ||
| 290 | lemma noteq_reduce: "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)" | |
| 291 | proof- | |
| 292 | have "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> \<not> (a = b \<or> c = d)" by simp | |
| 293 | also have "\<dots> \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)" | |
| 294 | using add_mul_solve by blast | |
| 295 | finally show "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)" | |
| 296 | by simp | |
| 297 | qed | |
| 298 | ||
| 299 | lemma add_scale_eq_noteq: "\<lbrakk>r \<noteq> r0 ; (a = b) \<and> ~(c = d)\<rbrakk> | |
| 300 | \<Longrightarrow> add a (mul r c) \<noteq> add b (mul r d)" | |
| 301 | proof(clarify) | |
| 302 | assume nz: "r\<noteq> r0" and cnd: "c\<noteq>d" | |
| 303 | and eq: "add b (mul r c) = add b (mul r d)" | |
| 304 | hence "mul r c = mul r d" using cnd add_cancel by simp | |
| 305 | hence "add (mul r0 d) (mul r c) = add (mul r0 c) (mul r d)" | |
| 306 | using mul_0 add_cancel by simp | |
| 307 | thus "False" using add_mul_solve nz cnd by simp | |
| 308 | qed | |
| 309 | ||
| 25250 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 310 | lemma add_r0_iff: " x = add x a \<longleftrightarrow> a = r0" | 
| 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 311 | proof- | 
| 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 312 | have "a = r0 \<longleftrightarrow> add x a = add x r0" by (simp add: add_cancel) | 
| 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 313 | thus "x = add x a \<longleftrightarrow> a = r0" by (auto simp add: add_c add_0) | 
| 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 314 | qed | 
| 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 315 | |
| 26462 | 316 | declare gb_semiring_axioms' [normalizer del] | 
| 23252 | 317 | |
| 26462 | 318 | lemmas semiringb_axioms' = semiringb_axioms [normalizer | 
| 23252 | 319 | semiring ops: semiring_ops | 
| 320 | semiring rules: semiring_rules | |
| 26314 | 321 | idom rules: noteq_reduce add_scale_eq_noteq] | 
| 23252 | 322 | |
| 323 | end | |
| 324 | ||
| 25250 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 325 | locale ringb = semiringb + gb_ring + | 
| 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 326 | assumes subr0_iff: "sub x y = r0 \<longleftrightarrow> x = y" | 
| 23252 | 327 | begin | 
| 328 | ||
| 26462 | 329 | declare gb_ring_axioms' [normalizer del] | 
| 23252 | 330 | |
| 26462 | 331 | lemmas ringb_axioms' = ringb_axioms [normalizer | 
| 23252 | 332 | semiring ops: semiring_ops | 
| 333 | semiring rules: semiring_rules | |
| 334 | ring ops: ring_ops | |
| 335 | ring rules: ring_rules | |
| 25250 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 336 | idom rules: noteq_reduce add_scale_eq_noteq | 
| 26314 | 337 | ideal rules: subr0_iff add_r0_iff] | 
| 23252 | 338 | |
| 339 | end | |
| 340 | ||
| 25250 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 341 | |
| 23252 | 342 | lemma no_zero_divirors_neq0: | 
| 343 | assumes az: "(a::'a::no_zero_divisors) \<noteq> 0" | |
| 344 | and ab: "a*b = 0" shows "b = 0" | |
| 345 | proof - | |
| 346 |   { assume bz: "b \<noteq> 0"
 | |
| 347 | from no_zero_divisors [OF az bz] ab have False by blast } | |
| 348 | thus "b = 0" by blast | |
| 349 | qed | |
