| author | paulson | 
| Wed, 21 Aug 2002 15:55:40 +0200 | |
| changeset 13509 | 6f168374652a | 
| parent 13356 | c9cfe1638bf2 | 
| child 13565 | 40e4755e57f7 | 
| permissions | -rw-r--r-- | 
| 1461 | 1  | 
(* Title: ZF/ZF.ML  | 
| 0 | 2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory  | 
| 435 | 4  | 
Copyright 1994 University of Cambridge  | 
| 0 | 5  | 
|
6  | 
Basic introduction and elimination rules for Zermelo-Fraenkel Set Theory  | 
|
7  | 
*)  | 
|
8  | 
||
| 
825
 
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
 
lcp 
parents: 
775 
diff
changeset
 | 
9  | 
(*Useful examples: singletonI RS subst_elem, subst_elem RSN (2,IntI) *)  | 
| 5137 | 10  | 
Goal "[| b:A; a=b |] ==> a:A";  | 
| 
825
 
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
 
lcp 
parents: 
775 
diff
changeset
 | 
11  | 
by (etac ssubst 1);  | 
| 
 
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
 
lcp 
parents: 
775 
diff
changeset
 | 
12  | 
by (assume_tac 1);  | 
| 9907 | 13  | 
qed "subst_elem";  | 
| 
825
 
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
 
lcp 
parents: 
775 
diff
changeset
 | 
14  | 
|
| 2469 | 15  | 
|
| 0 | 16  | 
(*** Bounded universal quantifier ***)  | 
17  | 
||
| 9211 | 18  | 
val prems= Goalw [Ball_def]  | 
19  | 
"[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)";  | 
|
20  | 
by (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ;  | 
|
21  | 
qed "ballI";  | 
|
| 0 | 22  | 
|
| 9211 | 23  | 
Goalw [Ball_def] "[| ALL x:A. P(x); x: A |] ==> P(x)";  | 
24  | 
by (etac (spec RS mp) 1);  | 
|
25  | 
by (assume_tac 1) ;  | 
|
26  | 
qed "bspec";  | 
|
| 0 | 27  | 
|
| 9211 | 28  | 
val major::prems= Goalw [Ball_def]  | 
29  | 
"[| ALL x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q";  | 
|
30  | 
by (rtac (major RS allE) 1);  | 
|
31  | 
by (REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ;  | 
|
32  | 
qed "ballE";  | 
|
| 0 | 33  | 
|
34  | 
(*Used in the datatype package*)  | 
|
| 9180 | 35  | 
Goal "[| x: A; ALL x:A. P(x) |] ==> P(x)";  | 
36  | 
by (REPEAT (ares_tac [bspec] 1)) ;  | 
|
37  | 
qed "rev_bspec";  | 
|
| 0 | 38  | 
|
39  | 
(*Instantiates x first: better for automatic theorem proving?*)  | 
|
| 9180 | 40  | 
val major::prems= Goal  | 
41  | 
"[| ALL x:A. P(x); x~:A ==> Q; P(x) ==> Q |] ==> Q";  | 
|
42  | 
by (rtac (major RS ballE) 1);  | 
|
43  | 
by (REPEAT (eresolve_tac prems 1)) ;  | 
|
44  | 
qed "rev_ballE";  | 
|
| 0 | 45  | 
|
| 2469 | 46  | 
AddSIs [ballI];  | 
47  | 
AddEs [rev_ballE];  | 
|
48  | 
||
| 0 | 49  | 
(*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*)  | 
50  | 
val ball_tac = dtac bspec THEN' assume_tac;  | 
|
51  | 
||
52  | 
(*Trival rewrite rule; (ALL x:A.P)<->P holds only if A is nonempty!*)  | 
|
| 9180 | 53  | 
Goal "(ALL x:A. P) <-> ((EX x. x:A) --> P)";  | 
54  | 
