author | blanchet |
Tue, 14 Sep 2010 13:24:18 +0200 | |
changeset 39359 | 6f49c7fbb1b1 |
parent 38273 | d31a34569542 |
child 42463 | f270e3e18be5 |
permissions | -rw-r--r-- |
16487 | 1 |
(* Title: HOL/Matrix/SparseMatrix.thy |
2 |
Author: Steven Obua |
|
3 |
*) |
|
4 |
||
27484 | 5 |
theory SparseMatrix |
28637 | 6 |
imports Matrix |
27484 | 7 |
begin |
15009 | 8 |
|
9 |
types |
|
10 |
'a spvec = "(nat * 'a) list" |
|
11 |
'a spmat = "('a spvec) spvec" |
|
12 |
||
38273 | 13 |
definition sparse_row_vector :: "('a::ab_group_add) spvec \<Rightarrow> 'a matrix" |
14 |
where "sparse_row_vector arr = foldl (% m x. m + (singleton_matrix 0 (fst x) (snd x))) 0 arr" |
|
15009 | 15 |
|
38273 | 16 |
definition sparse_row_matrix :: "('a::ab_group_add) spmat \<Rightarrow> 'a matrix" |
17 |
where "sparse_row_matrix arr = foldl (% m r. m + (move_matrix (sparse_row_vector (snd r)) (int (fst r)) 0)) 0 arr" |
|
15009 | 18 |
|
27484 | 19 |
code_datatype sparse_row_vector sparse_row_matrix |
20 |
||
21 |
lemma sparse_row_vector_empty [simp]: "sparse_row_vector [] = 0" |
|
15009 | 22 |
by (simp add: sparse_row_vector_def) |
23 |
||
27484 | 24 |
lemma sparse_row_matrix_empty [simp]: "sparse_row_matrix [] = 0" |
15009 | 25 |
by (simp add: sparse_row_matrix_def) |
26 |
||
28562 | 27 |
lemmas [code] = sparse_row_vector_empty [symmetric] |
27484 | 28 |
|
31817 | 29 |
lemma foldl_distrstart: "! a x y. (f (g x y) a = g x (f y a)) \<Longrightarrow> (foldl f (g x y) l = g x (foldl f y l))" |
30 |
by (induct l arbitrary: x y, auto) |
|
15009 | 31 |
|
27653 | 32 |
lemma sparse_row_vector_cons[simp]: |
33 |
"sparse_row_vector (a # arr) = (singleton_matrix 0 (fst a) (snd a)) + (sparse_row_vector arr)" |
|
15009 | 34 |
apply (induct arr) |
35 |
apply (auto simp add: sparse_row_vector_def) |
|
27653 | 36 |
apply (simp add: foldl_distrstart [of "\<lambda>m x. m + singleton_matrix 0 (fst x) (snd x)" "\<lambda>x m. singleton_matrix 0 (fst x) (snd x) + m"]) |
15009 | 37 |
done |
38 |
||
27653 | 39 |
lemma sparse_row_vector_append[simp]: |
40 |
"sparse_row_vector (a @ b) = (sparse_row_vector a) + (sparse_row_vector b)" |
|
41 |
by (induct a) auto |
|
15009 | 42 |
|
43 |
lemma nrows_spvec[simp]: "nrows (sparse_row_vector x) <= (Suc 0)" |
|
44 |
apply (induct x) |
|
45 |
apply (simp_all add: add_nrows) |
|
46 |
done |
|
47 |
||
48 |
lemma sparse_row_matrix_cons: "sparse_row_matrix (a#arr) = ((move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0)) + sparse_row_matrix arr" |
|
49 |
apply (induct arr) |
|
50 |
apply (auto simp add: sparse_row_matrix_def) |
|
51 |
apply (simp add: foldl_distrstart[of "\<lambda>m x. m + (move_matrix (sparse_row_vector (snd x)) (int (fst x)) 0)" |
|
52 |
"% a m. (move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0) + m"]) |
|
53 |
done |
|
54 |
||
55 |
lemma sparse_row_matrix_append: "sparse_row_matrix (arr@brr) = (sparse_row_matrix arr) + (sparse_row_matrix brr)" |
|
56 |
apply (induct arr) |
|
57 |
apply (auto simp add: sparse_row_matrix_cons) |
|
58 |
done |
|
59 |
||
38273 | 60 |
primrec sorted_spvec :: "'a spvec \<Rightarrow> bool" |
61 |
where |
|
27653 | 62 |
"sorted_spvec [] = True" |
38273 | 63 |
| sorted_spvec_step: "sorted_spvec (a#as) = (case as of [] \<Rightarrow> True | b#bs \<Rightarrow> ((fst a < fst b) & (sorted_spvec as)))" |
15009 | 64 |
|
38273 | 65 |
primrec sorted_spmat :: "'a spmat \<Rightarrow> bool" |
66 |
where |
|
15009 | 67 |
"sorted_spmat [] = True" |
38273 | 68 |
| "sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))" |
15009 | 69 |
|
70 |
declare sorted_spvec.simps [simp del] |
|
71 |
||
72 |
lemma sorted_spvec_empty[simp]: "sorted_spvec [] = True" |
|
73 |
by (simp add: sorted_spvec.simps) |
|
74 |
||
75 |
lemma sorted_spvec_cons1: "sorted_spvec (a#as) \<Longrightarrow> sorted_spvec as" |
|
76 |
apply (induct as) |
|
77 |
apply (auto simp add: sorted_spvec.simps) |
|
78 |
done |
|
79 |
||
80 |
lemma sorted_spvec_cons2: "sorted_spvec (a#b#t) \<Longrightarrow> sorted_spvec (a#t)" |
|
81 |
apply (induct t) |
|
82 |
apply (auto simp add: sorted_spvec.simps) |
|
83 |
done |
|
84 |
||
85 |
lemma sorted_spvec_cons3: "sorted_spvec(a#b#t) \<Longrightarrow> fst a < fst b" |
|
86 |
apply (auto simp add: sorted_spvec.simps) |
|
87 |
done |
|
88 |
||
31817 | 89 |
lemma sorted_sparse_row_vector_zero[rule_format]: "m <= n \<Longrightarrow> sorted_spvec ((n,a)#arr) \<longrightarrow> Rep_matrix (sparse_row_vector arr) j m = 0" |
15009 | 90 |
apply (induct arr) |
91 |
apply (auto) |
|
92 |
apply (frule sorted_spvec_cons2,simp)+ |
|
93 |
apply (frule sorted_spvec_cons3, simp) |
|
94 |
done |
|
95 |
||
31817 | 96 |
lemma sorted_sparse_row_matrix_zero[rule_format]: "m <= n \<Longrightarrow> sorted_spvec ((n,a)#arr) \<longrightarrow> Rep_matrix (sparse_row_matrix arr) m j = 0" |
15009 | 97 |
apply (induct arr) |
98 |
apply (auto) |
|
99 |
apply (frule sorted_spvec_cons2, simp) |
|
100 |
apply (frule sorted_spvec_cons3, simp) |
|
101 |
apply (simp add: sparse_row_matrix_cons neg_def) |
|
102 |
done |
|
103 |
||
38273 | 104 |
primrec minus_spvec :: "('a::ab_group_add) spvec \<Rightarrow> 'a spvec" |
105 |
where |
|
15178 | 106 |
"minus_spvec [] = []" |
38273 | 107 |
| "minus_spvec (a#as) = (fst a, -(snd a))#(minus_spvec as)" |
15178 | 108 |
|
38273 | 109 |
primrec abs_spvec :: "('a::lattice_ab_group_add_abs) spvec \<Rightarrow> 'a spvec" |
110 |
where |
|
15178 | 111 |
"abs_spvec [] = []" |
38273 | 112 |
| "abs_spvec (a#as) = (fst a, abs (snd a))#(abs_spvec as)" |
15178 | 113 |
|
114 |
lemma sparse_row_vector_minus: |
|
115 |
"sparse_row_vector (minus_spvec v) = - (sparse_row_vector v)" |
|
116 |
apply (induct v) |
|
117 |
apply (simp_all add: sparse_row_vector_cons) |
|
118 |
apply (simp add: Rep_matrix_inject[symmetric]) |
|
119 |
apply (rule ext)+ |
|
120 |
apply simp |
|
121 |
done |
|
122 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
123 |
instance matrix :: (lattice_ab_group_add_abs) lattice_ab_group_add_abs |
27653 | 124 |
apply default |
125 |
unfolding abs_matrix_def .. (*FIXME move*) |
|
126 |
||
15178 | 127 |
lemma sparse_row_vector_abs: |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
128 |
"sorted_spvec (v :: 'a::lattice_ring spvec) \<Longrightarrow> sparse_row_vector (abs_spvec v) = abs (sparse_row_vector v)" |
15178 | 129 |
apply (induct v) |
27653 | 130 |
apply simp_all |
15178 | 131 |
apply (frule_tac sorted_spvec_cons1, simp) |
132 |
apply (simp only: Rep_matrix_inject[symmetric]) |
|
133 |
apply (rule ext)+ |
|
134 |
apply auto |
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15197
diff
changeset
|
135 |
apply (subgoal_tac "Rep_matrix (sparse_row_vector v) 0 a = 0") |
15178 | 136 |
apply (simp) |
137 |
apply (rule sorted_sparse_row_vector_zero) |
|
138 |
apply auto |
|
139 |
done |
|
140 |
||
141 |
lemma sorted_spvec_minus_spvec: |
|
142 |
"sorted_spvec v \<Longrightarrow> sorted_spvec (minus_spvec v)" |
|
143 |
apply (induct v) |
|
144 |
apply (simp) |
|
145 |
apply (frule sorted_spvec_cons1, simp) |