| 350 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30654diff
changeset | 351 | interpretation class_ringb: ringb | 
| 31017 | 352 |   "op +" "op *" "op ^" "0::'a::{idom,number_ring}" "1" "op -" "uminus"
 | 
| 29667 | 353 | proof(unfold_locales, simp add: algebra_simps power_Suc, auto) | 
| 31017 | 354 |   fix w x y z ::"'a::{idom,number_ring}"
 | 
| 23252 | 355 | assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z" | 
| 356 | hence ynz': "y - z \<noteq> 0" by simp | |
| 357 | from p have "w * y + x* z - w*z - x*y = 0" by simp | |
| 29667 | 358 | hence "w* (y - z) - x * (y - z) = 0" by (simp add: algebra_simps) | 
| 359 | hence "(y - z) * (w - x) = 0" by (simp add: algebra_simps) | |
| 23252 | 360 | with no_zero_divirors_neq0 [OF ynz'] | 
| 361 | have "w - x = 0" by blast | |
| 362 | thus "w = x" by simp | |
| 363 | qed | |
| 364 | ||
| 26462 | 365 | declaration {* normalizer_funs @{thm class_ringb.ringb_axioms'} *}
 | 
| 23252 | 366 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30654diff
changeset | 367 | interpretation natgb: semiringb | 
| 29223 | 368 | "op +" "op *" "op ^" "0::nat" "1" | 
| 29667 | 369 | proof (unfold_locales, simp add: algebra_simps power_Suc) | 
| 23252 | 370 | fix w x y z ::"nat" | 
| 371 |   { assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z"
 | |
| 372 | hence "y < z \<or> y > z" by arith | |
| 373 |     moreover {
 | |
| 374 | assume lt:"y <z" hence "\<exists>k. z = y + k \<and> k > 0" by (rule_tac x="z - y" in exI, auto) | |
| 375 | then obtain k where kp: "k>0" and yz:"z = y + k" by blast | |
| 29667 | 376 | from p have "(w * y + x *y) + x*k = (w * y + x*y) + w*k" by (simp add: yz algebra_simps) | 
| 23252 | 377 | hence "x*k = w*k" by simp | 
| 378 | hence "w = x" using kp by (simp add: mult_cancel2) } | |
| 379 |     moreover {
 | |
| 380 | assume lt: "y >z" hence "\<exists>k. y = z + k \<and> k>0" by (rule_tac x="y - z" in exI, auto) | |
| 381 | then obtain k where kp: "k>0" and yz:"y = z + k" by blast | |
| 29667 | 382 | from p have "(w * z + x *z) + w*k = (w * z + x*z) + x*k" by (simp add: yz algebra_simps) | 
| 23252 | 383 | hence "w*k = x*k" by simp | 
| 384 | hence "w = x" using kp by (simp add: mult_cancel2)} | |
| 385 | ultimately have "w=x" by blast } | |
| 386 | thus "(w * y + x * z = w * z + x * y) = (w = x \<or> y = z)" by auto | |
| 387 | qed | |
| 388 | ||
| 26462 | 389 | declaration {* normalizer_funs @{thm natgb.semiringb_axioms'} *}
 | 
| 23252 | 390 | |
| 23327 | 391 | locale fieldgb = ringb + gb_field | 
| 392 | begin | |
| 393 | ||
| 26462 | 394 | declare gb_field_axioms' [normalizer del] | 
| 23327 | 395 | |
| 26462 | 396 | lemmas fieldgb_axioms' = fieldgb_axioms [normalizer | 
| 23327 | 397 | semiring ops: semiring_ops | 
| 398 | semiring rules: semiring_rules | |
| 399 | ring ops: ring_ops | |
| 400 | ring rules: ring_rules | |
| 30866 | 401 | field ops: field_ops | 
| 402 | field rules: field_rules | |
| 25250 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 403 | idom rules: noteq_reduce add_scale_eq_noteq | 
| 26314 | 404 | ideal rules: subr0_iff add_r0_iff] | 
| 405 | ||
| 23327 | 406 | end | 
| 407 | ||
| 408 | ||
| 23258 
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
 wenzelm parents: 
