| author | wenzelm | 
| Sat, 28 Oct 2023 19:13:02 +0200 | |
| changeset 78855 | 6fdcd6c8c97a | 
| parent 74375 | ba880f3a4e52 | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 1477 | 1 | (* Title: FOLP/IFOLP.thy | 
| 2 | Author: Martin D Coen, Cambridge University Computer Laboratory | |
| 1142 | 3 | Copyright 1992 University of Cambridge | 
| 4 | *) | |
| 5 | ||
| 60770 | 6 | section \<open>Intuitionistic First-Order Logic with Proofs\<close> | 
| 17480 | 7 | |
| 8 | theory IFOLP | |
| 9 | imports Pure | |
| 10 | begin | |
| 0 | 11 | |
| 69605 | 12 | ML_file \<open>~~/src/Tools/misc_legacy.ML\<close> | 
| 48891 | 13 | |
| 39557 
fe5722fce758
renamed structure PureThy to Pure_Thy and moved most content to Global_Theory, to emphasize that this is global-only;
 wenzelm parents: 
38800diff
changeset | 14 | setup Pure_Thy.old_appl_syntax_setup | 
| 70880 | 15 | setup \<open>Proofterm.set_preproc (Proof_Rewrite_Rules.standard_preproc [])\<close> | 
| 26956 
1309a6a0a29f
setup PureThy.old_appl_syntax_setup -- theory Pure provides regular application syntax by default;
 wenzelm parents: 
26480diff
changeset | 16 | |
| 55380 
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
 wenzelm parents: 
52230diff
changeset | 17 | class "term" | 
| 36452 | 18 | default_sort "term" | 
| 0 | 19 | |
| 17480 | 20 | typedecl p | 
| 21 | typedecl o | |
| 0 | 22 | |
| 17480 | 23 | consts | 
| 0 | 24 | (*** Judgements ***) | 
| 1477 | 25 | Proof :: "[o,p]=>prop" | 
| 0 | 26 |  EqProof        ::   "[p,p,o]=>prop"    ("(3_ /= _ :/ _)" [10,10,10] 5)
 | 
| 17480 | 27 | |
| 0 | 28 | (*** Logical Connectives -- Type Formers ***) | 
| 41310 | 29 | eq :: "['a,'a] => o" (infixl "=" 50) | 
| 17480 | 30 | True :: "o" | 
| 31 | False :: "o" | |
| 41310 | 32 | conj :: "[o,o] => o" (infixr "&" 35) | 
| 33 | disj :: "[o,o] => o" (infixr "|" 30) | |
| 34 | imp :: "[o,o] => o" (infixr "-->" 25) | |
| 0 | 35 | (*Quantifiers*) | 
| 1477 | 36 |  All            ::      "('a => o) => o"        (binder "ALL " 10)
 | 
| 37 |  Ex             ::      "('a => o) => o"        (binder "EX " 10)
 | |
| 0 | 38 | (*Rewriting gadgets*) | 
| 1477 | 39 | NORM :: "o => o" | 
| 40 | norm :: "'a => 'a" | |
| 0 | 41 | |
| 648 
e27c9ec2b48b
FOLP/IFOLP.thy: tightening precedences to eliminate syntactic ambiguities.
 lcp parents: 
283diff
changeset | 42 | (*** Proof Term Formers: precedence must exceed 50 ***) | 
| 1477 | 43 | tt :: "p" | 
| 44 | contr :: "p=>p" | |
| 17480 | 45 | fst :: "p=>p" | 
| 46 | snd :: "p=>p" | |
| 1477 | 47 |  pair           :: "[p,p]=>p"           ("(1<_,/_>)")
 | 
| 48 | split :: "[p, [p,p]=>p] =>p" | |
| 17480 | 49 | inl :: "p=>p" | 
| 50 | inr :: "p=>p" | |
| 60555 
51a6997b1384
support 'when' statement, which corresponds to 'presume';
 wenzelm parents: 
59529diff
changeset | 51 | "when" :: "[p, p=>p, p=>p]=>p" | 
| 1477 | 52 | lambda :: "(p => p) => p" (binder "lam " 55) | 
| 41310 | 53 | App :: "[p,p]=>p" (infixl "`" 60) | 
| 648 
e27c9ec2b48b
FOLP/IFOLP.thy: tightening precedences to eliminate syntactic ambiguities.