by (simp_tac (simpset() addsimps [Ball_def]) 1) ;  | 
|
55  | 
qed "ball_triv";  | 
|
| 3425 | 56  | 
Addsimps [ball_triv];  | 
| 0 | 57  | 
|
58  | 
(*Congruence rule for rewriting*)  | 
|
| 9211 | 59  | 
val prems= Goalw [Ball_def]  | 
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12836 
diff
changeset
 | 
60  | 
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] \  | 
| 
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12836 
diff
changeset
 | 
61  | 
\ ==> (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))";  | 
| 9211 | 62  | 
by (simp_tac (FOL_ss addsimps prems) 1) ;  | 
63  | 
qed "ball_cong";  | 
|
| 0 | 64  | 
|
65  | 
(*** Bounded existential quantifier ***)  | 
|
66  | 
||
| 6287 | 67  | 
Goalw [Bex_def] "[| P(x); x: A |] ==> EX x:A. P(x)";  | 
68  | 
by (Blast_tac 1);  | 
|
69  | 
qed "bexI";  | 
|
70  | 
||
71  | 
(*The best argument order when there is only one x:A*)  | 
|
72  | 
Goalw [Bex_def] "[| x:A; P(x) |] ==> EX x:A. P(x)";  | 
|
73  | 
by (Blast_tac 1);  | 
|
74  | 
qed "rev_bexI";  | 
|
| 0 | 75  | 
|
76  | 
(*Not of the general form for such rules; ~EX has become ALL~ *)  | 
|
| 9180 | 77  | 
val prems= Goal "[| ALL x:A. ~P(x) ==> P(a); a: A |] ==> EX x:A. P(x)";  | 
78  | 
by (rtac classical 1);  | 
|
79  | 
by (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ;  | 
|
80  | 
qed "bexCI";  | 
|
| 0 | 81  | 
|
| 9211 | 82  | 
val major::prems= Goalw [Bex_def]  | 
| 0 | 83  | 
"[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q \  | 
| 9211 | 84  | 
\ |] ==> Q";  | 
85  | 
by (rtac (major RS exE) 1);  | 
|
86  | 
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)) ;  | 
|
87  | 
qed "bexE";  | 
|
| 0 | 88  | 
|
| 2469 | 89  | 
AddIs [bexI];  | 
90  | 
AddSEs [bexE];  | 
|
91  | 
||
| 0 | 92  | 
(*We do not even have (EX x:A. True) <-> True unless A is nonempty!!*)  | 
| 9180 | 93  | 
Goal "(EX x:A. P) <-> ((EX x. x:A) & P)";  | 
94  | 
by (simp_tac (simpset() addsimps [Bex_def]) 1) ;  | 
|
95  | 
qed "bex_triv";  | 
|
| 3425 | 96  | 
Addsimps [bex_triv];  | 
| 0 | 97  | 
|
| 9211 | 98  | 
val prems= Goalw [Bex_def]  | 
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12836 
diff
changeset
 | 
99  | 
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] \  | 
| 
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12836 
diff
changeset
 | 
100  | 
\ ==> (EX x:A. P(x)) <-> (EX x:A'. P'(x))";  | 
| 9211 | 101  | 
by (simp_tac (FOL_ss addsimps prems addcongs [conj_cong]) 1) ;  | 
102  | 
qed "bex_cong";  | 
|
| 0 | 103  | 
|
| 2469 | 104  | 
Addcongs [ball_cong, bex_cong];  | 
105  | 
||
106  | 
||
| 0 | 107  | 
(*** Rules for subsets ***)  | 
108  | 
||
| 9211 | 109  | 
val prems= Goalw [subset_def]  | 
110  | 
"(!!x. x:A ==> x:B) ==> A <= B";  | 
|
111  | 
by (REPEAT (ares_tac (prems @ [ballI]) 1)) ;  | 
|
112  | 
qed "subsetI";  | 
|