23252diff
changeset | 409 | lemmas bool_simps = simp_thms(1-34) | 
| 23252 | 410 | lemma dnf: | 
| 411 | "(P & (Q | R)) = ((P&Q) | (P&R))" "((Q | R) & P) = ((Q&P) | (R&P))" | |
| 412 | "(P \<and> Q) = (Q \<and> P)" "(P \<or> Q) = (Q \<or> P)" | |
| 413 | by blast+ | |
| 414 | ||
| 415 | lemmas weak_dnf_simps = dnf bool_simps | |
| 416 | ||
| 417 | lemma nnf_simps: | |
| 418 | "(\<not>(P \<and> Q)) = (\<not>P \<or> \<not>Q)" "(\<not>(P \<or> Q)) = (\<not>P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)" | |
| 419 | "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not> \<not>(P)) = P" | |
| 420 | by blast+ | |
| 421 | ||
| 422 | lemma PFalse: | |
| 423 | "P \<equiv> False \<Longrightarrow> \<not> P" | |
| 424 | "\<not> P \<Longrightarrow> (P \<equiv> False)" | |
| 425 | by auto | |
| 426 | use "Tools/Groebner_Basis/groebner.ML" | |
| 427 | ||
| 23332 
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
 chaieb parents: 
23330diff
changeset | 428 | method_setup algebra = | 
| 23458 | 429 | {*
 | 
| 23332 
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
 chaieb parents: 
23330diff
changeset | 430 | let | 
| 
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
 chaieb parents: 
23330diff
changeset | 431 | fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K () | 
| 
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
 chaieb parents: 
23330diff
changeset | 432 | val addN = "add" | 
| 
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
 chaieb parents: 
23330diff
changeset | 433 | val delN = "del" | 
| 
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
 chaieb parents: 
23330diff
changeset | 434 | val any_keyword = keyword addN || keyword delN | 
| 
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
 chaieb parents: 
23330diff
changeset | 435 | val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; | 
| 
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
 chaieb parents: 
23330diff
changeset | 436 | in | 
| 30549 | 437 | ((Scan.optional (keyword addN |-- thms) []) -- | 
| 438 | (Scan.optional (keyword delN |-- thms) [])) >> | |
| 439 | (fn (add_ths, del_ths) => fn ctxt => | |
| 30510 
4120fc59dd85
unified type Proof.method and pervasive METHOD combinators;
 wenzelm parents: 
30242diff
changeset | 440 | SIMPLE_METHOD' (Groebner.algebra_tac add_ths del_ths ctxt)) | 
| 23332 
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
 chaieb parents: 
23330diff
changeset | 441 | end | 
| 25250 
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
 chaieb parents: 
23573diff
changeset | 442 | *} "solve polynomial equations over (semi)rings and ideal membership problems using Groebner bases" | 
| 27666 | 443 | declare dvd_def[algebra] | 
| 444 | declare dvd_eq_mod_eq_0[symmetric, algebra] | |
| 30027 | 445 | declare mod_div_trivial[algebra] | 
| 446 | declare mod_mod_trivial[algebra] | |
| 27666 | 447 | declare conjunct1[OF DIVISION_BY_ZERO, algebra] | 
| 448 | declare conjunct2[OF DIVISION_BY_ZERO, algebra] | |
| 449 | declare zmod_zdiv_equality[symmetric,algebra] | |
| 450 | declare zdiv_zmod_equality[symmetric, algebra] | |
| 451 | declare zdiv_zminus_zminus[algebra] | |
| 452 | declare zmod_zminus_zminus[algebra] | |