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15197
diff
changeset
|
146 |
apply (simp add: sorted_spvec.simps split:list.split_asm) |
15178 | 147 |
done |
148 |
||
149 |
lemma sorted_spvec_abs_spvec: |
|
150 |
"sorted_spvec v \<Longrightarrow> sorted_spvec (abs_spvec v)" |
|
151 |
apply (induct v) |
|
152 |
apply (simp) |
|
153 |
apply (frule sorted_spvec_cons1, simp) |
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15197
diff
changeset
|
154 |
apply (simp add: sorted_spvec.simps split:list.split_asm) |
15178 | 155 |
done |
156 |
||
38273 | 157 |
definition "smult_spvec y = map (% a. (fst a, y * snd a))" |
15009 | 158 |
|
159 |
lemma smult_spvec_empty[simp]: "smult_spvec y [] = []" |
|
160 |
by (simp add: smult_spvec_def) |
|
161 |
||
162 |
lemma smult_spvec_cons: "smult_spvec y (a#arr) = (fst a, y * (snd a)) # (smult_spvec y arr)" |
|
163 |
by (simp add: smult_spvec_def) |
|
164 |
||
38273 | 165 |
fun addmult_spvec :: "('a::ring) \<Rightarrow> 'a spvec \<Rightarrow> 'a spvec \<Rightarrow> 'a spvec" |
166 |
where |
|
167 |
"addmult_spvec y arr [] = arr" |
|
168 |
| "addmult_spvec y [] brr = smult_spvec y brr" |
|
169 |
| "addmult_spvec y ((i,a)#arr) ((j,b)#brr) = ( |
|
31816 | 170 |
if i < j then ((i,a)#(addmult_spvec y arr ((j,b)#brr))) |
171 |
else (if (j < i) then ((j, y * b)#(addmult_spvec y ((i,a)#arr) brr)) |
|
172 |
else ((i, a + y*b)#(addmult_spvec y arr brr))))" |
|
173 |
(* Steven used termination "measure (% (y, a, b). length a + (length b))" *) |
|
15009 | 174 |
|
31816 | 175 |
lemma addmult_spvec_empty1[simp]: "addmult_spvec y [] a = smult_spvec y a" |
27484 | 176 |
by (induct a) auto |
15009 | 177 |
|
31816 | 178 |
lemma addmult_spvec_empty2[simp]: "addmult_spvec y a [] = a" |
27484 | 179 |
by (induct a) auto |
15009 | 180 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
181 |
lemma sparse_row_vector_map: "(! x y. f (x+y) = (f x) + (f y)) \<Longrightarrow> (f::'a\<Rightarrow>('a::lattice_ring)) 0 = 0 \<Longrightarrow> |
15009 | 182 |
sparse_row_vector (map (% x. (fst x, f (snd x))) a) = apply_matrix f (sparse_row_vector a)" |
183 |
apply (induct a) |
|
184 |
apply (simp_all add: apply_matrix_add) |
|
185 |
done |
|
186 |
||
187 |
lemma sparse_row_vector_smult: "sparse_row_vector (smult_spvec y a) = scalar_mult y (sparse_row_vector a)" |
|
188 |
apply (induct a) |
|
189 |
apply (simp_all add: smult_spvec_cons scalar_mult_add) |
|
190 |
done |
|
191 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
192 |
lemma sparse_row_vector_addmult_spvec: "sparse_row_vector (addmult_spvec (y::'a::lattice_ring) a b) = |
15009 | 193 |
(sparse_row_vector a) + (scalar_mult y (sparse_row_vector b))" |
31817 | 194 |
apply (induct y a b rule: addmult_spvec.induct) |
15009 | 195 |
apply (simp add: scalar_mult_add smult_spvec_cons sparse_row_vector_smult singleton_matrix_add)+ |
196 |
done |
|
197 |
||
31817 | 198 |
lemma sorted_smult_spvec: "sorted_spvec a \<Longrightarrow> sorted_spvec (smult_spvec y a)" |
15009 | 199 |
apply (auto simp add: smult_spvec_def) |
200 |
apply (induct a) |
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15197
diff
changeset
|
201 |
apply (auto simp add: sorted_spvec.simps split:list.split_asm) |
15009 | 202 |
done |
203 |
||
31816 | 204 |
lemma sorted_spvec_addmult_spvec_helper: "\<lbrakk>sorted_spvec (addmult_spvec y ((a, b) # arr) brr); aa < a; sorted_spvec ((a, b) # arr); |
205 |
sorted_spvec ((aa, ba) # brr)\<rbrakk> \<Longrightarrow> sorted_spvec ((aa, y * ba) # addmult_spvec y ((a, b) # arr) brr)" |
|
15009 | 206 |
apply (induct brr) |
207 |
apply (auto simp add: sorted_spvec.simps) |
|
208 |
done |
|
209 |
||
210 |
lemma sorted_spvec_addmult_spvec_helper2: |
|
31816 | 211 |
"\<lbrakk>sorted_spvec (addmult_spvec y arr ((aa, ba) # brr)); a < aa; sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr)\<rbrakk> |
212 |
\<Longrightarrow> sorted_spvec ((a, b) # addmult_spvec y arr ((aa, ba) # brr))" |
|
15009 | 213 |
apply (induct arr) |
214 |
apply (auto simp add: smult_spvec_def sorted_spvec.simps) |
|
215 |
done |
|
216 |
||
217 |
lemma sorted_spvec_addmult_spvec_helper3[rule_format]: |
|
31816 | 218 |
"sorted_spvec (addmult_spvec y arr brr) \<longrightarrow> sorted_spvec ((aa, b) # arr) \<longrightarrow> sorted_spvec ((aa, ba) # brr) |
219 |
\<longrightarrow> sorted_spvec ((aa, b + y * ba) # (addmult_spvec y arr brr))" |
|
220 |
apply (induct y arr brr rule: addmult_spvec.induct) |
|
221 |
apply (simp_all add: sorted_spvec.simps smult_spvec_def split:list.split) |
|
15009 | 222 |
done |
223 |
||
31817 | 224 |
lemma sorted_addmult_spvec: "sorted_spvec a \<Longrightarrow> sorted_spvec b \<Longrightarrow> sorted_spvec (addmult_spvec y a b)" |
225 |
apply (induct y a b rule: addmult_spvec.induct) |
|
15009 | 226 |
apply (simp_all add: sorted_smult_spvec) |
227 |
apply (rule conjI, intro strip) |
|
31816 | 228 |
apply (case_tac "~(i < j)") |
15009 | 229 |
apply (simp_all) |
230 |
apply (frule_tac as=brr in sorted_spvec_cons1) |
|
231 |
apply (simp add: sorted_spvec_addmult_spvec_helper) |
|
232 |
apply (intro strip | rule conjI)+ |
|
233 |
apply (frule_tac as=arr in sorted_spvec_cons1) |
|
234 |
apply (simp add: sorted_spvec_addmult_spvec_helper2) |
|
235 |
apply (intro strip) |
|
236 |
apply (frule_tac as=arr in sorted_spvec_cons1) |
|
237 |
apply (frule_tac as=brr in sorted_spvec_cons1) |
|
238 |
apply (simp) |
|
239 |
apply (simp_all add: sorted_spvec_addmult_spvec_helper3) |
|
240 |
done |
|
241 |
||
38273 | 242 |
fun mult_spvec_spmat :: "('a::lattice_ring) spvec \<Rightarrow> 'a spvec \<Rightarrow> 'a spmat \<Rightarrow> 'a spvec" |
243 |
where |
|
31816 | 244 |
(* recdef mult_spvec_spmat "measure (% (c, arr, brr). (length arr) + (length brr))" *) |
38273 | 245 |
"mult_spvec_spmat c [] brr = c" |
246 |
| "mult_spvec_spmat c arr [] = c" |
|
247 |
| "mult_spvec_spmat c ((i,a)#arr) ((j,b)#brr) = ( |
|
31816 | 248 |
if (i < j) then mult_spvec_spmat c arr ((j,b)#brr) |
249 |
else if (j < i) then mult_spvec_spmat c ((i,a)#arr) brr |
|
250 |
else mult_spvec_spmat (addmult_spvec a c b) arr brr)" |
|
15009 | 251 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
252 |
lemma sparse_row_mult_spvec_spmat[rule_format]: "sorted_spvec (a::('a::lattice_ring) spvec) \<longrightarrow> sorted_spvec B \<longrightarrow> |
31816 | 253 |
sparse_row_vector (mult_spvec_spmat c a B) = (sparse_row_vector c) + (sparse_row_vector a) * (sparse_row_matrix B)" |
15009 | 254 |
proof - |
255 |
have comp_1: "!! a b. a < b \<Longrightarrow> Suc 0 <= nat ((int b)-(int a))" by arith |
|
256 |
have not_iff: "!! a b. a = b \<Longrightarrow> (~ a) = (~ b)" by simp |
|
257 |
have max_helper: "!! a b. ~ (a <= max (Suc a) b) \<Longrightarrow> False" |
|
258 |
by arith |
|
259 |
{ |
|
260 |
fix a |
|
261 |
fix v |
|
262 |
assume a:"a < nrows(sparse_row_vector v)" |
|
263 |
have b:"nrows(sparse_row_vector v) <= 1" by simp |
|
264 |
note dummy = less_le_trans[of a "nrows (sparse_row_vector v)" 1, OF a b] |
|
265 |
then have "a = 0" by simp |
|
266 |
} |
|
267 |
note nrows_helper = this |