| 0 | 113  | 
|
114  | 
(*Rule in Modus Ponens style [was called subsetE] *)  | 
|
| 9211 | 115  | 
Goalw [subset_def] "[| A <= B; c:A |] ==> c:B";  | 
116  | 
by (etac bspec 1);  | 
|
117  | 
by (assume_tac 1) ;  | 
|
118  | 
qed "subsetD";  | 
|
| 0 | 119  | 
|
120  | 
(*Classical elimination rule*)  | 
|
| 9211 | 121  | 
val major::prems= Goalw [subset_def]  | 
122  | 
"[| A <= B; c~:A ==> P; c:B ==> P |] ==> P";  | 
|
123  | 
by (rtac (major RS ballE) 1);  | 
|
124  | 
by (REPEAT (eresolve_tac prems 1)) ;  | 
|
125  | 
qed "subsetCE";  | 
|
| 0 | 126  | 
|
| 2469 | 127  | 
AddSIs [subsetI];  | 
128  | 
AddEs [subsetCE, subsetD];  | 
|
129  | 
||
130  | 
||
| 0 | 131  | 
(*Takes assumptions A<=B; c:A and creates the assumption c:B *)  | 
132  | 
val set_mp_tac = dtac subsetD THEN' assume_tac;  | 
|
133  | 
||
134  | 
(*Sometimes useful with premises in this order*)  | 
|
| 9180 | 135  | 
Goal "[| c:A; A<=B |] ==> c:B";  | 
136  | 
by (Blast_tac 1);  | 
|
137  | 
qed "rev_subsetD";  | 
|
| 0 | 138  | 
|
| 6111 | 139  | 
(*Converts A<=B to x:A ==> x:B*)  | 
140  | 
fun impOfSubs th = th RSN (2, rev_subsetD);  | 
|
141  | 
||
| 9180 | 142  | 
Goal "[| A <= B; c ~: B |] ==> c ~: A";  | 
143  | 
by (Blast_tac 1);  | 
|
144  | 
qed "contra_subsetD";  | 
|
| 1889 | 145  | 
|
| 9180 | 146  | 
Goal "[| c ~: B; A <= B |] ==> c ~: A";  | 
147  | 
by (Blast_tac 1);  | 
|
148  | 
qed "rev_contra_subsetD";  | 
|
| 1889 | 149  | 
|
| 9180 | 150  | 
Goal "A <= A";  | 
151  | 
by (Blast_tac 1);  | 
|
152  | 
qed "subset_refl";  | 
|
| 0 | 153  | 
|
| 2469 | 154  | 
Addsimps [subset_refl];  | 
155  | 
||
| 9180 | 156  | 
Goal "[| A<=B; B<=C |] ==> A<=C";  | 
157  | 
by (Blast_tac 1);  | 
|
158  | 
qed "subset_trans";  | 
|
| 0 | 159  | 
|
| 435 | 160  | 
(*Useful for proving A<=B by rewriting in some cases*)  | 
| 9211 | 161  | 
Goalw [subset_def,Ball_def]  | 
162  | 
"A<=B <-> (ALL x. x:A --> x:B)";  | 
|
163  | 
by (rtac iff_refl 1) ;  | 
|
164  | 
qed "subset_iff";  | 
|
| 435 | 165  | 
|
| 0 | 166  | 
|
167  | 
(*** Rules for equality ***)  | 
|
168  | 
||
169  | 
(*Anti-symmetry of the subset relation*)  | 
|
| 9180 | 170  | 
Goal "[| A <= B; B <= A |] ==> A = B";  | 
171  | 
by (REPEAT (ares_tac [conjI, extension RS iffD2] 1)) ;  | 
|
172  | 
qed "equalityI";  | 
|
| 0 | 173  | 
|
| 2493 | 174  | 
AddIs [equalityI];  | 
175  | 
||
| 9180 | 176  | 
val [prem] = Goal "(!!x. x:A <-> x:B) ==> A = B";  | 
177  | 
by (rtac equalityI 1);  | 
|
178  | 
by (REPEAT (ares_tac [subsetI, prem RS iffD1, prem RS iffD2] 1)) ;  | 
|
179  | 
qed "equality_iffI";  | 
|
| 0 | 180  | 
|
| 2469 | 181  | 
bind_thm ("equalityD1", extension RS iffD1 RS conjunct1);
 | 
182  | 
bind_thm ("equalityD2", extension RS iffD1 RS conjunct2);
 | 
|
| 0 | 183  | 
|
| 9180 | 184  | 
val prems = Goal "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P";  | 
