|
13133
|
1 |
(* Title: HOL/Hoare/Pointers.thy
|
|
|
2 |
ID: $Id$
|
|
|
3 |
Author: Tobias Nipkow
|
|
|
4 |
Copyright 2002 TUM
|
|
|
5 |
|
|
|
6 |
How to use Hoare logic to verify pointer manipulating programs.
|
|
|
7 |
The old idea: the store is a global mapping from pointers to values.
|
|
|
8 |
Pointers are modelled by type 'a option, where None is Nil.
|
|
|
9 |
Thus the heap is of type 'a \<leadsto> 'a (see theory Map).
|
|
|
10 |
|
|
|
11 |
The List reversal example is taken from Richard Bornat's paper
|
|
|
12 |
Proving pointer programs in Hoare logic
|
|
|
13 |
What's new? We formalize the foundations, ie the abstraction from the pointer
|
|
|
14 |
chains to HOL lists. This is merely axiomatized by Bornat.
|
|
|
15 |
*)
|
|
|
16 |
|
|
|
17 |
theory Pointers = Hoare:
|
|
|
18 |
|
|
|
19 |
section"The heap"
|
|
|
20 |
|
|
|
21 |
subsection"Paths in the heap"
|
|
|
22 |
|
|
|
23 |
consts
|
|
|
24 |
path :: "('a \<leadsto> 'a) \<Rightarrow> 'a option \<Rightarrow> 'a list \<Rightarrow> 'a option \<Rightarrow> bool"
|
|
|
25 |
primrec
|
|
|
26 |
"path h x [] y = (x = y)"
|
|
|
27 |
"path h x (a#as) y = (x = Some a \<and> path h (h a) as y)"
|
|
|
28 |
|
|
|
29 |
(* useful?
|
|
|
30 |
lemma [simp]: "!x. reach h x (as @ [a]) (h a) = reach h x as (Some a)"
|
|
|
31 |
apply(induct_tac as)
|
|
|
32 |
apply(clarsimp)
|
|
|
33 |
apply(clarsimp)
|
|
|
34 |
done
|
|
|
35 |
*)
|
|
|
36 |
|
|
|
37 |
subsection "Lists on the heap"
|
|
|
38 |
|
|
|
39 |
constdefs
|
|
|
40 |
list :: "('a \<leadsto> 'a) \<Rightarrow> 'a option \<Rightarrow> 'a list \<Rightarrow> bool"
|
|
|
41 |
"list h x as == path h x as None"
|
|
|
42 |
|
|
|
43 |
lemma [simp]: "list h x [] = (x = None)"
|
|
|
44 |
by(simp add:list_def)
|
|
|
45 |
|
|
|
46 |
lemma [simp]: "list h x (a#as) = (x = Some a \<and> list h (h a) as)"
|
|
|
47 |
by(simp add:list_def)
|
|
|
48 |
|
|
|
49 |
lemma [simp]: "list h None as = (as = [])"
|
|
|
50 |
by(case_tac as, simp_all)
|
|
|
51 |
|
|
|
52 |
lemma [simp]: "list h (Some a) as = (\<exists>bs. as = a#bs \<and> list h (h a) bs)"
|
|
|
53 |
by(case_tac as, simp_all, fast)
|
|
|
54 |
|
|
|
55 |
|
|
|
56 |
declare fun_upd_apply[simp del]fun_upd_same[simp] fun_upd_other[simp]
|
|
|
57 |
|
|
|
58 |
lemma list_unique: "\<And>x bs. list h x as \<Longrightarrow> list h x bs \<Longrightarrow> as = bs"
|
|
|
59 |
by(induct as, simp, clarsimp)
|
|
|
60 |
|
|
|
61 |
lemma list_app: "\<And>x. list h x (as@bs) = (\<exists>y. path h x as y \<and> list h y bs)"
|
|
|
62 |
