| author | haftmann | 
| Wed, 05 Apr 2017 13:47:40 +0200 | |
| changeset 65389 | 6f9c6ae27984 | 
| parent 63219 | a5697f7a3322 | 
| child 73832 | 9db620f007fa | 
| permissions | -rw-r--r-- | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 1 | (* Title: HOL/Library/RBT.thy | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 2 | Author: Lukas Bulwahn and Ondrej Kuncar | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 3 | *) | 
| 35617 | 4 | |
| 60500 | 5 | section \<open>Abstract type of RBT trees\<close> | 
| 35617 | 6 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 7 | theory RBT | 
| 53013 
3fbcfa911863
remove unnecessary dependencies on Library/Quotient_*
 kuncar parents: 
51375diff
changeset | 8 | imports Main RBT_Impl | 
| 35617 | 9 | begin | 
| 10 | ||
| 60500 | 11 | subsection \<open>Type definition\<close> | 
| 35617 | 12 | |
| 61260 | 13 | typedef (overloaded) ('a, 'b) rbt = "{t :: ('a::linorder, 'b) RBT_Impl.rbt. is_rbt t}"
 | 
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 14 | morphisms impl_of RBT | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 15 | proof - | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 16 | have "RBT_Impl.Empty \<in> ?rbt" by simp | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 17 | then show ?thesis .. | 
| 35617 | 18 | qed | 
| 19 | ||
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 20 | lemma rbt_eq_iff: | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 21 | "t1 = t2 \<longleftrightarrow> impl_of t1 = impl_of t2" | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 22 | by (simp add: impl_of_inject) | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 23 | |
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 24 | lemma rbt_eqI: | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 25 | "impl_of t1 = impl_of t2 \<Longrightarrow> t1 = t2" | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 26 | by (simp add: rbt_eq_iff) | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 27 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 28 | lemma is_rbt_impl_of [simp, intro]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 29 | "is_rbt (impl_of t)" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 30 | using impl_of [of t] by simp | 
| 35617 | 31 | |
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 32 | lemma RBT_impl_of [simp, code abstype]: | 
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 33 | "RBT (impl_of t) = t" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 34 | by (simp add: impl_of_inverse) | 
| 35617 | 35 | |
| 60500 | 36 | subsection \<open>Primitive operations\<close> | 
| 35617 | 37 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 38 | setup_lifting type_definition_rbt | 
| 35617 | 39 | |
| 61076 | 40 | lift_definition lookup :: "('a::linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b" is "rbt_lookup" .
 | 
| 35617 | 41 | |
| 61076 | 42 | lift_definition empty :: "('a::linorder, 'b) rbt" is RBT_Impl.Empty 
 | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 43 | by (simp add: empty_def) | 
| 35617 | 44 | |
| 61076 | 45 | lift_definition insert :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is "rbt_insert" 
 | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 46 | by simp | 
| 35617 | 47 | |
| 61076 | 48 | lift_definition delete :: "'a::linorder \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is "rbt_delete" 
 | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 49 | by simp | 
| 35617 | 50 | |
| 61076 | 51 | lift_definition entries :: "('a::linorder, 'b) rbt \<Rightarrow> ('a \<times> 'b) list" is RBT_Impl.entries .
 | 
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55466diff
changeset | 52 | |
| 61076 | 53 | lift_definition keys :: "('a::linorder, 'b) rbt \<Rightarrow> 'a list" is RBT_Impl.keys .
 | 
| 35617 | 54 | |
| 61076 | 55 | lift_definition bulkload :: "('a::linorder \<times> 'b) list \<Rightarrow> ('a, 'b) rbt" is "rbt_bulkload" ..
 | 
| 35617 | 56 | |
| 61076 | 57 | lift_definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a::linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is rbt_map_entry
 | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 58 | by simp | 
| 35617 | 59 | |
| 61076 | 60 | lift_definition map :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a::linorder, 'b) rbt \<Rightarrow> ('a, 'c) rbt" is RBT_Impl.map
 | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 61 | by simp | 
| 35617 | 62 | |
| 61076 | 63 | lift_definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a::linorder, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c"  is RBT_Impl.fold .