185  | 
by (DEPTH_SOLVE (resolve_tac (prems@[equalityD1,equalityD2]) 1)) ;  | 
|
186  | 
qed "equalityE";  | 
|
| 0 | 187  | 
|
| 9180 | 188  | 
val major::prems= Goal  | 
189  | 
"[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P";  | 
|
190  | 
by (rtac (major RS equalityE) 1);  | 
|
191  | 
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)) ;  | 
|
192  | 
qed "equalityCE";  | 
|
| 0 | 193  | 
|
194  | 
(*Lemma for creating induction formulae -- for "pattern matching" on p  | 
|
195  | 
To make the induction hypotheses usable, apply "spec" or "bspec" to  | 
|
196  | 
put universal quantifiers over the free variables in p.  | 
|
197  | 
Would it be better to do subgoal_tac "ALL z. p = f(z) --> R(z)" ??*)  | 
|
| 9180 | 198  | 
val prems = Goal "[| p: A; !!z. z: A ==> p=z --> R |] ==> R";  | 
199  | 
by (rtac mp 1);  | 
|
200  | 
by (REPEAT (resolve_tac (refl::prems) 1)) ;  | 
|
201  | 
qed "setup_induction";  | 
|
| 0 | 202  | 
|
203  | 
||
204  | 
(*** Rules for Replace -- the derived form of replacement ***)  | 
|
205  | 
||
| 9211 | 206  | 
Goalw [Replace_def]  | 
207  | 
    "b : {y. x:A, P(x,y)}  <->  (EX x:A. P(x,b) & (ALL y. P(x,y) --> y=b))";
 | 
|
208  | 
by (rtac (replacement RS iff_trans) 1);  | 
|
209  | 
by (REPEAT (ares_tac [refl,bex_cong,iffI,ballI,allI,conjI,impI,ex1I] 1  | 
|
210  | 
ORELSE eresolve_tac [conjE, spec RS mp, ex1_functional] 1)) ;  | 
|
211  | 
qed "Replace_iff";  | 
|
| 0 | 212  | 
|
213  | 
(*Introduction; there must be a unique y such that P(x,y), namely y=b. *)  | 
|
| 9180 | 214  | 
val prems = Goal  | 
| 485 | 215  | 
"[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==> \  | 
| 9180 | 216  | 
\    b : {y. x:A, P(x,y)}";
 | 
217  | 
by (rtac (Replace_iff RS iffD2) 1);  | 
|
218  | 
by (REPEAT (ares_tac (prems@[bexI,conjI,allI,impI]) 1)) ;  | 
|
219  | 
qed "ReplaceI";  | 
|
| 0 | 220  | 
|
221  | 
(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *)  | 
|
| 9180 | 222  | 
val prems = Goal  | 
| 0 | 223  | 
    "[| b : {y. x:A, P(x,y)};  \
 | 
224  | 
\ !!x. [| x: A; P(x,b); ALL y. P(x,y)-->y=b |] ==> R \  | 
|
| 9180 | 225  | 
\ |] ==> R";  | 
226  | 
by (rtac (Replace_iff RS iffD1 RS bexE) 1);  | 
|
227  | 
by (etac conjE 2);  | 
|
228  | 
by (REPEAT (ares_tac prems 1)) ;  | 
|
229  | 
qed "ReplaceE";  | 
|
| 0 | 230  | 
|
| 485 | 231  | 
(*As above but without the (generally useless) 3rd assumption*)  | 
| 9180 | 232  | 
val major::prems = Goal  | 
| 485 | 233  | 
    "[| b : {y. x:A, P(x,y)};  \
 | 
234  | 
\ !!x. [| x: A; P(x,b) |] ==> R \  | 
|
| 9180 | 235  | 
\ |] ==> R";  | 
236  | 
by (rtac (major RS ReplaceE) 1);  | 
|
237  | 
by (REPEAT (ares_tac prems 1)) ;  | 
|
238  | 
qed "ReplaceE2";  | 
|
| 485 | 239  | 
|
| 2469 | 240  | 
AddIs [ReplaceI];  | 
241  | 
AddSEs [ReplaceE2];  | 
|
242  | 
||