| 453 | declare zdiv_zminus2[algebra] | |
| 454 | declare zmod_zminus2[algebra] | |
| 455 | declare zdiv_zero[algebra] | |
| 456 | declare zmod_zero[algebra] | |
| 30031 | 457 | declare mod_by_1[algebra] | 
| 458 | declare div_by_1[algebra] | |
| 27666 | 459 | declare zmod_minus1_right[algebra] | 
| 460 | declare zdiv_minus1_right[algebra] | |
| 461 | declare mod_div_trivial[algebra] | |
| 462 | declare mod_mod_trivial[algebra] | |
| 30034 | 463 | declare mod_mult_self2_is_0[algebra] | 
| 464 | declare mod_mult_self1_is_0[algebra] | |
| 27666 | 465 | declare zmod_eq_0_iff[algebra] | 
| 30042 | 466 | declare dvd_0_left_iff[algebra] | 
| 27666 | 467 | declare zdvd1_eq[algebra] | 
| 468 | declare zmod_eq_dvd_iff[algebra] | |
| 469 | declare nat_mod_eq_iff[algebra] | |
| 23252 | 470 | |
| 28402 | 471 | subsection{* Groebner Bases for fields *}
 | 
| 472 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30654diff
changeset | 473 | interpretation class_fieldgb: | 
| 31017 | 474 |   fieldgb "op +" "op *" "op ^" "0::'a::{field,number_ring}" "1" "op -" "uminus" "op /" "inverse" apply (unfold_locales) by (simp_all add: divide_inverse)
 | 
| 28402 | 475 | |
| 476 | lemma divide_Numeral1: "(x::'a::{field,number_ring}) / Numeral1 = x" by simp
 | |
| 477 | lemma divide_Numeral0: "(x::'a::{field,number_ring, division_by_zero}) / Numeral0 = 0"
 | |
| 478 | by simp | |
| 479 | lemma mult_frac_frac: "((x::'a::{field,division_by_zero}) / y) * (z / w) = (x*z) / (y*w)"
 | |
| 480 | by simp | |
| 481 | lemma mult_frac_num: "((x::'a::{field, division_by_zero}) / y) * z  = (x*z) / y"
 | |
| 482 | by simp | |
| 483 | lemma mult_num_frac: "((x::'a::{field, division_by_zero}) / y) * z  = (x*z) / y"
 | |
| 484 | by simp | |
| 485 | ||
| 486 | lemma Numeral1_eq1_nat: "(1::nat) = Numeral1" by simp | |
| 487 | ||
| 488 | lemma add_frac_num: "y\<noteq> 0 \<Longrightarrow> (x::'a::{field, division_by_zero}) / y + z = (x + z*y) / y"
 | |
| 489 | by (simp add: add_divide_distrib) | |
| 490 | lemma add_num_frac: "y\<noteq> 0 \<Longrightarrow> z + (x::'a::{field, division_by_zero}) / y = (x + z*y) / y"
 | |
| 491 | by (simp add: add_divide_distrib) | |
| 30869 
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
 chaieb parents: 
30866diff
changeset | 492 | ML{* let open Conv in fconv_rule (arg_conv (arg1_conv (rewr_conv (mk_meta_eq @{thm mult_commute}))))   (@{thm divide_inverse} RS sym)end*}
 | 
| 28402 | 493 | ML{* 
 | 
| 494 | local | |
| 495 |  val zr = @{cpat "0"}
 | |
| 496 | val zT = ctyp_of_term zr | |
| 497 |  val geq = @{cpat "op ="}
 | |
| 498 | val eqT = Thm.dest_ctyp (ctyp_of_term geq) |> hd | |
| 499 |  val add_frac_eq = mk_meta_eq @{thm "add_frac_eq"}
 | |
| 500 |  val add_frac_num = mk_meta_eq @{thm "add_frac_num"}
 | |
| 501 |  val add_num_frac = mk_meta_eq @{thm "add_num_frac"}
 | |
| 502 | ||
| 503 | fun prove_nz ss T t = | |
| 504 | let | |
| 505 | val z = instantiate_cterm ([(zT,T)],[]) zr | |
| 506 | val eq = instantiate_cterm ([(eqT,T)],[]) geq | |
| 507 | val th = Simplifier.rewrite (ss addsimps simp_thms) | |
| 508 |            (Thm.capply @{cterm "Trueprop"} (Thm.capply @{cterm "Not"}
 | |
| 509 | (Thm.capply (Thm.capply eq t) z))) | |
| 510 | in equal_elim (symmetric th) TrueI | |
| 511 | end | |