|
268 |
show ?thesis |
|
31817 | 269 |
apply (induct c a B rule: mult_spvec_spmat.induct) |
15009 | 270 |
apply simp+ |
271 |
apply (rule conjI) |
|
272 |
apply (intro strip) |
|
273 |
apply (frule_tac as=brr in sorted_spvec_cons1) |
|
29667 | 274 |
apply (simp add: algebra_simps sparse_row_matrix_cons) |
15481 | 275 |
apply (simplesubst Rep_matrix_zero_imp_mult_zero) |
15009 | 276 |
apply (simp) |
277 |
apply (intro strip) |
|
278 |
apply (rule disjI2) |
|
279 |
apply (intro strip) |
|
280 |
apply (subst nrows) |
|
281 |
apply (rule order_trans[of _ 1]) |
|
282 |
apply (simp add: comp_1)+ |
|
283 |
apply (subst Rep_matrix_zero_imp_mult_zero) |
|
284 |
apply (intro strip) |
|
31816 | 285 |
apply (case_tac "k <= j") |
286 |
apply (rule_tac m1 = k and n1 = i and a1 = a in ssubst[OF sorted_sparse_row_vector_zero]) |
|
15009 | 287 |
apply (simp_all) |
288 |
apply (rule impI) |
|
289 |
apply (rule disjI2) |
|
290 |
apply (rule nrows) |
|
291 |
apply (rule order_trans[of _ 1]) |
|
292 |
apply (simp_all add: comp_1) |
|
293 |
||
294 |
apply (intro strip | rule conjI)+ |
|
295 |
apply (frule_tac as=arr in sorted_spvec_cons1) |
|
29667 | 296 |
apply (simp add: algebra_simps) |
15009 | 297 |
apply (subst Rep_matrix_zero_imp_mult_zero) |
298 |
apply (simp) |
|
299 |
apply (rule disjI2) |
|
300 |
apply (intro strip) |
|
301 |
apply (simp add: sparse_row_matrix_cons neg_def) |
|
31816 | 302 |
apply (case_tac "i <= j") |
15009 | 303 |
apply (erule sorted_sparse_row_matrix_zero) |
304 |
apply (simp_all) |
|
305 |
apply (intro strip) |
|
31816 | 306 |
apply (case_tac "i=j") |
15009 | 307 |
apply (simp_all) |
308 |
apply (frule_tac as=arr in sorted_spvec_cons1) |
|
309 |
apply (frule_tac as=brr in sorted_spvec_cons1) |
|
29667 | 310 |
apply (simp add: sparse_row_matrix_cons algebra_simps sparse_row_vector_addmult_spvec) |
15009 | 311 |
apply (rule_tac B1 = "sparse_row_matrix brr" in ssubst[OF Rep_matrix_zero_imp_mult_zero]) |
312 |
apply (auto) |
|
313 |
apply (rule sorted_sparse_row_matrix_zero) |
|
314 |
apply (simp_all) |
|
315 |
apply (rule_tac A1 = "sparse_row_vector arr" in ssubst[OF Rep_matrix_zero_imp_mult_zero]) |
|
316 |
apply (auto) |
|
31816 | 317 |
apply (rule_tac m=k and n = j and a = a and arr=arr in sorted_sparse_row_vector_zero) |
15009 | 318 |
apply (simp_all) |
319 |
apply (simp add: neg_def) |
|
320 |
apply (drule nrows_notzero) |
|
321 |
apply (drule nrows_helper) |
|
322 |
apply (arith) |
|
323 |
||
324 |
apply (subst Rep_matrix_inject[symmetric]) |
|
325 |
apply (rule ext)+ |
|
326 |
apply (simp) |
|
327 |
apply (subst Rep_matrix_mult) |
|
31816 | 328 |
apply (rule_tac j1=j in ssubst[OF foldseq_almostzero]) |
15009 | 329 |
apply (simp_all) |
20432
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
webertj
parents:
20283
diff
changeset
|
330 |
apply (intro strip, rule conjI) |
15009 | 331 |
apply (intro strip) |
20432
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
webertj
parents:
20283
diff
changeset
|
332 |
apply (drule_tac max_helper) |
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
webertj
parents:
20283
diff
changeset
|
333 |
apply (simp) |
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
webertj
parents:
20283
diff
changeset
|
334 |
apply (auto) |
15009 | 335 |
apply (rule zero_imp_mult_zero) |
336 |
apply (rule disjI2) |
|
337 |
apply (rule nrows) |
|
338 |
apply (rule order_trans[of _ 1]) |
|
20432
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
webertj
parents:
20283
diff
changeset
|
339 |
apply (simp) |
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
webertj
parents:
20283
diff
changeset
|
340 |
apply (simp) |
15009 | 341 |
done |
342 |
qed |
|
343 |
||
344 |
lemma sorted_mult_spvec_spmat[rule_format]: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
345 |
"sorted_spvec (c::('a::lattice_ring) spvec) \<longrightarrow> sorted_spmat B \<longrightarrow> sorted_spvec (mult_spvec_spmat c a B)" |
31817 | 346 |
apply (induct c a B rule: mult_spvec_spmat.induct) |
15009 | 347 |
apply (simp_all add: sorted_addmult_spvec) |
348 |
done |
|
349 |
||
38273 | 350 |
primrec mult_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat" |
351 |
where |
|
15009 | 352 |
"mult_spmat [] A = []" |
38273 | 353 |
| "mult_spmat (a#as) A = (fst a, mult_spvec_spmat [] (snd a) A)#(mult_spmat as A)" |
15009 | 354 |
|
31817 | 355 |
lemma sparse_row_mult_spmat: |
356 |
"sorted_spmat A \<Longrightarrow> sorted_spvec B \<Longrightarrow> |
|
357 |
sparse_row_matrix (mult_spmat A B) = (sparse_row_matrix A) * (sparse_row_matrix B)" |
|
15009 | 358 |
apply (induct A) |
29667 | 359 |
apply (auto simp add: sparse_row_matrix_cons sparse_row_mult_spvec_spmat algebra_simps move_matrix_mult) |
15009 | 360 |
done |
361 |
||
362 |
lemma sorted_spvec_mult_spmat[rule_format]: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
363 |
"sorted_spvec (A::('a::lattice_ring) spmat) \<longrightarrow> sorted_spvec (mult_spmat A B)" |
15009 | 364 |
apply (induct A) |
365 |
apply (auto) |
|
366 |
apply (drule sorted_spvec_cons1, simp) |
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15197
diff
changeset
|
367 |
apply (case_tac A) |
15009 | 368 |
apply (auto simp add: sorted_spvec.simps) |
369 |
done |
|
370 |
||
31817 | 371 |
lemma sorted_spmat_mult_spmat: |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
372 |
"sorted_spmat (B::('a::lattice_ring) spmat) \<Longrightarrow> sorted_spmat (mult_spmat A B)" |
15009 | 373 |
apply (induct A) |
374 |
apply (auto simp add: sorted_mult_spvec_spmat) |
|
375 |
done |
|
376 |
||
377 |
||
38273 | 378 |
fun add_spvec :: "('a::lattice_ab_group_add) spvec \<Rightarrow> 'a spvec \<Rightarrow> 'a spvec" |
379 |
where |
|
31816 | 380 |
(* "measure (% (a, b). length a + (length b))" *) |
38273 | 381 |
"add_spvec arr [] = arr" |
382 |
| "add_spvec [] brr = brr" |
|
383 |
| "add_spvec ((i,a)#arr) ((j,b)#brr) = ( |
|
384 |
if i < j then (i,a)#(add_spvec arr ((j,b)#brr)) |
|
31816 | 385 |
else if (j < i) then (j,b) # add_spvec ((i,a)#arr) brr |
386 |
else (i, a+b) # add_spvec arr brr)" |
|
15009 | 387 |
|
31816 | 388 |
lemma add_spvec_empty1[simp]: "add_spvec [] a = a" |
389 |
by (cases a, auto) |
|
15009 | 390 |
|
31816 | 391 |
lemma sparse_row_vector_add: "sparse_row_vector (add_spvec a b) = (sparse_row_vector a) + (sparse_row_vector b)" |
31817 | 392 |
apply (induct a b rule: add_spvec.induct) |
15009 | 393 |
apply (simp_all add: singleton_matrix_add) |
394 |
done |
|
395 |
||
38273 | 396 |
fun add_spmat :: "('a::lattice_ab_group_add) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat" |
397 |
where |
|
31816 | 398 |
(* "measure (% (A,B). (length A)+(length B))" *) |
38273 | 399 |
"add_spmat [] bs = bs" |
400 |
| "add_spmat as [] = as" |
|
401 |
| "add_spmat ((i,a)#as) ((j,b)#bs) = ( |
|
402 |
if i < j then |
|
403 |
(i,a) # add_spmat as ((j,b)#bs) |
|
404 |
else if j < i then |
|
405 |
(j,b) # add_spmat ((i,a)#as) bs |
|
406 |
else |
|
407 |
(i, add_spvec a b) # add_spmat as bs)" |
|
15009 | 408 |
|
31816 | 409 |