| 9180 | 243  | 
val prems = Goal  | 
| 0 | 244  | 
"[| A=B; !!x y. x:B ==> P(x,y) <-> Q(x,y) |] ==> \  | 
| 9180 | 245  | 
\ Replace(A,P) = Replace(B,Q)";  | 
246  | 
by (rtac equalityI 1);  | 
|
247  | 
by (REPEAT  | 
|
248  | 
(eresolve_tac ((prems RL [subst, ssubst])@[asm_rl, ReplaceE, spec RS mp]) 1 ORELSE resolve_tac [subsetI, ReplaceI] 1  | 
|
249  | 
ORELSE (resolve_tac (prems RL [iffD1,iffD2]) 1 THEN assume_tac 2)));  | 
|
250  | 
qed "Replace_cong";  | 
|
| 0 | 251  | 
|
| 2469 | 252  | 
Addcongs [Replace_cong];  | 
253  | 
||
| 0 | 254  | 
(*** Rules for RepFun ***)  | 
255  | 
||
| 9211 | 256  | 
Goalw [RepFun_def] "a : A ==> f(a) : {f(x). x:A}";
 | 
257  | 
by (REPEAT (ares_tac [ReplaceI,refl] 1)) ;  | 
|
258  | 
qed "RepFunI";  | 
|
| 0 | 259  | 
|
| 120 | 260  | 
(*Useful for coinduction proofs*)  | 
| 9180 | 261  | 
Goal "[| b=f(a);  a : A |] ==> b : {f(x). x:A}";
 | 
262  | 
by (etac ssubst 1);  | 
|
263  | 
by (etac RepFunI 1) ;  | 
|
264  | 
qed "RepFun_eqI";  | 
|
| 0 | 265  | 
|
| 9211 | 266  | 
val major::prems= Goalw [RepFun_def]  | 
| 0 | 267  | 
    "[| b : {f(x). x:A};  \
 | 
268  | 
\ !!x.[| x:A; b=f(x) |] ==> P |] ==> \  | 
|
| 9211 | 269  | 
\ P";  | 
270  | 
by (rtac (major RS ReplaceE) 1);  | 
|
271  | 
by (REPEAT (ares_tac prems 1)) ;  | 
|
272  | 
qed "RepFunE";  | 
|
| 0 | 273  | 
|
| 2716 | 274  | 
AddIs [RepFun_eqI];  | 
| 2469 | 275  | 
AddSEs [RepFunE];  | 
276  | 
||
| 9211 | 277  | 
val prems= Goalw [RepFun_def]  | 
278  | 
"[| A=B; !!x. x:B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)";  | 
|
279  | 
by (simp_tac (simpset() addsimps prems) 1) ;  | 
|
280  | 
qed "RepFun_cong";  | 
|
| 2469 | 281  | 
|
282  | 
Addcongs [RepFun_cong];  | 
|
| 0 | 283  | 
|
| 9211 | 284  | 
Goalw [Bex_def] "b : {f(x). x:A} <-> (EX x:A. b=f(x))";
 | 
285  | 
by (Blast_tac 1);  | 
|
286  | 
qed "RepFun_iff";  | 
|
| 485 | 287  | 
|
| 5067 | 288  | 
Goal "{x. x:A} = A";
 | 
| 2877 | 289  | 
by (Blast_tac 1);  | 
| 2469 | 290  | 
qed "triv_RepFun";  | 
291  | 
||
292  | 
Addsimps [RepFun_iff, triv_RepFun];  | 
|
| 0 | 293  | 
|
294  | 
(*** Rules for Collect -- forming a subset by separation ***)  | 
|
295  | 
||
296  | 
(*Separation is derivable from Replacement*)  | 
|
| 9211 | 297  | 
Goalw [Collect_def] "a : {x:A. P(x)} <-> a:A & P(a)";
 | 
298  | 
by (Blast_tac 1);  | 
|
299  | 
qed "separation";  | 
|
| 2469 | 300  | 
|
301  | 
Addsimps [separation];  | 
|
| 0 | 302  | 
|
| 9180 | 303  | 
Goal "[| a:A;  P(a) |] ==> a : {x:A. P(x)}";
 | 
304  | 
by (Asm_simp_tac 1);  | 
|
305  | 
qed "CollectI";  | 
|
306  | 
||
307  | 
val prems = Goal  | 
|
308  | 
    "[| a : {x:A. P(x)};  [| a:A; P(a) |] ==> R |] ==> R";
 | 
|
309  | 
by (rtac (separation RS iffD1 RS conjE) 1);  | 
|
310  | 
by (REPEAT (ares_tac prems 1)) ;  | 
|
311  | 
qed "CollectE";  | 
|
| 0 | 312  | 