 | 
| 35617 | 64 | |
| 61076 | 65 | lift_definition union :: "('a::linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is "rbt_union"
 | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 66 | by (simp add: rbt_union_is_rbt) | 
| 35617 | 67 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 68 | lift_definition foldi :: "('c \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a :: linorder, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c"
 | 
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55466diff
changeset | 69 | is RBT_Impl.foldi . | 
| 63194 | 70 | |
| 71 | lift_definition combine_with_key :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a::linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | |
| 72 | is RBT_Impl.rbt_union_with_key by (rule is_rbt_rbt_unionwk) | |
| 73 | ||
| 74 | lift_definition combine :: "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a::linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | |
| 75 | is RBT_Impl.rbt_union_with by (rule rbt_unionw_is_rbt) | |
| 35617 | 76 | |
| 60500 | 77 | subsection \<open>Derived operations\<close> | 
| 35617 | 78 | |
| 61076 | 79 | definition is_empty :: "('a::linorder, 'b) rbt \<Rightarrow> bool" where
 | 
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 80 | [code]: "is_empty t = (case impl_of t of RBT_Impl.Empty \<Rightarrow> True | _ \<Rightarrow> False)" | 
| 35617 | 81 | |
| 63194 | 82 | (* TODO: Is deleting more efficient than re-building the tree? | 
| 83 | (Probably more difficult to prove though *) | |
| 84 | definition filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a::linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 85 | [code]: "filter P t = fold (\<lambda>k v t. if P k v then insert k v t else t) t empty" | |
| 35617 | 86 | |
| 60500 | 87 | subsection \<open>Abstract lookup properties\<close> | 
| 35617 | 88 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 89 | lemma lookup_RBT: | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
46565diff
changeset | 90 | "is_rbt t \<Longrightarrow> lookup (RBT t) = rbt_lookup t" | 
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 91 | by (simp add: lookup_def RBT_inverse) | 
| 35617 | 92 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 93 | lemma lookup_impl_of: | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
46565diff
changeset | 94 | "rbt_lookup (impl_of t) = lookup t" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 95 | by transfer (rule refl) | 
| 35617 | 96 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 97 | lemma entries_impl_of: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 98 | "RBT_Impl.entries (impl_of t) = entries t" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 99 | by transfer (rule refl) | 
| 35617 | 100 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 101 | lemma keys_impl_of: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 102 | "RBT_Impl.keys (impl_of t) = keys t" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 103 | by transfer (rule refl) | 
| 36111 | 104 | |
| 49927 | 105 | lemma lookup_keys: | 
| 106 | "dom (lookup t) = set (keys t)" | |
| 107 | by transfer (simp add: rbt_lookup_keys) | |
| 108 | ||
| 35617 | 109 | lemma lookup_empty [simp]: | 
| 110 | "lookup empty = Map.empty" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 111 | by (simp add: empty_def lookup_RBT fun_eq_iff) | 
| 35617 | 112 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 113 | lemma lookup_insert [simp]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 114 | "lookup (insert k v t) = (lookup t)(k \<mapsto> v)" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 115 | by transfer (rule rbt_lookup_rbt_insert) | 
| 35617 | 116 | |
| 117 | lemma lookup_delete [simp]: | |
| 118 | "lookup (delete k t) = (lookup t)(k := None)" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 119 | by transfer (simp add: rbt_lookup_rbt_delete restrict_complement_singleton_eq) | 
| 35617 | 120 | |
| 121 | lemma map_of_entries [simp]: | |
| 122 | "map_of (entries t) = lookup t" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 123 | by transfer (simp add: map_of_entries) | 
| 35617 | 124 | |
| 36111 | 125 | lemma entries_lookup: | 
| 126 | "entries t1 = entries t2 \<longleftrightarrow> lookup t1 = lookup t2" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 127 | by transfer (simp add: entries_rbt_lookup) | 
| 36111 | 128 | |
| 35617 | 129 | lemma lookup_bulkload [simp]: | 
| 130 | "lookup (bulkload xs) = map_of xs" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 131 | by transfer (rule rbt_lookup_rbt_bulkload) | 
| 35617 | 132 | |
| 133 | lemma lookup_map_entry [simp]: | |
| 55466 | 134 | "lookup (map_entry k f t) = (lookup t)(k := map_option f (lookup t k))" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 135 | by transfer (rule rbt_lookup_rbt_map_entry) | 
| 35617 | 136 | |
| 137 | lemma lookup_map [simp]: | |
| 55466 | 138 | "lookup (map f t) k = map_option (f k) (lookup t k)" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 139 | by transfer (rule rbt_lookup_map) | 
| 35617 | 140 | |
| 63194 | 141 | lemma lookup_combine_with_key [simp]: | 
| 142 | "lookup (combine_with_key f t1 t2) k = combine_options (f k) (lookup t1 k) (lookup t2 k)" | |
| 143 | by transfer (simp_all add: combine_options_def rbt_lookup_rbt_unionwk) | |
| 144 | ||
| 145 | lemma combine_altdef: "combine f t1 t2 = combine_with_key (\<lambda>_. f) t1 t2" | |
| 146 | by transfer (simp add: rbt_union_with_def) | |
| 147 | ||
| 148 | lemma lookup_combine [simp]: | |
| 149 | "lookup (combine f t1 t2) k = combine_options f (lookup t1 k) (lookup t2 k)" | |
| 150 | by (simp add: combine_altdef) | |
| 151 | ||
| 35617 | 152 | lemma fold_fold: | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53013diff