 lcp parents: 
283diff
changeset | 54 | alll :: "['a=>p]=>p" (binder "all " 55) | 
| 41310 | 55 | app :: "[p,'a]=>p" (infixl "^" 55) | 
| 1477 | 56 |  exists         :: "['a,p]=>p"          ("(1[_,/_])")
 | 
| 0 | 57 | xsplit :: "[p,['a,p]=>p]=>p" | 
| 58 | ideq :: "'a=>p" | |
| 59 | idpeel :: "[p,'a=>p]=>p" | |
| 17480 | 60 | nrm :: p | 
| 61 | NRM :: p | |
| 0 | 62 | |
| 35113 | 63 | syntax "_Proof" :: "[p,o]=>prop"    ("(_ /: _)" [51, 10] 5)
 | 
| 64 | ||
| 60770 | 65 | parse_translation \<open> | 
| 74301 | 66 | let fun proof_tr [p, P] = Syntax.const \<^const_syntax>\<open>Proof\<close> $ P $ p | 
| 69593 | 67 | in [(\<^syntax_const>\<open>_Proof\<close>, K proof_tr)] end | 
| 60770 | 68 | \<close> | 
| 17480 | 69 | |
| 38800 | 70 | (*show_proofs = true displays the proof terms -- they are ENORMOUS*) | 
| 69593 | 71 | ML \<open>val show_proofs = Attrib.setup_config_bool \<^binding>\<open>show_proofs\<close> (K false)\<close> | 
| 38800 | 72 | |
| 60770 | 73 | print_translation \<open> | 
| 38800 | 74 | let | 
| 75 | fun proof_tr' ctxt [P, p] = | |
| 74301 | 76 | if Config.get ctxt show_proofs then Syntax.const \<^syntax_const>\<open>_Proof\<close> $ p $ P | 
| 38800 | 77 | else P | 
| 69593 | 78 | in [(\<^const_syntax>\<open>Proof\<close>, proof_tr')] end | 
| 60770 | 79 | \<close> | 
| 17480 | 80 | |
| 0 | 81 | |
| 82 | (**** Propositional logic ****) | |
| 83 | ||
| 84 | (*Equality*) | |
| 85 | (* Like Intensional Equality in MLTT - but proofs distinct from terms *) | |
| 86 | ||
| 51306 | 87 | axiomatization where | 
| 88 | ieqI: "ideq(a) : a=a" and | |
| 17480 | 89 | ieqE: "[| p : a=b; !!x. f(x) : P(x,x) |] ==> idpeel(p,f) : P(a,b)" | 
| 0 | 90 | |
| 91 | (* Truth and Falsity *) | |
| 92 | ||
| 51306 | 93 | axiomatization where | 
| 94 | TrueI: "tt : True" and | |
| 17480 | 95 | FalseE: "a:False ==> contr(a):P" | 
| 0 | 96 | |
| 97 | (* Conjunction *) | |
| 98 | ||
| 51306 | 99 | axiomatization where | 
| 100 | conjI: "[| a:P; b:Q |] ==> <a,b> : P&Q" and | |
| 101 | conjunct1: "p:P&Q ==> fst(p):P" and | |
| 17480 | 102 | conjunct2: "p:P&Q ==> snd(p):Q" | 
| 0 | 103 | |
| 104 | (* Disjunction *) | |
| 105 | ||
| 51306 | 106 | axiomatization where | 
| 107 | disjI1: "a:P ==> inl(a):P|Q" and | |
| 108 | disjI2: "b:Q ==> inr(b):P|Q" and | |
| 17480 | 109 | disjE: "[| a:P|Q; !!x. x:P ==> f(x):R; !!x. x:Q ==> g(x):R | 
| 110 | |] ==> when(a,f,g):R" | |
| 0 | 111 | |
| 112 | (* Implication *) | |
| 113 | ||
| 51306 | 114 | axiomatization where | 
| 115 | impI: "\<And>P Q f. (!!x. x:P ==> f(x):Q) ==> lam x. f(x):P-->Q" and | |
| 116 | mp: "\<And>P Q f. [| f:P-->Q; a:P |] ==> f`a:Q" | |
| 0 | 117 | |
| 118 | (*Quantifiers*) | |
| 119 | ||
| 51306 | 120 | axiomatization where | 
| 121 | allI: "\<And>P. (!!x. f(x) : P(x)) ==> all x. f(x) : ALL x. P(x)" and | |
| 122 | spec: "\<And>P f. (f:ALL x. P(x)) ==> f^x : P(x)" | |
| 0 | 123 | |
| 51306 | 124 | axiomatization where | 