|
| 9180 | 313  | 
Goal "a : {x:A. P(x)} ==> a:A";
 | 
314  | 
by (etac CollectE 1);  | 
|
315  | 
by (assume_tac 1) ;  | 
|
316  | 
qed "CollectD1";  | 
|
| 0 | 317  | 
|
| 9180 | 318  | 
Goal "a : {x:A. P(x)} ==> P(a)";
 | 
319  | 
by (etac CollectE 1);  | 
|
320  | 
by (assume_tac 1) ;  | 
|
321  | 
qed "CollectD2";  | 
|
| 0 | 322  | 
|
| 9211 | 323  | 
val prems= Goalw [Collect_def]  | 
324  | 
"[| A=B; !!x. x:B ==> P(x) <-> Q(x) |] ==> Collect(A,P) = Collect(B,Q)";  | 
|
325  | 
by (simp_tac (simpset() addsimps prems) 1) ;  | 
|
326  | 
qed "Collect_cong";  | 
|
| 2469 | 327  | 
|
328  | 
AddSIs [CollectI];  | 
|
329  | 
AddSEs [CollectE];  | 
|
330  | 
Addcongs [Collect_cong];  | 
|
| 0 | 331  | 
|
332  | 
(*** Rules for Unions ***)  | 
|
333  | 
||
| 2469 | 334  | 
Addsimps [Union_iff];  | 
335  | 
||
| 0 | 336  | 
(*The order of the premises presupposes that C is rigid; A may be flexible*)  | 
| 9180 | 337  | 
Goal "[| B: C; A: B |] ==> A: Union(C)";  | 
338  | 
by (Simp_tac 1);  | 
|
339  | 
by (Blast_tac 1) ;  | 
|
340  | 
qed "UnionI";  | 
|
| 0 | 341  | 
|
| 9180 | 342  | 
val prems = Goal "[| A : Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R";  | 
343  | 
by (resolve_tac [Union_iff RS iffD1 RS bexE] 1);  | 
|
344  | 
by (REPEAT (ares_tac prems 1)) ;  | 
|
345  | 
qed "UnionE";  | 
|
| 0 | 346  | 
|
347  | 
(*** Rules for Unions of families ***)  | 
|
348  | 
(* UN x:A. B(x) abbreviates Union({B(x). x:A}) *)
 | 
|
349  | 
||
| 9211 | 350  | 
Goalw [Bex_def] "b : (UN x:A. B(x)) <-> (EX x:A. b : B(x))";  | 
351  | 
by (Simp_tac 1);  | 
|
352  | 
by (Blast_tac 1) ;  | 
|
353  | 
qed "UN_iff";  | 
|
| 2469 | 354  | 
|
355  | 
Addsimps [UN_iff];  | 
|
| 485 | 356  | 
|
| 0 | 357  | 
(*The order of the premises presupposes that A is rigid; b may be flexible*)  | 
| 9180 | 358  | 
Goal "[| a: A; b: B(a) |] ==> b: (UN x:A. B(x))";  | 
359  | 
by (Simp_tac 1);  | 
|
360  | 
by (Blast_tac 1) ;  | 
|
361  | 
qed "UN_I";  | 
|
| 0 | 362  | 
|
| 9180 | 363  | 
val major::prems= Goal  | 
364  | 
"[| b : (UN x:A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R";  | 
|
365  | 
by (rtac (major RS UnionE) 1);  | 
|
366  | 
by (REPEAT (eresolve_tac (prems@[asm_rl, RepFunE, subst]) 1)) ;  | 
|
367  | 
qed "UN_E";  | 
|
| 0 | 368  | 
|
| 9180 | 369  | 
val prems = Goal  | 
370  | 
"[| A=B; !!x. x:B ==> C(x)=D(x) |] ==> (UN x:A. C(x)) = (UN x:B. D(x))";  | 
|
371  | 
by (simp_tac (simpset() addsimps prems) 1) ;  | 
|
372  | 
qed "UN_cong";  | 
|
| 2469 | 373  | 
|
374  | 
(*No "Addcongs [UN_cong]" because UN is a combination of constants*)  | 
|
375  | 
||
376  | 
(* UN_E appears before UnionE so that it is tried first, to avoid expensive  | 
|
377  | 
calls to hyp_subst_tac. Cannot include UN_I as it is unsafe: would enlarge  | 
|
378  | 
the search space.*)  | 
|
379  | 
AddIs [UnionI];  | 