lemma add_spmat_Nil2[simp]: "add_spmat as [] = as" |
410 |
by(cases as) auto |
|
411 |
||
412 |
lemma sparse_row_add_spmat: "sparse_row_matrix (add_spmat A B) = (sparse_row_matrix A) + (sparse_row_matrix B)" |
|
31817 | 413 |
apply (induct A B rule: add_spmat.induct) |
15009 | 414 |
apply (auto simp add: sparse_row_matrix_cons sparse_row_vector_add move_matrix_add) |
415 |
done |
|
416 |
||
28562 | 417 |
lemmas [code] = sparse_row_add_spmat [symmetric] |
418 |
lemmas [code] = sparse_row_vector_add [symmetric] |
|
27484 | 419 |
|
31816 | 420 |
lemma sorted_add_spvec_helper1[rule_format]: "add_spvec ((a,b)#arr) brr = (ab, bb) # list \<longrightarrow> (ab = a | (brr \<noteq> [] & ab = fst (hd brr)))" |
15009 | 421 |
proof - |
31816 | 422 |
have "(! x ab a. x = (a,b)#arr \<longrightarrow> add_spvec x brr = (ab, bb) # list \<longrightarrow> (ab = a | (ab = fst (hd brr))))" |
31817 | 423 |
by (induct brr rule: add_spvec.induct) (auto split:if_splits) |
15009 | 424 |
then show ?thesis |
425 |
by (case_tac brr, auto) |
|
426 |
qed |
|
427 |
||
31816 | 428 |
lemma sorted_add_spmat_helper1[rule_format]: "add_spmat ((a,b)#arr) brr = (ab, bb) # list \<longrightarrow> (ab = a | (brr \<noteq> [] & ab = fst (hd brr)))" |
15009 | 429 |
proof - |
31816 | 430 |
have "(! x ab a. x = (a,b)#arr \<longrightarrow> add_spmat x brr = (ab, bb) # list \<longrightarrow> (ab = a | (ab = fst (hd brr))))" |
31817 | 431 |
by (rule add_spmat.induct) (auto split:if_splits) |
15009 | 432 |
then show ?thesis |
433 |
by (case_tac brr, auto) |
|
434 |
qed |
|
435 |
||
31817 | 436 |
lemma sorted_add_spvec_helper: "add_spvec arr brr = (ab, bb) # list \<Longrightarrow> ((arr \<noteq> [] & ab = fst (hd arr)) | (brr \<noteq> [] & ab = fst (hd brr)))" |
437 |
apply (induct arr brr rule: add_spvec.induct) |
|
438 |
apply (auto split:if_splits) |
|
15009 | 439 |
done |
440 |
||
31817 | 441 |
lemma sorted_add_spmat_helper: "add_spmat arr brr = (ab, bb) # list \<Longrightarrow> ((arr \<noteq> [] & ab = fst (hd arr)) | (brr \<noteq> [] & ab = fst (hd brr)))" |
442 |
apply (induct arr brr rule: add_spmat.induct) |
|
443 |
apply (auto split:if_splits) |
|
15009 | 444 |
done |
445 |
||
31816 | 446 |
lemma add_spvec_commute: "add_spvec a b = add_spvec b a" |
31817 | 447 |
by (induct a b rule: add_spvec.induct) auto |
15009 | 448 |
|
31816 | 449 |
lemma add_spmat_commute: "add_spmat a b = add_spmat b a" |
31817 | 450 |
apply (induct a b rule: add_spmat.induct) |
15009 | 451 |
apply (simp_all add: add_spvec_commute) |
452 |
done |
|
453 |
||
31816 | 454 |
lemma sorted_add_spvec_helper2: "add_spvec ((a,b)#arr) brr = (ab, bb) # list \<Longrightarrow> aa < a \<Longrightarrow> sorted_spvec ((aa, ba) # brr) \<Longrightarrow> aa < ab" |
15009 | 455 |
apply (drule sorted_add_spvec_helper1) |
456 |
apply (auto) |
|
457 |
apply (case_tac brr) |
|
458 |
apply (simp_all) |
|
459 |
apply (drule_tac sorted_spvec_cons3) |
|
460 |
apply (simp) |
|
461 |
done |
|
462 |
||
31816 | 463 |
lemma sorted_add_spmat_helper2: "add_spmat ((a,b)#arr) brr = (ab, bb) # list \<Longrightarrow> aa < a \<Longrightarrow> sorted_spvec ((aa, ba) # brr) \<Longrightarrow> aa < ab" |
15009 | 464 |
apply (drule sorted_add_spmat_helper1) |
465 |
apply (auto) |
|
466 |
apply (case_tac brr) |
|
467 |
apply (simp_all) |
|
468 |
apply (drule_tac sorted_spvec_cons3) |
|
469 |
apply (simp) |
|
470 |
done |
|
471 |
||
31816 | 472 |
lemma sorted_spvec_add_spvec[rule_format]: "sorted_spvec a \<longrightarrow> sorted_spvec b \<longrightarrow> sorted_spvec (add_spvec a b)" |
31817 | 473 |
apply (induct a b rule: add_spvec.induct) |
15009 | 474 |
apply (simp_all) |
475 |
apply (rule conjI) |
|
31816 | 476 |
apply (clarsimp) |
15009 | 477 |
apply (frule_tac as=brr in sorted_spvec_cons1) |
478 |
apply (simp) |
|
479 |
apply (subst sorted_spvec_step) |
|
31816 | 480 |
apply (clarsimp simp: sorted_add_spvec_helper2 split: list.split) |
15009 | 481 |
apply (clarify) |
482 |
apply (rule conjI) |
|
483 |
apply (clarify) |
|
484 |
apply (frule_tac as=arr in sorted_spvec_cons1, simp) |
|
485 |
apply (subst sorted_spvec_step) |
|
31816 | 486 |
apply (clarsimp simp: sorted_add_spvec_helper2 add_spvec_commute split: list.split) |
15009 | 487 |
apply (clarify) |
488 |
apply (frule_tac as=arr in sorted_spvec_cons1) |
|
489 |
apply (frule_tac as=brr in sorted_spvec_cons1) |
|
490 |
apply (simp) |
|
491 |
apply (subst sorted_spvec_step) |
|
492 |
apply (simp split: list.split) |
|
31816 | 493 |
apply (clarsimp) |
15009 | 494 |
apply (drule_tac sorted_add_spvec_helper) |
31816 | 495 |
apply (auto simp: neq_Nil_conv) |
15009 | 496 |
apply (drule sorted_spvec_cons3) |
497 |
apply (simp) |
|
498 |
apply (drule sorted_spvec_cons3) |
|
499 |
apply (simp) |
|
500 |
done |
|
501 |
||
31816 | 502 |
lemma sorted_spvec_add_spmat[rule_format]: "sorted_spvec A \<longrightarrow> sorted_spvec B \<longrightarrow> sorted_spvec (add_spmat A B)" |
31817 | 503 |
apply (induct A B rule: add_spmat.induct) |
15009 | 504 |
apply (simp_all) |
505 |
apply (rule conjI) |
|
506 |
apply (intro strip) |
|
507 |
apply (simp) |
|
508 |
apply (frule_tac as=bs in sorted_spvec_cons1) |
|
509 |
apply (simp) |
|
510 |
apply (subst sorted_spvec_step) |
|
511 |
apply (simp split: list.split) |
|
512 |
apply (clarify, simp) |
|
513 |
apply (simp add: sorted_add_spmat_helper2) |
|
514 |
apply (clarify) |
|
515 |
apply (rule conjI) |
|
516 |
apply (clarify) |
|
517 |
apply (frule_tac as=as in sorted_spvec_cons1, simp) |
|
518 |
apply (subst sorted_spvec_step) |
|
31816 | 519 |
apply (clarsimp simp: sorted_add_spmat_helper2 add_spmat_commute split: list.split) |
520 |
apply (clarsimp) |
|
15009 | 521 |
apply (frule_tac as=as in sorted_spvec_cons1) |
522 |
apply (frule_tac as=bs in sorted_spvec_cons1) |
|
523 |
apply (simp) |
|
524 |
apply (subst sorted_spvec_step) |
|
525 |
apply (simp split: list.split) |
|
526 |
apply (clarify, simp) |
|
527 |
apply (drule_tac sorted_add_spmat_helper) |
|
31816 | 528 |
apply (auto simp:neq_Nil_conv) |
15009 | 529 |
apply (drule sorted_spvec_cons3) |
530 |
apply (simp) |
|
531 |
apply (drule sorted_spvec_cons3) |
|
532 |
apply (simp) |
|
533 |
done |
|
534 |
||
31817 | 535 |
lemma sorted_spmat_add_spmat[rule_format]: "sorted_spmat A \<Longrightarrow> sorted_spmat B \<Longrightarrow> sorted_spmat (add_spmat A B)" |
536 |
apply (induct A B rule: add_spmat.induct) |
|
15009 | 537 |
apply (simp_all add: sorted_spvec_add_spvec) |
538 |
done |
|
539 |
||
38273 | 540 |
fun le_spvec :: "('a::lattice_ab_group_add) spvec \<Rightarrow> 'a spvec \<Rightarrow> bool" |
541 |
where |
|
31816 | 542 |
(* "measure (% (a,b). (length a) + (length b))" *) |
38273 | 543 |
"le_spvec [] [] = True" |
544 |
| "le_spvec ((_,a)#as) [] = (a <= 0 & le_spvec as [])" |
|
545 |
| "le_spvec [] ((_,b)#bs) = (0 <= b & le_spvec [] bs)" |
|
546 |
| "le_spvec ((i,a)#as) ((j,b)#bs) = ( |
|
547 |
if (i < j) then a <= 0 & le_spvec as ((j,b)#bs) |
|
548 |
else if (j < i) then 0 <= b & le_spvec ((i,a)#as) bs |
|
549 |
else a <= b & le_spvec as bs)" |