| 125 | exI: "p : P(x) ==> [x,p] : EX x. P(x)" and | |
| 17480 | 126 | exE: "[| p: EX x. P(x); !!x u. u:P(x) ==> f(x,u) : R |] ==> xsplit(p,f):R" | 
| 0 | 127 | |
| 128 | (**** Equality between proofs ****) | |
| 129 | ||
| 51306 | 130 | axiomatization where | 
| 131 | prefl: "a : P ==> a = a : P" and | |
| 132 | psym: "a = b : P ==> b = a : P" and | |
| 17480 | 133 | ptrans: "[| a = b : P; b = c : P |] ==> a = c : P" | 
| 0 | 134 | |
| 51306 | 135 | axiomatization where | 
| 17480 | 136 | idpeelB: "[| !!x. f(x) : P(x,x) |] ==> idpeel(ideq(a),f) = f(a) : P(a,a)" | 
| 0 | 137 | |
| 51306 | 138 | axiomatization where | 
| 139 | fstB: "a:P ==> fst(<a,b>) = a : P" and | |
| 140 | sndB: "b:Q ==> snd(<a,b>) = b : Q" and | |
| 17480 | 141 | pairEC: "p:P&Q ==> p = <fst(p),snd(p)> : P&Q" | 
| 0 | 142 | |
| 51306 | 143 | axiomatization where | 
| 144 | whenBinl: "[| a:P; !!x. x:P ==> f(x) : Q |] ==> when(inl(a),f,g) = f(a) : Q" and | |
| 145 | whenBinr: "[| b:P; !!x. x:P ==> g(x) : Q |] ==> when(inr(b),f,g) = g(b) : Q" and | |
| 17480 | 146 | plusEC: "a:P|Q ==> when(a,%x. inl(x),%y. inr(y)) = a : P|Q" | 
| 0 | 147 | |
| 51306 | 148 | axiomatization where | 
| 149 | applyB: "[| a:P; !!x. x:P ==> b(x) : Q |] ==> (lam x. b(x)) ` a = b(a) : Q" and | |
| 17480 | 150 | funEC: "f:P ==> f = lam x. f`x : P" | 
| 0 | 151 | |
| 51306 | 152 | axiomatization where | 
| 17480 | 153 | specB: "[| !!x. f(x) : P(x) |] ==> (all x. f(x)) ^ a = f(a) : P(a)" | 
| 0 | 154 | |
| 155 | ||
| 156 | (**** Definitions ****) | |
| 157 | ||
| 62147 | 158 | definition Not :: "o => o"  ("~ _" [40] 40)
 | 
| 159 | where not_def: "~P == P-->False" | |
| 160 | ||
| 161 | definition iff :: "[o,o] => o" (infixr "<->" 25) | |
| 162 | where "P<->Q == (P-->Q) & (Q-->P)" | |
| 0 | 163 | |
| 164 | (*Unique existence*) | |
| 62147 | 165 | definition Ex1 :: "('a => o) => o"  (binder "EX! " 10)
 | 
| 166 | where ex1_def: "EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)" | |
| 0 | 167 | |
| 168 | (*Rewriting -- special constants to flag normalized terms and formulae*) | |
| 51306 | 169 | axiomatization where | 
| 170 | norm_eq: "nrm : norm(x) = x" and | |
| 17480 | 171 | NORM_iff: "NRM : NORM(P) <-> P" | 
| 172 | ||
| 26322 | 173 | (*** Sequent-style elimination rules for & --> and ALL ***) | 
| 174 | ||
| 61337 | 175 | schematic_goal conjE: | 
| 26322 | 176 | assumes "p:P&Q" | 
| 177 | and "!!x y.[| x:P; y:Q |] ==> f(x,y):R" | |
| 178 | shows "?a:R" | |
| 179 | apply (rule assms(2)) | |
| 180 | apply (rule conjunct1 [OF assms(1)]) | |
| 181 | apply (rule conjunct2 [OF assms(1)]) | |
| 182 | done | |
| 183 | ||
| 61337 | 184 | schematic_goal impE: | 
| 26322 | 185 | assumes "p:P-->Q" | 
| 186 | and "q:P" | |
| 187 | and "!!x. x:Q ==> r(x):R" | |
| 188 | shows "?p:R" | |
| 189 | apply (rule assms mp)+ | |
| 190 | done | |
| 191 | ||
| 61337 | 192 | schematic_goal allE: | 
| 26322 | 193 | assumes "p:ALL x. P(x)" | 
| 194 | and "!!y. y:P(x) ==> q(y):R" | |