|
380  | 
AddSEs [UN_E];  | 
|
381  | 
AddSEs [UnionE];  | 
|
382  | 
||
383  | 
||
384  | 
(*** Rules for Inter ***)  | 
|
385  | 
||
386  | 
(*Not obviously useful towards proving InterI, InterD, InterE*)  | 
|
| 9211 | 387  | 
Goalw [Inter_def,Ball_def]  | 
388  | 
"A : Inter(C) <-> (ALL x:C. A: x) & (EX x. x:C)";  | 
|
389  | 
by (Simp_tac 1);  | 
|
390  | 
by (Blast_tac 1) ;  | 
|
391  | 
qed "Inter_iff";  | 
|
| 435 | 392  | 
|
| 2469 | 393  | 
(* Intersection is well-behaved only if the family is non-empty! *)  | 
| 9180 | 394  | 
val prems = Goal  | 
395  | 
"[| !!x. x: C ==> A: x; EX c. c:C |] ==> A : Inter(C)";  | 
|
396  | 
by (simp_tac (simpset() addsimps [Inter_iff]) 1);  | 
|
397  | 
by (blast_tac (claset() addIs prems) 1) ;  | 
|
398  | 
qed "InterI";  | 
|
| 2469 | 399  | 
|
400  | 
(*A "destruct" rule -- every B in C contains A as an element, but  | 
|
401  | 
A:B can hold when B:C does not! This rule is analogous to "spec". *)  | 
|
| 9211 | 402  | 
Goalw [Inter_def] "[| A : Inter(C); B : C |] ==> A : B";  | 
403  | 
by (Blast_tac 1);  | 
|
404  | 
qed "InterD";  | 
|
| 2469 | 405  | 
|
406  | 
(*"Classical" elimination rule -- does not require exhibiting B:C *)  | 
|
| 9211 | 407  | 
val major::prems= Goalw [Inter_def]  | 
408  | 
"[| A : Inter(C); B~:C ==> R; A:B ==> R |] ==> R";  | 
|
409  | 
by (rtac (major RS CollectD2 RS ballE) 1);  | 
|
410  | 
by (REPEAT (eresolve_tac prems 1)) ;  | 
|
411  | 
qed "InterE";  | 
|
| 2469 | 412  | 
|
413  | 
AddSIs [InterI];  | 
|
| 2716 | 414  | 
AddEs [InterD, InterE];  | 
| 0 | 415  | 
|
416  | 
(*** Rules for Intersections of families ***)  | 
|
417  | 
(* INT x:A. B(x) abbreviates Inter({B(x). x:A}) *)
 | 
|
418  | 
||
| 9211 | 419  | 
Goalw [Inter_def] "b : (INT x:A. B(x)) <-> (ALL x:A. b : B(x)) & (EX x. x:A)";  | 
420  | 
by (Simp_tac 1);  | 
|
421  | 
by (Best_tac 1) ;  | 
|
422  | 
qed "INT_iff";  | 
|
| 485 | 423  | 
|
| 9180 | 424  | 
val prems = Goal  | 
425  | 
"[| !!x. x: A ==> b: B(x); a: A |] ==> b: (INT x:A. B(x))";  | 
|
426  | 
by (blast_tac (claset() addIs prems) 1);  | 
|
427  | 
qed "INT_I";  | 
|
| 0 | 428  | 
|
| 9180 | 429  | 
Goal "[| b : (INT x:A. B(x)); a: A |] ==> b : B(a)";  | 
430  | 
by (Blast_tac 1);  | 
|
431  | 
qed "INT_E";  | 
|
| 0 | 432  | 
|
| 9180 | 433  | 
val prems = Goal  | 
434  | 
"[| A=B; !!x. x:B ==> C(x)=D(x) |] ==> (INT x:A. C(x)) = (INT x:B. D(x))";  | 
|
435  | 
by (simp_tac (simpset() addsimps prems) 1) ;  | 
|
436  | 
qed "INT_cong";  | 
|
| 2469 | 437  | 
|
438  | 
(*No "Addcongs [INT_cong]" because INT is a combination of constants*)  | 
|
| 435 | 439  | 
|
| 0 | 440  | 
|
441  | 
(*** Rules for Powersets ***)  | 
|
442  | 
||
| 9180 | 443  | 
Goal "A <= B ==> A : Pow(B)";  | 
444  | 
by (etac (Pow_iff RS iffD2) 1) ;  | 
|
445  | 
qed "PowI";  | 
|
| 0 | 446  | 
|