|
15009 | 550 |
|
38273 | 551 |
fun le_spmat :: "('a::lattice_ab_group_add) spmat \<Rightarrow> 'a spmat \<Rightarrow> bool" |
552 |
where |
|
31816 | 553 |
(* "measure (% (a,b). (length a) + (length b))" *) |
38273 | 554 |
"le_spmat [] [] = True" |
555 |
| "le_spmat ((i,a)#as) [] = (le_spvec a [] & le_spmat as [])" |
|
556 |
| "le_spmat [] ((j,b)#bs) = (le_spvec [] b & le_spmat [] bs)" |
|
557 |
| "le_spmat ((i,a)#as) ((j,b)#bs) = ( |
|
558 |
if i < j then (le_spvec a [] & le_spmat as ((j,b)#bs)) |
|
559 |
else if j < i then (le_spvec [] b & le_spmat ((i,a)#as) bs) |
|
560 |
else (le_spvec a b & le_spmat as bs))" |
|
15009 | 561 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35028
diff
changeset
|
562 |
definition disj_matrices :: "('a::zero) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool" where |
38273 | 563 |
"disj_matrices A B \<longleftrightarrow> |
564 |
(! j i. (Rep_matrix A j i \<noteq> 0) \<longrightarrow> (Rep_matrix B j i = 0)) & (! j i. (Rep_matrix B j i \<noteq> 0) \<longrightarrow> (Rep_matrix A j i = 0))" |
|
15009 | 565 |
|
24124
4399175e3014
turned simp_depth_limit into configuration option;
wenzelm
parents:
23477
diff
changeset
|
566 |
declare [[simp_depth_limit = 6]] |
15009 | 567 |
|
15580 | 568 |
lemma disj_matrices_contr1: "disj_matrices A B \<Longrightarrow> Rep_matrix A j i \<noteq> 0 \<Longrightarrow> Rep_matrix B j i = 0" |
569 |
by (simp add: disj_matrices_def) |
|
570 |
||
571 |
lemma disj_matrices_contr2: "disj_matrices A B \<Longrightarrow> Rep_matrix B j i \<noteq> 0 \<Longrightarrow> Rep_matrix A j i = 0" |
|
572 |
by (simp add: disj_matrices_def) |
|
573 |
||
574 |
||
15009 | 575 |
lemma disj_matrices_add: "disj_matrices A B \<Longrightarrow> disj_matrices C D \<Longrightarrow> disj_matrices A D \<Longrightarrow> disj_matrices B C \<Longrightarrow> |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
576 |
(A + B <= C + D) = (A <= C & B <= (D::('a::lattice_ab_group_add) matrix))" |
15009 | 577 |
apply (auto) |
578 |
apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def) |
|
579 |
apply (intro strip) |
|
580 |
apply (erule conjE)+ |
|
581 |
apply (drule_tac j=j and i=i in spec2)+ |
|
582 |
apply (case_tac "Rep_matrix B j i = 0") |
|
583 |
apply (case_tac "Rep_matrix D j i = 0") |
|
584 |
apply (simp_all) |
|
585 |
apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def) |
|
586 |
apply (intro strip) |
|
587 |
apply (erule conjE)+ |
|
588 |
apply (drule_tac j=j and i=i in spec2)+ |
|
589 |
apply (case_tac "Rep_matrix A j i = 0") |
|
590 |
apply (case_tac "Rep_matrix C j i = 0") |
|
591 |
apply (simp_all) |
|
592 |
apply (erule add_mono) |
|
593 |
apply (assumption) |
|
594 |
done |
|
595 |
||
596 |
lemma disj_matrices_zero1[simp]: "disj_matrices 0 B" |
|
597 |
by (simp add: disj_matrices_def) |
|
598 |
||
599 |
lemma disj_matrices_zero2[simp]: "disj_matrices A 0" |
|
600 |
by (simp add: disj_matrices_def) |
|
601 |
||
602 |
lemma disj_matrices_commute: "disj_matrices A B = disj_matrices B A" |
|
603 |
by (auto simp add: disj_matrices_def) |
|
604 |
||
605 |
lemma disj_matrices_add_le_zero: "disj_matrices A B \<Longrightarrow> |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
606 |
(A + B <= 0) = (A <= 0 & (B::('a::lattice_ab_group_add) matrix) <= 0)" |
15009 | 607 |
by (rule disj_matrices_add[of A B 0 0, simplified]) |
608 |
||
609 |
lemma disj_matrices_add_zero_le: "disj_matrices A B \<Longrightarrow> |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
610 |
(0 <= A + B) = (0 <= A & 0 <= (B::('a::lattice_ab_group_add) matrix))" |
15009 | 611 |
by (rule disj_matrices_add[of 0 0 A B, simplified]) |
612 |
||
613 |
lemma disj_matrices_add_x_le: "disj_matrices A B \<Longrightarrow> disj_matrices B C \<Longrightarrow> |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
614 |
(A <= B + C) = (A <= C & 0 <= (B::('a::lattice_ab_group_add) matrix))" |
15009 | 615 |
by (auto simp add: disj_matrices_add[of 0 A B C, simplified]) |
616 |
||
617 |
lemma disj_matrices_add_le_x: "disj_matrices A B \<Longrightarrow> disj_matrices B C \<Longrightarrow> |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
618 |
(B + A <= C) = (A <= C & (B::('a::lattice_ab_group_add) matrix) <= 0)" |
15009 | 619 |
by (auto simp add: disj_matrices_add[of B A 0 C,simplified] disj_matrices_commute) |
620 |
||
621 |
lemma disj_sparse_row_singleton: "i <= j \<Longrightarrow> sorted_spvec((j,y)#v) \<Longrightarrow> disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)" |
|
622 |
apply (simp add: disj_matrices_def) |
|
623 |
apply (rule conjI) |
|
624 |
apply (rule neg_imp) |
|
625 |
apply (simp) |
|
626 |
apply (intro strip) |
|
627 |
apply (rule sorted_sparse_row_vector_zero) |
|
628 |
apply (simp_all) |
|
629 |
apply (intro strip) |
|
630 |
apply (rule sorted_sparse_row_vector_zero) |
|
631 |
apply (simp_all) |
|
632 |
done |
|
633 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
634 |
lemma disj_matrices_x_add: "disj_matrices A B \<Longrightarrow> disj_matrices A C \<Longrightarrow> disj_matrices (A::('a::lattice_ab_group_add) matrix) (B+C)" |
15009 | 635 |
apply (simp add: disj_matrices_def) |
636 |
apply (auto) |
|
637 |
apply (drule_tac j=j and i=i in spec2)+ |
|
638 |
apply (case_tac "Rep_matrix B j i = 0") |
|
639 |
apply (case_tac "Rep_matrix C j i = 0") |
|
640 |
apply (simp_all) |
|
641 |
done |
|
642 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
643 |
lemma disj_matrices_add_x: "disj_matrices A B \<Longrightarrow> disj_matrices A C \<Longrightarrow> disj_matrices (B+C) (A::('a::lattice_ab_group_add) matrix)" |
15009 | 644 |
by (simp add: disj_matrices_x_add disj_matrices_commute) |
645 |
||
646 |
lemma disj_singleton_matrices[simp]: "disj_matrices (singleton_matrix j i x) (singleton_matrix u v y) = (j \<noteq> u | i \<noteq> v | x = 0 | y = 0)" |
|
647 |
by (auto simp add: disj_matrices_def) |
|
648 |
||
649 |
lemma disj_move_sparse_vec_mat[simplified disj_matrices_commute]: |
|
650 |
"j <= a \<Longrightarrow> sorted_spvec((a,c)#as) \<Longrightarrow> disj_matrices (move_matrix (sparse_row_vector b) (int j) i) (sparse_row_matrix as)" |
|
651 |
apply (auto simp add: neg_def disj_matrices_def) |
|
652 |
apply (drule nrows_notzero) |
|
653 |
apply (drule less_le_trans[OF _ nrows_spvec]) |
|
654 |
apply (subgoal_tac "ja = j") |
|
655 |
apply (simp add: sorted_sparse_row_matrix_zero) |
|
656 |
apply (arith) |
|
657 |
apply (rule nrows) |
|
658 |
apply (rule order_trans[of _ 1 _]) |
|
659 |
apply (simp) |
|
660 |
apply (case_tac "nat (int ja - int j) = 0") |
|
661 |
apply (case_tac "ja = j") |
|
662 |
apply (simp add: sorted_sparse_row_matrix_zero) |
|
663 |
apply arith+ |
|
664 |
done |
|
665 |
||
666 |
lemma disj_move_sparse_row_vector_twice: |
|
667 |
"j \<noteq> u \<Longrightarrow> disj_matrices (move_matrix (sparse_row_vector a) j i) (move_matrix (sparse_row_vector b) u v)" |
|
668 |
apply (auto simp add: neg_def disj_matrices_def) |
|
669 |
apply (rule nrows, rule order_trans[of _ 1], simp, drule nrows_notzero, drule less_le_trans[OF _ nrows_spvec], arith)+ |