| 195 | shows "?p:R" | |
| 196 | apply (rule assms spec)+ | |
| 197 | done | |
| 198 | ||
| 199 | (*Duplicates the quantifier; for use with eresolve_tac*) | |
| 61337 | 200 | schematic_goal all_dupE: | 
| 26322 | 201 | assumes "p:ALL x. P(x)" | 
| 202 | and "!!y z.[| y:P(x); z:ALL x. P(x) |] ==> q(y,z):R" | |
| 203 | shows "?p:R" | |
| 204 | apply (rule assms spec)+ | |
| 205 | done | |
| 206 | ||
| 207 | ||
| 208 | (*** Negation rules, which translate between ~P and P-->False ***) | |
| 209 | ||
| 61337 | 210 | schematic_goal notI: | 
| 26322 | 211 | assumes "!!x. x:P ==> q(x):False" | 
| 212 | shows "?p:~P" | |
| 213 | unfolding not_def | |
| 214 | apply (assumption | rule assms impI)+ | |
| 215 | done | |
| 216 | ||
| 61337 | 217 | schematic_goal notE: "p:~P \<Longrightarrow> q:P \<Longrightarrow> ?p:R" | 
| 26322 | 218 | unfolding not_def | 
| 219 | apply (drule (1) mp) | |
| 220 | apply (erule FalseE) | |
| 221 | done | |
| 222 | ||
| 223 | (*This is useful with the special implication rules for each kind of P. *) | |
| 61337 | 224 | schematic_goal not_to_imp: | 
| 26322 | 225 | assumes "p:~P" | 
| 226 | and "!!x. x:(P-->False) ==> q(x):Q" | |
| 227 | shows "?p:Q" | |
| 228 | apply (assumption | rule assms impI notE)+ | |
| 229 | done | |
| 230 | ||
| 231 | (* For substitution int an assumption P, reduce Q to P-->Q, substitute into | |
| 27150 | 232 | this implication, then apply impI to move P back into the assumptions.*) | 
| 61337 | 233 | schematic_goal rev_mp: "[| p:P; q:P --> Q |] ==> ?p:Q" | 
| 26322 | 234 | apply (assumption | rule mp)+ | 
| 235 | done | |
| 236 | ||
| 237 | ||
| 238 | (*Contrapositive of an inference rule*) | |
| 61337 | 239 | schematic_goal contrapos: | 
| 26322 | 240 | assumes major: "p:~Q" | 
| 241 | and minor: "!!y. y:P==>q(y):Q" | |
| 242 | shows "?a:~P" | |
| 243 | apply (rule major [THEN notE, THEN notI]) | |
| 244 | apply (erule minor) | |
| 245 | done | |
| 246 | ||
| 247 | (** Unique assumption tactic. | |
| 248 | Ignores proof objects. | |
| 249 | Fails unless one assumption is equal and exactly one is unifiable | |
| 250 | **) | |
| 251 | ||
| 60770 | 252 | ML \<open> | 
| 26322 | 253 | local | 
| 74301 | 254 | fun discard_proof \<^Const_>\<open>Proof for P _\<close> = P; | 
| 26322 | 255 | in | 
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 256 | fun uniq_assume_tac ctxt = | 
| 26322 | 257 | SUBGOAL | 
| 258 | (fn (prem,i) => | |
| 259 | let val hyps = map discard_proof (Logic.strip_assums_hyp prem) | |
| 260 | and concl = discard_proof (Logic.strip_assums_concl prem) | |
| 261 | in | |
| 262 | if exists (fn hyp => hyp aconv concl) hyps | |
| 67405 
e9ab4ad7bd15
uniform use of Standard ML op-infix -- eliminated warnings;
 wenzelm parents: 
67399diff
changeset | 263 | then case distinct (op =) (filter (fn hyp => Term.could_unify (hyp, concl)) hyps) of | 
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 264 | [_] => assume_tac ctxt i | 