| 512 | ||
| 513 | fun proc phi ss ct = | |
| 514 | let | |
| 515 | val ((x,y),(w,z)) = | |
| 516 | (Thm.dest_binop #> (fn (a,b) => (Thm.dest_binop a, Thm.dest_binop b))) ct | |
| 517 | val _ = map (HOLogic.dest_number o term_of) [x,y,z,w] | |
| 518 | val T = ctyp_of_term x | |
| 519 | val [y_nz, z_nz] = map (prove_nz ss T) [y, z] | |
| 520 | val th = instantiate' [SOME T] (map SOME [y,z,x,w]) add_frac_eq | |
| 521 | in SOME (implies_elim (implies_elim th y_nz) z_nz) | |
| 522 | end | |
| 523 | handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE | |
| 524 | ||
| 525 | fun proc2 phi ss ct = | |
| 526 | let | |
| 527 | val (l,r) = Thm.dest_binop ct | |
| 528 | val T = ctyp_of_term l | |
| 529 | in (case (term_of l, term_of r) of | |
| 530 |       (Const(@{const_name "HOL.divide"},_)$_$_, _) =>
 | |
| 531 | let val (x,y) = Thm.dest_binop l val z = r | |
| 532 | val _ = map (HOLogic.dest_number o term_of) [x,y,z] | |
| 533 | val ynz = prove_nz ss T y | |
| 534 | in SOME (implies_elim (instantiate' [SOME T] (map SOME [y,x,z]) add_frac_num) ynz) | |
| 535 | end | |
| 536 |      | (_, Const (@{const_name "HOL.divide"},_)$_$_) =>
 | |
| 537 | let val (x,y) = Thm.dest_binop r val z = l | |
| 538 | val _ = map (HOLogic.dest_number o term_of) [x,y,z] | |
| 539 | val ynz = prove_nz ss T y | |
| 540 | in SOME (implies_elim (instantiate' [SOME T] (map SOME [y,z,x]) add_num_frac) ynz) | |
| 541 | end | |
| 542 | | _ => NONE) | |
| 543 | end | |
| 544 | handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE | |
| 545 | ||
| 546 |  fun is_number (Const(@{const_name "HOL.divide"},_)$a$b) = is_number a andalso is_number b
 | |
| 547 | | is_number t = can HOLogic.dest_number t | |
| 548 | ||
| 549 | val is_number = is_number o term_of | |
| 550 | ||
| 551 | fun proc3 phi ss ct = | |
| 552 | (case term_of ct of | |
| 553 |     Const(@{const_name HOL.less},_)$(Const(@{const_name "HOL.divide"},_)$_$_)$_ =>
 | |
| 554 | let | |
| 555 | val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop | |
| 556 | val _ = map is_number [a,b,c] | |
| 557 | val T = ctyp_of_term c | |
| 558 |         val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_less_eq"}
 | |
| 559 | in SOME (mk_meta_eq th) end | |
| 560 |   | Const(@{const_name HOL.less_eq},_)$(Const(@{const_name "HOL.divide"},_)$_$_)$_ =>
 | |
| 561 | let | |
| 562 | val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop | |
| 563 | val _ = map is_number [a,b,c] | |
| 564 | val T = ctyp_of_term c | |
| 565 |         val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_le_eq"}
 | |
| 566 | in SOME (mk_meta_eq th) end | |
| 567 |   | Const("op =",_)$(Const(@{const_name "HOL.divide"},_)$_$_)$_ =>
 | |
| 568 | let | |
| 569 | val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop | |
| 570 | val _ = map is_number [a,b,c] | |
| 571 | val T = ctyp_of_term c | |
| 572 |         val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_eq_eq"}
 | |
| 573 | in SOME (mk_meta_eq th) end | |
| 574 |   | Const(@{const_name HOL.less},_)$_$(Const(@{const_name "HOL.divide"},_)$_$_) =>
 | |
| 575 | let | |
| 576 | val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop | |
| 577 | val _ = map is_number [a,b,c] | |
| 578 | val T = ctyp_of_term c | |