| 9180 | 447  | 
Goal "A : Pow(B) ==> A<=B";  | 
448  | 
by (etac (Pow_iff RS iffD1) 1) ;  | 
|
449  | 
qed "PowD";  | 
|
| 0 | 450  | 
|
| 12836 | 451  | 
AddIffs [Pow_iff];  | 
| 2469 | 452  | 
|
| 0 | 453  | 
|
454  | 
(*** Rules for the empty set ***)  | 
|
455  | 
||
456  | 
(*The set {x:0.False} is empty; by foundation it equals 0 
 | 
|
457  | 
See Suppes, page 21.*)  | 
|
| 9180 | 458  | 
Goal "a ~: 0";  | 
459  | 
by (cut_facts_tac [foundation] 1);  | 
|
460  | 
by (best_tac (claset() addDs [equalityD2]) 1) ;  | 
|
461  | 
qed "not_mem_empty";  | 
|
| 2469 | 462  | 
|
463  | 
bind_thm ("emptyE", not_mem_empty RS notE);
 | 
|
464  | 
||
465  | 
Addsimps [not_mem_empty];  | 
|
466  | 
AddSEs [emptyE];  | 
|
| 0 | 467  | 
|
| 9180 | 468  | 
Goal "0 <= A";  | 
469  | 
by (Blast_tac 1);  | 
|
470  | 
qed "empty_subsetI";  | 
|
| 2469 | 471  | 
|
472  | 
Addsimps [empty_subsetI];  | 
|
| 0 | 473  | 
|
| 9180 | 474  | 
val prems = Goal "[| !!y. y:A ==> False |] ==> A=0";  | 
475  | 
by (blast_tac (claset() addDs prems) 1) ;  | 
|
476  | 
qed "equals0I";  | 
|
| 0 | 477  | 
|
| 9180 | 478  | 
Goal "A=0 ==> a ~: A";  | 
479  | 
by (Blast_tac 1);  | 
|
480  | 
qed "equals0D";  | 
|
| 0 | 481  | 
|
| 5467 | 482  | 
AddDs [equals0D, sym RS equals0D];  | 
| 
5265
 
9d1d4c43c76d
Disjointness reasoning by  AddEs [equals0E, sym RS equals0E]
 
paulson 
parents: 
5242 
diff
changeset
 | 
483  | 
|
| 9180 | 484  | 
Goal "a:A ==> A ~= 0";  | 
485  | 
by (Blast_tac 1);  | 
|
486  | 
qed "not_emptyI";  | 
|
| 
825
 
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
 
lcp 
parents: 
775 
diff
changeset
 | 
487  | 
|
| 9180 | 488  | 
val [major,minor]= Goal "[| A ~= 0; !!x. x:A ==> R |] ==> R";  | 
489  | 
by (rtac ([major, equals0I] MRS swap) 1);  | 
|
490  | 
by (swap_res_tac [minor] 1);  | 
|
491  | 
by (assume_tac 1) ;  | 
|
492  | 
qed "not_emptyE";  | 
|
| 
825
 
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
 
lcp 
parents: 
775 
diff
changeset
 | 
493  | 
|
| 0 | 494  | 
|
| 748 | 495  | 
(*** Cantor's Theorem: There is no surjection from a set to its powerset. ***)  | 
496  | 
||
497  | 
val cantor_cs = FOL_cs (*precisely the rules needed for the proof*)  | 
|
498  | 
addSIs [ballI, CollectI, PowI, subsetI] addIs [bexI]  | 
|
499  | 
addSEs [CollectE, equalityCE];  | 
|
500  | 
||
501  | 
(*The search is undirected; similar proof attempts may fail.  | 
|
502  | 
b represents ANY map, such as (lam x:A.b(x)): A->Pow(A). *)  | 
|
| 9180 | 503  | 
Goal "EX S: Pow(A). ALL x:A. b(x) ~= S";  | 
504  | 
by (best_tac cantor_cs 1);  | 
|
505  | 
qed "cantor";  | 
|
| 748 | 506  | 
|
| 9907 | 507  | 
Goal "(!!x. x:A ==> P(x)) == Trueprop (ALL x:A. P(x))";  | 
| 11766 | 508  | 
by (simp_tac (simpset () addsimps [Ball_def, thm "atomize_all", thm "atomize_imp"]) 1);  | 
509  | 
qed "atomize_ball";  |