| 26322 | 265 | | _ => no_tac | 
| 266 | else no_tac | |
| 267 | end); | |
| 268 | end; | |
| 60770 | 269 | \<close> | 
| 26322 | 270 | |
| 271 | ||
| 272 | (*** Modus Ponens Tactics ***) | |
| 273 | ||
| 274 | (*Finds P-->Q and P in the assumptions, replaces implication by Q *) | |
| 60770 | 275 | ML \<open> | 
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 276 | fun mp_tac ctxt i = | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
58963diff
changeset | 277 |     eresolve_tac ctxt [@{thm notE}, make_elim @{thm mp}] i  THEN  assume_tac ctxt i
 | 
| 60770 | 278 | \<close> | 
| 59529 | 279 | method_setup mp = \<open>Scan.succeed (SIMPLE_METHOD' o mp_tac)\<close> | 
| 26322 | 280 | |
| 281 | (*Like mp_tac but instantiates no variables*) | |
| 60770 | 282 | ML \<open> | 
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 283 | fun int_uniq_mp_tac ctxt i = | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
58963diff
changeset | 284 |     eresolve_tac ctxt [@{thm notE}, @{thm impE}] i  THEN  uniq_assume_tac ctxt i
 | 
| 60770 | 285 | \<close> | 
| 26322 | 286 | |
| 287 | ||
| 288 | (*** If-and-only-if ***) | |
| 289 | ||
| 61337 | 290 | schematic_goal iffI: | 
| 26322 | 291 | assumes "!!x. x:P ==> q(x):Q" | 
| 292 | and "!!x. x:Q ==> r(x):P" | |
| 293 | shows "?p:P<->Q" | |
| 294 | unfolding iff_def | |
| 295 | apply (assumption | rule assms conjI impI)+ | |
| 296 | done | |
| 297 | ||
| 298 | ||
| 61337 | 299 | schematic_goal iffE: | 
| 26322 | 300 | assumes "p:P <-> Q" | 
| 301 | and "!!x y.[| x:P-->Q; y:Q-->P |] ==> q(x,y):R" | |
| 302 | shows "?p:R" | |
| 303 | apply (rule conjE) | |
| 304 | apply (rule assms(1) [unfolded iff_def]) | |
| 305 | apply (rule assms(2)) | |
| 306 | apply assumption+ | |
| 307 | done | |
| 308 | ||
| 309 | (* Destruct rules for <-> similar to Modus Ponens *) | |
| 310 | ||
| 61337 | 311 | schematic_goal iffD1: "[| p:P <-> Q; q:P |] ==> ?p:Q" | 
| 26322 | 312 | unfolding iff_def | 
| 313 | apply (rule conjunct1 [THEN mp], assumption+) | |
| 314 | done | |
| 315 | ||
| 61337 | 316 | schematic_goal iffD2: "[| p:P <-> Q; q:Q |] ==> ?p:P" | 
| 26322 | 317 | unfolding iff_def | 
| 318 | apply (rule conjunct2 [THEN mp], assumption+) | |
| 319 | done | |
| 320 | ||
| 61337 | 321 | schematic_goal iff_refl: "?p:P <-> P" | 
| 26322 | 322 | apply (rule iffI) | 
| 323 | apply assumption+ | |
| 324 | done | |
| 325 | ||
| 61337 | 326 | schematic_goal iff_sym: "p:Q <-> P ==> ?p:P <-> Q" | 
| 26322 | 327 | apply (erule iffE) | 
| 328 | apply (rule iffI) | |
| 329 | apply (erule (1) mp)+ | |
| 330 | done | |
| 331 | ||
| 61337 | 332 | schematic_goal iff_trans: "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R" | 
| 26322 | 333 | apply (rule iffI) | 
| 334 | apply (assumption | erule iffE | erule (1) impE)+ | |
| 335 | done | |
| 336 | ||
| 337 | (*** Unique existence. NOTE THAT the following 2 quantifications | |
| 338 | EX!x such that [EX!y such that P(x,y)] (sequential) | |