| 579 |         val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "less_divide_eq"}
 | |
| 580 | in SOME (mk_meta_eq th) end | |
| 581 |   | Const(@{const_name HOL.less_eq},_)$_$(Const(@{const_name "HOL.divide"},_)$_$_) =>
 | |
| 582 | let | |
| 583 | val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop | |
| 584 | val _ = map is_number [a,b,c] | |
| 585 | val T = ctyp_of_term c | |
| 586 |         val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "le_divide_eq"}
 | |
| 587 | in SOME (mk_meta_eq th) end | |
| 588 |   | Const("op =",_)$_$(Const(@{const_name "HOL.divide"},_)$_$_) =>
 | |
| 589 | let | |
| 590 | val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop | |
| 591 | val _ = map is_number [a,b,c] | |
| 592 | val T = ctyp_of_term c | |
| 593 |         val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "eq_divide_eq"}
 | |
| 594 | in SOME (mk_meta_eq th) end | |
| 595 | | _ => NONE) | |
| 596 | handle TERM _ => NONE | CTERM _ => NONE | THM _ => NONE | |
| 597 | ||
| 598 | val add_frac_frac_simproc = | |
| 599 |        make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + (?w::?'a::field)/?z"}],
 | |
| 600 | name = "add_frac_frac_simproc", | |
| 601 | proc = proc, identifier = []} | |
| 602 | ||
| 603 | val add_frac_num_simproc = | |
| 604 |        make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + ?z"}, @{cpat "?z + (?x::?'a::field)/?y"}],
 | |
| 605 | name = "add_frac_num_simproc", | |
| 606 | proc = proc2, identifier = []} | |
| 607 | ||
| 608 | val ord_frac_simproc = | |
| 609 | make_simproc | |
| 610 |     {lhss = [@{cpat "(?a::(?'a::{field, ord}))/?b < ?c"},
 | |
| 611 |              @{cpat "(?a::(?'a::{field, ord}))/?b \<le> ?c"},
 | |
| 612 |              @{cpat "?c < (?a::(?'a::{field, ord}))/?b"},
 | |
| 613 |              @{cpat "?c \<le> (?a::(?'a::{field, ord}))/?b"},
 | |
| 614 |              @{cpat "?c = ((?a::(?'a::{field, ord}))/?b)"},
 | |
| 615 |              @{cpat "((?a::(?'a::{field, ord}))/ ?b) = ?c"}],
 | |
| 616 | name = "ord_frac_simproc", proc = proc3, identifier = []} | |
| 617 | ||
| 30869 
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
 chaieb parents: 
30866diff
changeset | 618 | local | 
| 
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
 chaieb parents: 
30866diff
changeset | 619 | open Conv | 
| 
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
 chaieb parents: 
30866diff
changeset | 620 | in | 
| 
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
 chaieb parents: 
30866diff
changeset | 621 | |
| 28402 | 622 | val ths = [@{thm "mult_numeral_1"}, @{thm "mult_numeral_1_right"},
 | 
| 623 |            @{thm "divide_Numeral1"},
 | |
| 624 |            @{thm "Ring_and_Field.divide_zero"}, @{thm "divide_Numeral0"},
 | |
| 625 |            @{thm "divide_divide_eq_left"}, @{thm "mult_frac_frac"},
 | |
| 626 |            @{thm "mult_num_frac"}, @{thm "mult_frac_num"},
 | |
| 627 |            @{thm "mult_frac_frac"}, @{thm "times_divide_eq_right"},
 | |
| 628 |            @{thm "times_divide_eq_left"}, @{thm "divide_divide_eq_right"},
 | |
| 629 |            @{thm "diff_def"}, @{thm "minus_divide_left"},
 | |
| 30869 
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
 chaieb parents: 