by(induct as, simp, clarsimp)
|
|
|
63 |
|
|
|
64 |
lemma list_hd_not_in_tl: "list h (h a) as \<Longrightarrow> a \<notin> set as"
|
|
|
65 |
apply (clarsimp simp add:in_set_conv_decomp)
|
|
|
66 |
apply(frule list_app[THEN iffD1])
|
|
|
67 |
apply(fastsimp dest:list_app[THEN iffD1] list_unique)
|
|
|
68 |
done
|
|
|
69 |
|
|
|
70 |
lemma list_distinct: "\<And>x. list h x as \<Longrightarrow> distinct as"
|
|
|
71 |
apply(induct as, simp)
|
|
|
72 |
apply(fastsimp dest:list_hd_not_in_tl)
|
|
|
73 |
done
|
|
|
74 |
|
|
|
75 |
theorem notin_list_update[rule_format,simp]:
|
|
|
76 |
"\<forall>x. a \<notin> set as \<longrightarrow> list (h(a := y)) x as = list h x as"
|
|
|
77 |
apply(induct_tac as)
|
|
|
78 |
apply simp
|
|
|
79 |
apply(simp add:fun_upd_apply)
|
|
|
80 |
done
|
|
|
81 |
|
|
|
82 |
lemma [simp]: "list h (h a) as \<Longrightarrow> list (h(a := y)) (h a) as"
|
|
|
83 |
by(simp add:list_hd_not_in_tl)
|
|
|
84 |
(* Note that the opposite direction does NOT hold:
|
|
|
85 |
If h = (a \<mapsto> Some a)
|
|
|
86 |
then list (h(a := None)) (h a) [a]
|
|
|
87 |
but not list h (h a) [] (because h is cyclic)
|
|
|
88 |
*)
|
|
|
89 |
|
|
|
90 |
section"Hoare logic"
|
|
|
91 |
|
|
|
92 |
(* This should already be done in Hoare.thy, which should be converted to
|
|
|
93 |
Isar *)
|
|
|
94 |
|
|
|
95 |
method_setup vcg_simp_tac = {*
|
|
|
96 |
Method.no_args
|
|
|
97 |
(Method.SIMPLE_METHOD' HEADGOAL (hoare_tac Asm_full_simp_tac)) *}
|
|
|
98 |
"verification condition generator plus simplification"
|
|
|
99 |
|
|
|
100 |
subsection"List reversal"
|
|
|
101 |
|
|
|
102 |
lemma "|- VARS tl p q r.
|
|
|
103 |
{list tl p As \<and> list tl q Bs \<and> set As \<inter> set Bs = {}}
|
|
|
104 |
WHILE p ~= None
|
|
|
105 |
INV {\<exists>As' Bs'. list tl p As' \<and> list tl q Bs' \<and> set As' \<inter> set Bs' = {} \<and>
|
|
|
106 |
rev As' @ Bs' = rev As @ Bs}
|
|
|
107 |
DO r := p; p := tl(the p); tl := tl(the r := q); q := r OD
|
|
|
108 |
{list tl q (rev As @ Bs)}"
|
|
|
109 |
apply vcg_simp_tac
|
|
|
110 |
|
|
|
111 |
apply(rule_tac x = As in exI)
|
|
|
112 |
apply simp
|
|
|
113 |
|
|
|
114 |
prefer 2
|
|
|
115 |
apply clarsimp
|
|
|
116 |
|
|
|
117 |
apply clarify
|
|
|
118 |
apply(rename_tac As' b Bs')
|
|
|
119 |
apply(frule list_distinct)
|
|
|
120 |
apply clarsimp
|
|
|
121 |
apply(rename_tac As'')
|
|
|
122 |
apply(rule_tac x = As'' in exI)
|
|
|
123 |
apply simp
|
|
|
124 |
apply(rule_tac x = "b#Bs'" in exI)
|
|
|
125 |
apply simp
|
|
|
126 |
done
|
|
|
127 |
|
|
|
128 |
end
|