|
670 |
done |
|
671 |
||
31816 | 672 |
lemma le_spvec_iff_sparse_row_le[rule_format]: "(sorted_spvec a) \<longrightarrow> (sorted_spvec b) \<longrightarrow> (le_spvec a b) = (sparse_row_vector a <= sparse_row_vector b)" |
31817 | 673 |
apply (induct a b rule: le_spvec.induct) |
15178 | 674 |
apply (simp_all add: sorted_spvec_cons1 disj_matrices_add_le_zero disj_matrices_add_zero_le |
675 |
disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) |
|
676 |
apply (rule conjI, intro strip) |
|
677 |
apply (simp add: sorted_spvec_cons1) |
|
678 |
apply (subst disj_matrices_add_x_le) |
|
679 |
apply (simp add: disj_sparse_row_singleton[OF less_imp_le] disj_matrices_x_add disj_matrices_commute) |
|
680 |
apply (simp add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) |
|
681 |
apply (simp, blast) |
|
682 |
apply (intro strip, rule conjI, intro strip) |
|
683 |
apply (simp add: sorted_spvec_cons1) |
|
684 |
apply (subst disj_matrices_add_le_x) |
|
685 |
apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_sparse_row_singleton[OF less_imp_le] disj_matrices_commute disj_matrices_x_add) |
|
686 |
apply (blast) |
|
687 |
apply (intro strip) |
|
688 |
apply (simp add: sorted_spvec_cons1) |
|
31816 | 689 |
apply (case_tac "a=b", simp_all) |
15178 | 690 |
apply (subst disj_matrices_add) |
691 |
apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) |
|
15009 | 692 |
done |
693 |
||
31816 | 694 |
lemma le_spvec_empty2_sparse_row[rule_format]: "sorted_spvec b \<longrightarrow> le_spvec b [] = (sparse_row_vector b <= 0)" |
15009 | 695 |
apply (induct b) |
696 |
apply (simp_all add: sorted_spvec_cons1) |
|
697 |
apply (intro strip) |
|
698 |
apply (subst disj_matrices_add_le_zero) |
|
31816 | 699 |
apply (auto simp add: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1) |
15009 | 700 |
done |
701 |
||
31816 | 702 |
lemma le_spvec_empty1_sparse_row[rule_format]: "(sorted_spvec b) \<longrightarrow> (le_spvec [] b = (0 <= sparse_row_vector b))" |
15009 | 703 |
apply (induct b) |
704 |
apply (simp_all add: sorted_spvec_cons1) |
|
705 |
apply (intro strip) |
|
706 |
apply (subst disj_matrices_add_zero_le) |
|
31816 | 707 |
apply (auto simp add: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1) |
15009 | 708 |
done |
709 |
||
710 |
lemma le_spmat_iff_sparse_row_le[rule_format]: "(sorted_spvec A) \<longrightarrow> (sorted_spmat A) \<longrightarrow> (sorted_spvec B) \<longrightarrow> (sorted_spmat B) \<longrightarrow> |
|
31816 | 711 |
le_spmat A B = (sparse_row_matrix A <= sparse_row_matrix B)" |
31817 | 712 |
apply (induct A B rule: le_spmat.induct) |
15009 | 713 |
apply (simp add: sparse_row_matrix_cons disj_matrices_add_le_zero disj_matrices_add_zero_le disj_move_sparse_vec_mat[OF order_refl] |
714 |
disj_matrices_commute sorted_spvec_cons1 le_spvec_empty2_sparse_row le_spvec_empty1_sparse_row)+ |
|
715 |
apply (rule conjI, intro strip) |
|
716 |
apply (simp add: sorted_spvec_cons1) |
|
717 |
apply (subst disj_matrices_add_x_le) |
|
718 |
apply (rule disj_matrices_add_x) |
|
719 |
apply (simp add: disj_move_sparse_row_vector_twice) |
|
720 |
apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute) |
|
721 |
apply (simp add: disj_move_sparse_vec_mat[OF order_refl] disj_matrices_commute) |
|
722 |
apply (simp, blast) |
|
723 |
apply (intro strip, rule conjI, intro strip) |
|
724 |
apply (simp add: sorted_spvec_cons1) |
|
725 |
apply (subst disj_matrices_add_le_x) |
|
726 |
apply (simp add: disj_move_sparse_vec_mat[OF order_refl]) |
|
727 |
apply (rule disj_matrices_x_add) |
|
728 |
apply (simp add: disj_move_sparse_row_vector_twice) |
|
729 |
apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute) |
|
730 |
apply (simp, blast) |
|
731 |
apply (intro strip) |
|
31816 | 732 |
apply (case_tac "i=j") |
15009 | 733 |
apply (simp_all) |
734 |
apply (subst disj_matrices_add) |
|
735 |
apply (simp_all add: disj_matrices_commute disj_move_sparse_vec_mat[OF order_refl]) |
|
736 |
apply (simp add: sorted_spvec_cons1 le_spvec_iff_sparse_row_le) |
|
737 |
done |
|
738 |
||
24124
4399175e3014
turned simp_depth_limit into configuration option;
wenzelm
parents:
23477
diff
changeset
|
739 |
declare [[simp_depth_limit = 999]] |
15178 | 740 |
|
38273 | 741 |
primrec abs_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat" |
742 |
where |
|
743 |
"abs_spmat [] = []" |
|
744 |
| "abs_spmat (a#as) = (fst a, abs_spvec (snd a))#(abs_spmat as)" |
|
15178 | 745 |
|
38273 | 746 |
primrec minus_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat" |
747 |
where |
|
748 |
"minus_spmat [] = []" |
|
749 |
| "minus_spmat (a#as) = (fst a, minus_spvec (snd a))#(minus_spmat as)" |
|
15178 | 750 |
|
751 |
lemma sparse_row_matrix_minus: |
|
752 |
"sparse_row_matrix (minus_spmat A) = - (sparse_row_matrix A)" |
|
753 |
apply (induct A) |
|
754 |
apply (simp_all add: sparse_row_vector_minus sparse_row_matrix_cons) |
|
755 |
apply (subst Rep_matrix_inject[symmetric]) |
|
756 |
apply (rule ext)+ |
|
757 |
apply simp |
|
758 |
done |
|
15009 | 759 |
|
15178 | 760 |
lemma Rep_sparse_row_vector_zero: "x \<noteq> 0 \<Longrightarrow> Rep_matrix (sparse_row_vector v) x y = 0" |
761 |
proof - |
|
762 |
assume x:"x \<noteq> 0" |
|
763 |
have r:"nrows (sparse_row_vector v) <= Suc 0" by (rule nrows_spvec) |
|
764 |
show ?thesis |
|
765 |
apply (rule nrows) |
|
766 |
apply (subgoal_tac "Suc 0 <= x") |
|
767 |
apply (insert r) |
|
768 |
apply (simp only:) |
|
769 |
apply (insert x) |
|
770 |
apply arith |
|
771 |
done |
|
772 |
qed |
|
773 |
||
774 |
lemma sparse_row_matrix_abs: |
|
775 |
"sorted_spvec A \<Longrightarrow> sorted_spmat A \<Longrightarrow> sparse_row_matrix (abs_spmat A) = abs (sparse_row_matrix A)" |
|
776 |
apply (induct A) |
|
777 |
apply (simp_all add: sparse_row_vector_abs sparse_row_matrix_cons) |
|
778 |
apply (frule_tac sorted_spvec_cons1, simp) |
|
15580 | 779 |
apply (simplesubst Rep_matrix_inject[symmetric]) |
15178 | 780 |
apply (rule ext)+ |
781 |
apply auto |
|
782 |
apply (case_tac "x=a") |
|
783 |
apply (simp) |
|
15481 | 784 |
apply (simplesubst sorted_sparse_row_matrix_zero) |
15178 | 785 |
apply auto |
15481 | 786 |
apply (simplesubst Rep_sparse_row_vector_zero) |
15178 | 787 |
apply (simp_all add: neg_def) |
788 |
done |
|
789 |
||
790 |
lemma sorted_spvec_minus_spmat: "sorted_spvec A \<Longrightarrow> sorted_spvec (minus_spmat A)" |
|
791 |
apply (induct A) |
|
792 |
apply (simp) |
|
793 |
apply (frule sorted_spvec_cons1, simp) |
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15197
diff
changeset
|
794 |
apply (simp add: sorted_spvec.simps split:list.split_asm) |
15178 | 795 |
done |
796 |
||
797 |
lemma sorted_spvec_abs_spmat: "sorted_spvec A \<Longrightarrow> sorted_spvec (abs_spmat A)" |
|
798 |
apply (induct A) |
|
799 |
apply (simp) |
|
800 |
apply (frule sorted_spvec_cons1, simp) |
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15197
diff
changeset
|
801 |
apply (simp add: sorted_spvec.simps split:list.split_asm) |