changeset | 153 | "fold f t = List.fold (case_prod f) (entries t)" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 154 | by transfer (rule RBT_Impl.fold_def) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 155 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 156 | lemma impl_of_empty: | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 157 | "impl_of empty = RBT_Impl.Empty" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 158 | by transfer (rule refl) | 
| 35617 | 159 | |
| 36111 | 160 | lemma is_empty_empty [simp]: | 
| 161 | "is_empty t \<longleftrightarrow> t = empty" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 162 | unfolding is_empty_def by transfer (simp split: rbt.split) | 
| 36111 | 163 | |
| 164 | lemma RBT_lookup_empty [simp]: (*FIXME*) | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
46565diff
changeset | 165 | "rbt_lookup t = Map.empty \<longleftrightarrow> t = RBT_Impl.Empty" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 166 | by (cases t) (auto simp add: fun_eq_iff) | 
| 36111 | 167 | |
| 168 | lemma lookup_empty_empty [simp]: | |
| 169 | "lookup t = Map.empty \<longleftrightarrow> t = empty" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 170 | by transfer (rule RBT_lookup_empty) | 
| 36111 | 171 | |
| 172 | lemma sorted_keys [iff]: | |
| 173 | "sorted (keys t)" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 174 | by transfer (simp add: RBT_Impl.keys_def rbt_sorted_entries) | 
| 36111 | 175 | |
| 176 | lemma distinct_keys [iff]: | |
| 177 | "distinct (keys t)" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 178 | by transfer (simp add: RBT_Impl.keys_def distinct_entries) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 179 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 180 | lemma finite_dom_lookup [simp, intro!]: "finite (dom (lookup t))" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 181 | by transfer simp | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 182 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 183 | lemma lookup_union: "lookup (union s t) = lookup s ++ lookup t" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 184 | by transfer (simp add: rbt_lookup_rbt_union) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 185 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 186 | lemma lookup_in_tree: "(lookup t k = Some v) = ((k, v) \<in> set (entries t))" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 187 | by transfer (simp add: rbt_lookup_in_tree) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 188 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 189 | lemma keys_entries: "(k \<in> set (keys t)) = (\<exists>v. (k, v) \<in> set (entries t))" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 190 | by transfer (simp add: keys_entries) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 191 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 192 | lemma fold_def_alt: | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53013diff
changeset | 193 | "fold f t = List.fold (case_prod f) (entries t)" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 194 | by transfer (auto simp: RBT_Impl.fold_def) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 195 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 196 | lemma distinct_entries: "distinct (List.map fst (entries t))" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 197 | by transfer (simp add: distinct_entries) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 198 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 199 | lemma non_empty_keys: "t \<noteq> empty \<Longrightarrow> keys t \<noteq> []" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 200 | by transfer (simp add: non_empty_rbt_keys) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 201 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 202 | lemma keys_def_alt: | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 203 | "keys t = List.map fst (entries t)" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 204 | by transfer (simp add: RBT_Impl.keys_def) | 
| 36111 | 205 | |
| 63194 | 206 | context | 
| 207 | begin | |
| 208 | ||
| 209 | private lemma lookup_filter_aux: | |
| 210 | assumes "distinct (List.map fst xs)" | |
| 211 | shows "lookup (List.fold (\<lambda>(k, v) t. if P k v then insert k v t else t) xs t) k = | |
| 212 | (case map_of xs k of | |
| 213 | None \<Rightarrow> lookup t k | |
| 214 | | Some v \<Rightarrow> if P k v then Some v else lookup t k)" | |
| 215 | using assms by (induction xs arbitrary: t) (force split: option.splits)+ | |
| 216 | ||
| 217 | lemma lookup_filter: | |
| 218 | "lookup (filter P t) k = | |
| 219 | (case lookup t k of None \<Rightarrow> None | Some v \<Rightarrow> if P k v then Some v else None)" | |
| 220 | unfolding filter_def using lookup_filter_aux[of "entries t" P empty k] | |
| 221 | by (simp add: fold_fold distinct_entries split: option.splits) | |
| 222 | ||
| 223 | end | |
| 224 | ||
| 225 | ||
| 60500 | 226 | subsection \<open>Quickcheck generators\<close> | 
| 45928 
874845660119
adding quickcheck generators in some HOL-Library theories
 bulwahn parents: 
45694diff
changeset | 227 | |
| 46565 | 228 | quickcheck_generator rbt predicate: is_rbt constructors: empty, insert | 
| 36111 | 229 | |
| 60500 | 230 | subsection \<open>Hide implementation details\<close> | 
| 56019 | 231 | |
| 232 | lifting_update rbt.lifting | |
| 233 | lifting_forget rbt.lifting | |
| 234 | ||
| 235 | hide_const (open) impl_of empty lookup keys entries bulkload delete map fold union insert map_entry foldi | |
| 63219 | 236 | is_empty filter | 
| 56019 | 237 | hide_fact (open) empty_def lookup_def keys_def entries_def bulkload_def delete_def map_def fold_def | 
| 63219 | 238 | union_def insert_def map_entry_def foldi_def is_empty_def filter_def | 
| 56019 | 239 | |
| 35617 | 240 | end |