30866diff
changeset | 630 |            @{thm "Numeral1_eq1_nat"}, @{thm "add_divide_distrib"} RS sym,
 | 
| 
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
 chaieb parents: 
30866diff
changeset | 631 |            @{thm divide_inverse} RS sym, @{thm inverse_divide}, 
 | 
| 
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
 chaieb parents: 
30866diff
changeset | 632 |            fconv_rule (arg_conv (arg1_conv (rewr_conv (mk_meta_eq @{thm mult_commute}))))   
 | 
| 
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
 chaieb parents: 
30866diff
changeset | 633 |            (@{thm divide_inverse} RS sym)]
 | 
| 28402 | 634 | |
| 635 | val comp_conv = (Simplifier.rewrite | |
| 636 | (HOL_basic_ss addsimps @{thms "Groebner_Basis.comp_arith"}
 | |
| 28987 | 637 | addsimps ths addsimps simp_thms | 
| 31068 
f591144b0f17
modules numeral_simprocs, nat_numeral_simprocs; proper structures for numeral simprocs
 haftmann parents: 
31017diff
changeset | 638 | addsimprocs Numeral_Simprocs.field_cancel_numeral_factors | 
| 28402 | 639 | addsimprocs [add_frac_frac_simproc, add_frac_num_simproc, | 
| 640 | ord_frac_simproc] | |
| 641 |                 addcongs [@{thm "if_weak_cong"}]))
 | |
| 642 | then_conv (Simplifier.rewrite (HOL_basic_ss addsimps | |
| 643 |   [@{thm numeral_1_eq_1},@{thm numeral_0_eq_0}] @ @{thms numerals(1-2)}))
 | |
| 23252 | 644 | end | 
| 28402 | 645 | |
| 646 | fun numeral_is_const ct = | |
| 647 | case term_of ct of | |
| 648 |    Const (@{const_name "HOL.divide"},_) $ a $ b =>
 | |
| 30866 | 649 | can HOLogic.dest_number a andalso can HOLogic.dest_number b | 
| 650 |  | Const (@{const_name "HOL.inverse"},_)$t => can HOLogic.dest_number t
 | |
| 28402 | 651 | | t => can HOLogic.dest_number t | 
| 652 | ||
| 653 | fun dest_const ct = ((case term_of ct of | |
| 654 |    Const (@{const_name "HOL.divide"},_) $ a $ b=>
 | |
| 655 | Rat.rat_of_quotient (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b)) | |
| 30869 
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
 chaieb parents: 
30866diff
changeset | 656 |  | Const (@{const_name "HOL.inverse"},_)$t => 
 | 
| 
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
 chaieb parents: 
30866diff
changeset | 657 | Rat.inv (Rat.rat_of_int (snd (HOLogic.dest_number t))) | 
| 28402 | 658 | | t => Rat.rat_of_int (snd (HOLogic.dest_number t))) | 
| 659 | handle TERM _ => error "ring_dest_const") | |
| 660 | ||
| 661 | fun mk_const phi cT x = | |
| 662 | let val (a, b) = Rat.quotient_of_rat x | |
| 663 | in if b = 1 then Numeral.mk_cnumber cT a | |
| 664 | else Thm.capply | |
| 665 |          (Thm.capply (Drule.cterm_rule (instantiate' [SOME cT] []) @{cpat "op /"})
 | |
| 666 | (Numeral.mk_cnumber cT a)) | |
| 667 | (Numeral.mk_cnumber cT b) | |
| 668 | end | |
| 669 | ||
| 670 | in | |
| 671 | val field_comp_conv = comp_conv; | |
| 672 | val fieldgb_declaration = | |
| 673 |   NormalizerData.funs @{thm class_fieldgb.fieldgb_axioms'}
 | |
| 674 |    {is_const = K numeral_is_const,
 | |
| 675 | dest_const = K dest_const, | |
| 676 | mk_const = mk_const, | |
| 677 | conv = K (K comp_conv)} | |
| 678 | end; | |
| 679 | *} | |
| 680 | ||
| 681 | declaration fieldgb_declaration | |
| 682 | ||
| 683 | end |