15178 | 802 |
done |
803 |
||
804 |
lemma sorted_spmat_minus_spmat: "sorted_spmat A \<Longrightarrow> sorted_spmat (minus_spmat A)" |
|
805 |
apply (induct A) |
|
806 |
apply (simp_all add: sorted_spvec_minus_spvec) |
|
807 |
done |
|
808 |
||
809 |
lemma sorted_spmat_abs_spmat: "sorted_spmat A \<Longrightarrow> sorted_spmat (abs_spmat A)" |
|
810 |
apply (induct A) |
|
811 |
apply (simp_all add: sorted_spvec_abs_spvec) |
|
812 |
done |
|
15009 | 813 |
|
38273 | 814 |
definition diff_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat" |
815 |
where "diff_spmat A B = add_spmat A (minus_spmat B)" |
|
15178 | 816 |
|
817 |
lemma sorted_spmat_diff_spmat: "sorted_spmat A \<Longrightarrow> sorted_spmat B \<Longrightarrow> sorted_spmat (diff_spmat A B)" |
|
818 |
by (simp add: diff_spmat_def sorted_spmat_minus_spmat sorted_spmat_add_spmat) |
|
819 |
||
820 |
lemma sorted_spvec_diff_spmat: "sorted_spvec A \<Longrightarrow> sorted_spvec B \<Longrightarrow> sorted_spvec (diff_spmat A B)" |
|
821 |
by (simp add: diff_spmat_def sorted_spvec_minus_spmat sorted_spvec_add_spmat) |
|
822 |
||
823 |
lemma sparse_row_diff_spmat: "sparse_row_matrix (diff_spmat A B ) = (sparse_row_matrix A) - (sparse_row_matrix B)" |
|
824 |
by (simp add: diff_spmat_def sparse_row_add_spmat sparse_row_matrix_minus) |
|
825 |
||
38273 | 826 |
definition sorted_sparse_matrix :: "'a spmat \<Rightarrow> bool" |
827 |
where "sorted_sparse_matrix A \<longleftrightarrow> sorted_spvec A & sorted_spmat A" |
|
15178 | 828 |
|
829 |
lemma sorted_sparse_matrix_imp_spvec: "sorted_sparse_matrix A \<Longrightarrow> sorted_spvec A" |
|
830 |
by (simp add: sorted_sparse_matrix_def) |
|
831 |
||
832 |
lemma sorted_sparse_matrix_imp_spmat: "sorted_sparse_matrix A \<Longrightarrow> sorted_spmat A" |
|
833 |
by (simp add: sorted_sparse_matrix_def) |
|
834 |
||
835 |
lemmas sorted_sp_simps = |
|
836 |
sorted_spvec.simps |
|
837 |
sorted_spmat.simps |
|
838 |
sorted_sparse_matrix_def |
|
839 |
||
840 |
lemma bool1: "(\<not> True) = False" by blast |
|
841 |
lemma bool2: "(\<not> False) = True" by blast |
|
842 |
lemma bool3: "((P\<Colon>bool) \<and> True) = P" by blast |
|
843 |
lemma bool4: "(True \<and> (P\<Colon>bool)) = P" by blast |
|
844 |
lemma bool5: "((P\<Colon>bool) \<and> False) = False" by blast |
|
845 |
lemma bool6: "(False \<and> (P\<Colon>bool)) = False" by blast |
|
846 |
lemma bool7: "((P\<Colon>bool) \<or> True) = True" by blast |
|
847 |
lemma bool8: "(True \<or> (P\<Colon>bool)) = True" by blast |
|
848 |
lemma bool9: "((P\<Colon>bool) \<or> False) = P" by blast |
|
849 |
lemma bool10: "(False \<or> (P\<Colon>bool)) = P" by blast |
|
850 |
lemmas boolarith = bool1 bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 bool10 |
|
851 |
||
852 |
lemma if_case_eq: "(if b then x else y) = (case b of True => x | False => y)" by simp |
|
853 |
||
38273 | 854 |
primrec pprt_spvec :: "('a::{lattice_ab_group_add}) spvec \<Rightarrow> 'a spvec" |
855 |
where |
|
856 |
"pprt_spvec [] = []" |
|
857 |
| "pprt_spvec (a#as) = (fst a, pprt (snd a)) # (pprt_spvec as)" |
|
15580 | 858 |
|
38273 | 859 |
primrec nprt_spvec :: "('a::{lattice_ab_group_add}) spvec \<Rightarrow> 'a spvec" |
860 |
where |
|
15580 | 861 |
"nprt_spvec [] = []" |
38273 | 862 |
| "nprt_spvec (a#as) = (fst a, nprt (snd a)) # (nprt_spvec as)" |
15580 | 863 |
|
38273 | 864 |
primrec pprt_spmat :: "('a::{lattice_ab_group_add}) spmat \<Rightarrow> 'a spmat" |
865 |
where |
|
15580 | 866 |
"pprt_spmat [] = []" |
38273 | 867 |
| "pprt_spmat (a#as) = (fst a, pprt_spvec (snd a))#(pprt_spmat as)" |
15580 | 868 |
|
38273 | 869 |
primrec nprt_spmat :: "('a::{lattice_ab_group_add}) spmat \<Rightarrow> 'a spmat" |
870 |
where |
|
15580 | 871 |
"nprt_spmat [] = []" |
38273 | 872 |
| "nprt_spmat (a#as) = (fst a, nprt_spvec (snd a))#(nprt_spmat as)" |
15580 | 873 |
|
874 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
875 |
lemma pprt_add: "disj_matrices A (B::(_::lattice_ring) matrix) \<Longrightarrow> pprt (A+B) = pprt A + pprt B" |
22452
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents:
20432
diff
changeset
|
876 |
apply (simp add: pprt_def sup_matrix_def) |
15580 | 877 |
apply (simp add: Rep_matrix_inject[symmetric]) |
878 |
apply (rule ext)+ |
|
879 |
apply simp |
|
880 |
apply (case_tac "Rep_matrix A x xa \<noteq> 0") |
|
881 |
apply (simp_all add: disj_matrices_contr1) |
|
882 |
done |
|
883 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
884 |
lemma nprt_add: "disj_matrices A (B::(_::lattice_ring) matrix) \<Longrightarrow> nprt (A+B) = nprt A + nprt B" |
22452
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents:
20432
diff
changeset
|
885 |
apply (simp add: nprt_def inf_matrix_def) |
15580 | 886 |
apply (simp add: Rep_matrix_inject[symmetric]) |
887 |
apply (rule ext)+ |
|
888 |
apply simp |
|
889 |
apply (case_tac "Rep_matrix A x xa \<noteq> 0") |
|
890 |
apply (simp_all add: disj_matrices_contr1) |
|
891 |
done |
|
892 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
893 |
lemma pprt_singleton[simp]: "pprt (singleton_matrix j i (x::_::lattice_ring)) = singleton_matrix j i (pprt x)" |
22452
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents:
20432
diff
changeset
|
894 |
apply (simp add: pprt_def sup_matrix_def) |
15580 | 895 |
apply (simp add: Rep_matrix_inject[symmetric]) |
896 |
apply (rule ext)+ |
|
897 |
apply simp |
|
898 |
done |
|
899 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
900 |
lemma nprt_singleton[simp]: "nprt (singleton_matrix j i (x::_::lattice_ring)) = singleton_matrix j i (nprt x)" |
22452
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents:
20432
diff
changeset
|
901 |
apply (simp add: nprt_def inf_matrix_def) |
15580 | 902 |
apply (simp add: Rep_matrix_inject[symmetric]) |
903 |
apply (rule ext)+ |
|
904 |
apply simp |
|
905 |
done |
|
906 |
||
907 |
lemma less_imp_le: "a < b \<Longrightarrow> a <= (b::_::order)" by (simp add: less_def) |
|
908 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
909 |
lemma sparse_row_vector_pprt: "sorted_spvec (v :: 'a::lattice_ring spvec) \<Longrightarrow> sparse_row_vector (pprt_spvec v) = pprt (sparse_row_vector v)" |
15580 | 910 |
apply (induct v) |
911 |
apply (simp_all) |
|
912 |
apply (frule sorted_spvec_cons1, auto) |
|
913 |
apply (subst pprt_add) |
|
914 |
apply (subst disj_matrices_commute) |
|
915 |
apply (rule disj_sparse_row_singleton) |
|
916 |
apply auto |
|
917 |
done |
|
918 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
919 |
lemma sparse_row_vector_nprt: "sorted_spvec (v :: 'a::lattice_ring spvec) \<Longrightarrow> sparse_row_vector (nprt_spvec v) = nprt (sparse_row_vector v)" |
15580 | 920 |
apply (induct v) |
921 |
apply (simp_all) |
|
922 |
apply (frule sorted_spvec_cons1, auto) |
|
923 |
apply (subst nprt_add) |
|
924 |
apply (subst disj_matrices_commute) |
|
925 |
apply (rule disj_sparse_row_singleton) |
|
926 |
apply auto |
|
927 |
done |
|
928 |
||
929 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
930 |
lemma pprt_move_matrix: "pprt (move_matrix (A::('a::lattice_ring) matrix) j i) = move_matrix (pprt A) j i" |
15580 | 931 |
apply (simp add: pprt_def) |
22452
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents:
20432
diff
changeset
|
932 |
apply (simp add: sup_matrix_def) |
15580 | 933 |
apply (simp add: Rep_matrix_inject[symmetric]) |
934 |
apply (rule ext)+ |
|
935 |
apply (simp) |
|
936 |
done |
|
937 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
938 |
lemma nprt_move_matrix: "nprt (move_matrix (A::('a::lattice_ring) matrix) j i) = move_matrix (nprt A) j i" |
15580 | 939 |
apply (simp add: nprt_def) |
22452
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents:
20432
diff
changeset
|
940 |
apply (simp add: inf_matrix_def) |
15580 | 941 |
apply (simp add: Rep_matrix_inject[symmetric]) |
942 |
apply (rule ext)+ |
|
943 |
apply (simp) |
|
944 |
done |
|
945 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
946 |
lemma sparse_row_matrix_pprt: "sorted_spvec (m :: 'a::lattice_ring spmat) \<Longrightarrow> sorted_spmat m \<Longrightarrow> sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)" |
15580 | 947 |
apply (induct m) |
948 |
apply simp |
|
949 |
apply simp |
|
950 |
apply (frule sorted_spvec_cons1) |
|
951 |
apply (simp add: sparse_row_matrix_cons sparse_row_vector_pprt) |
|
952 |
apply (subst pprt_add) |
|
953 |
apply (subst disj_matrices_commute) |
|
954 |
apply (rule disj_move_sparse_vec_mat) |
|
955 |
apply auto |
|
956 |
apply (simp add: sorted_spvec.simps) |
|
957 |
apply (simp split: list.split) |
|
958 |
apply auto |
|
959 |
apply (simp add: pprt_move_matrix) |
|
960 |
done |
|
961 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
962 |
lemma sparse_row_matrix_nprt: "sorted_spvec (m :: 'a::lattice_ring spmat) \<Longrightarrow> sorted_spmat m \<Longrightarrow> sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)" |
15580 | 963 |
apply (induct m) |
964 |
apply simp |
|
965 |
apply simp |
|
966 |
apply (frule sorted_spvec_cons1) |
|
967 |
apply (simp add: sparse_row_matrix_cons sparse_row_vector_nprt) |
|
968 |
apply (subst nprt_add) |
|
969 |
apply (subst disj_matrices_commute) |
|
970 |
apply (rule disj_move_sparse_vec_mat) |
|
971 |
apply auto |
|
972 |
apply (simp add: sorted_spvec.simps) |
|
973 |
apply (simp split: list.split) |
|
974 |
apply auto |
|
975 |
apply (simp add: nprt_move_matrix) |
|
976 |
done |
|
977 |
||
978 |
lemma sorted_pprt_spvec: "sorted_spvec v \<Longrightarrow> sorted_spvec (pprt_spvec v)" |
|
979 |
apply (induct v) |
|
980 |
apply (simp) |
|
981 |
apply (frule sorted_spvec_cons1) |
|
982 |
apply simp |
|
983 |
apply (simp add: sorted_spvec.simps split:list.split_asm) |
|
984 |
done |
|
985 |
||
986 |
lemma sorted_nprt_spvec: "sorted_spvec v \<Longrightarrow> sorted_spvec (nprt_spvec v)" |
|
987 |
apply (induct v) |
|
988 |
apply (simp) |
|
989 |
apply (frule sorted_spvec_cons1) |
|
990 |
apply simp |
|
991 |
apply (simp add: sorted_spvec.simps split:list.split_asm) |
|
992 |
done |
|
993 |
||
994 |
lemma sorted_spvec_pprt_spmat: "sorted_spvec m \<Longrightarrow> sorted_spvec (pprt_spmat m)" |
|
995 |
apply (induct m) |
|
996 |
apply (simp) |
|
997 |
apply (frule sorted_spvec_cons1) |
|
998 |
apply simp |
|
999 |
apply (simp add: sorted_spvec.simps split:list.split_asm) |
|
1000 |
done |
|
1001 |
||
1002 |
lemma sorted_spvec_nprt_spmat: "sorted_spvec m \<Longrightarrow> sorted_spvec (nprt_spmat m)" |
|
1003 |
apply (induct m) |
|
1004 |
apply (simp) |
|
1005 |
apply (frule sorted_spvec_cons1) |
|
1006 |
apply simp |
|
1007 |
apply (simp add: sorted_spvec.simps split:list.split_asm) |
|
1008 |
done |
|
1009 |
||
1010 |
lemma sorted_spmat_pprt_spmat: "sorted_spmat m \<Longrightarrow> sorted_spmat (pprt_spmat m)" |
|
1011 |
apply (induct m) |
|
1012 |
apply (simp_all add: sorted_pprt_spvec) |
|
1013 |
done |
|
1014 |
||
1015 |
lemma sorted_spmat_nprt_spmat: "sorted_spmat m \<Longrightarrow> sorted_spmat (nprt_spmat m)" |
|
1016 |
apply (induct m) |
|
1017 |
apply (simp_all add: sorted_nprt_spvec) |
|
1018 |
done |
|
1019 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35028
diff
changeset
|
1020 |
definition mult_est_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat" where |
38273 | 1021 |
"mult_est_spmat r1 r2 s1 s2 = |
31816 | 1022 |
add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2)) (add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2)) |
1023 |
(add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1)) (mult_spmat (nprt_spmat s1) (nprt_spmat r1))))" |
|
15580 | 1024 |
|
1025 |
lemmas sparse_row_matrix_op_simps = |
|
1026 |
sorted_sparse_matrix_imp_spmat sorted_sparse_matrix_imp_spvec |
|
1027 |
sparse_row_add_spmat sorted_spvec_add_spmat sorted_spmat_add_spmat |
|
1028 |
sparse_row_diff_spmat sorted_spvec_diff_spmat sorted_spmat_diff_spmat |
|
1029 |
sparse_row_matrix_minus sorted_spvec_minus_spmat sorted_spmat_minus_spmat |
|
1030 |
sparse_row_mult_spmat sorted_spvec_mult_spmat sorted_spmat_mult_spmat |
|
1031 |
sparse_row_matrix_abs sorted_spvec_abs_spmat sorted_spmat_abs_spmat |
|
1032 |
le_spmat_iff_sparse_row_le |
|
1033 |
sparse_row_matrix_pprt sorted_spvec_pprt_spmat sorted_spmat_pprt_spmat |
|
1034 |
sparse_row_matrix_nprt sorted_spvec_nprt_spmat sorted_spmat_nprt_spmat |
|
1035 |
||
1036 |
lemma zero_eq_Numeral0: "(0::_::number_ring) = Numeral0" by simp |
|
1037 |
||
1038 |
lemmas sparse_row_matrix_arith_simps[simplified zero_eq_Numeral0] = |
|
1039 |
mult_spmat.simps mult_spvec_spmat.simps |
|
1040 |
addmult_spvec.simps |
|
1041 |
smult_spvec_empty smult_spvec_cons |
|
1042 |
add_spmat.simps add_spvec.simps |
|
1043 |
minus_spmat.simps minus_spvec.simps |
|
1044 |
abs_spmat.simps abs_spvec.simps |
|
1045 |
diff_spmat_def |
|
1046 |
le_spmat.simps le_spvec.simps |
|
1047 |
pprt_spmat.simps pprt_spvec.simps |
|
1048 |
nprt_spmat.simps nprt_spvec.simps |
|
1049 |
mult_est_spmat_def |
|
1050 |
||
1051 |
||
1052 |
(*lemma spm_linprog_dual_estimate_1: |
|
15178 | 1053 |
assumes |
1054 |
"sorted_sparse_matrix A1" |
|
1055 |
"sorted_sparse_matrix A2" |
|
1056 |
"sorted_sparse_matrix c1" |
|
1057 |
"sorted_sparse_matrix c2" |
|
1058 |
"sorted_sparse_matrix y" |
|
1059 |
"sorted_spvec b" |
|
1060 |
"sorted_spvec r" |
|
1061 |
"le_spmat ([], y)" |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32491
diff
changeset
|
1062 |
"A * x \<le> sparse_row_matrix (b::('a::lattice_ring) spmat)" |
15178 | 1063 |
"sparse_row_matrix A1 <= A" |
1064 |
"A <= sparse_row_matrix A2" |
|
1065 |
"sparse_row_matrix c1 <= c" |
|
1066 |
"c <= sparse_row_matrix c2" |
|
1067 |
"abs x \<le> sparse_row_matrix r" |
|
1068 |
shows |
|
1069 |
"c * x \<le> sparse_row_matrix (add_spmat (mult_spmat y b, mult_spmat (add_spmat (add_spmat (mult_spmat y (diff_spmat A2 A1), |
|
1070 |
abs_spmat (diff_spmat (mult_spmat y A1) c1)), diff_spmat c2 c1)) r))" |
|
1071 |
by (insert prems, simp add: sparse_row_matrix_op_simps linprog_dual_estimate_1[where A=A]) |
|
15580 | 1072 |
*) |
15009 | 1073 |
|
1074 |
end |