| 339 | EX!x,y such that P(x,y) (simultaneous) | |
| 340 | do NOT mean the same thing. The parser treats EX!x y.P(x,y) as sequential. | |
| 341 | ***) | |
| 342 | ||
| 61337 | 343 | schematic_goal ex1I: | 
| 26322 | 344 | assumes "p:P(a)" | 
| 345 | and "!!x u. u:P(x) ==> f(u) : x=a" | |
| 346 | shows "?p:EX! x. P(x)" | |
| 347 | unfolding ex1_def | |
| 348 | apply (assumption | rule assms exI conjI allI impI)+ | |
| 349 | done | |
| 350 | ||
| 61337 | 351 | schematic_goal ex1E: | 
| 26322 | 352 | assumes "p:EX! x. P(x)" | 
| 353 | and "!!x u v. [| u:P(x); v:ALL y. P(y) --> y=x |] ==> f(x,u,v):R" | |
| 354 | shows "?a : R" | |
| 355 | apply (insert assms(1) [unfolded ex1_def]) | |
| 356 | apply (erule exE conjE | assumption | rule assms(1))+ | |
| 29305 | 357 | apply (erule assms(2), assumption) | 
| 26322 | 358 | done | 
| 359 | ||
| 360 | ||
| 361 | (*** <-> congruence rules for simplification ***) | |
| 362 | ||
| 363 | (*Use iffE on a premise. For conj_cong, imp_cong, all_cong, ex_cong*) | |
| 60770 | 364 | ML \<open> | 
| 59529 | 365 | fun iff_tac ctxt prems i = | 
| 366 |     resolve_tac ctxt (prems RL [@{thm iffE}]) i THEN
 | |
| 367 |     REPEAT1 (eresolve_tac ctxt [asm_rl, @{thm mp}] i)
 | |
| 60770 | 368 | \<close> | 
| 26322 | 369 | |
| 59529 | 370 | method_setup iff = | 
| 371 | \<open>Attrib.thms >> (fn prems => fn ctxt => SIMPLE_METHOD' (iff_tac ctxt prems))\<close> | |
| 372 | ||
| 61337 | 373 | schematic_goal conj_cong: | 
| 26322 | 374 | assumes "p:P <-> P'" | 
| 375 | and "!!x. x:P' ==> q(x):Q <-> Q'" | |
| 376 | shows "?p:(P&Q) <-> (P'&Q')" | |
| 377 | apply (insert assms(1)) | |
| 59529 | 378 | apply (assumption | rule iffI conjI | erule iffE conjE mp | iff assms)+ | 
| 26322 | 379 | done | 
| 380 | ||
| 61337 | 381 | schematic_goal disj_cong: | 
| 26322 | 382 | "[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P|Q) <-> (P'|Q')" | 
| 59529 | 383 | apply (erule iffE disjE disjI1 disjI2 | assumption | rule iffI | mp)+ | 
| 26322 | 384 | done | 
| 385 | ||
| 61337 | 386 | schematic_goal imp_cong: | 
| 26322 | 387 | assumes "p:P <-> P'" | 
| 388 | and "!!x. x:P' ==> q(x):Q <-> Q'" | |
| 389 | shows "?p:(P-->Q) <-> (P'-->Q')" | |
| 390 | apply (insert assms(1)) | |
| 59529 | 391 | apply (assumption | rule iffI impI | erule iffE | mp | iff assms)+ | 
| 26322 | 392 | done | 
| 393 | ||
| 61337 | 394 | schematic_goal iff_cong: | 
| 26322 | 395 | "[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P<->Q) <-> (P'<->Q')" | 
| 59529 | 396 | apply (erule iffE | assumption | rule iffI | mp)+ | 
| 26322 | 397 | done | 
| 398 | ||
| 61337 | 399 | schematic_goal not_cong: | 
| 26322 | 400 | "p:P <-> P' ==> ?p:~P <-> ~P'" | 
| 59529 | 401 | apply (assumption | rule iffI notI | mp | erule iffE notE)+ | 
| 26322 | 402 | done | 
| 403 | ||
| 61337 | 404 | schematic_goal all_cong: | 
| 26322 | 405 | assumes "!!x. f(x):P(x) <-> Q(x)" | 
| 406 | shows "?p:(ALL x. P(x)) <-> (ALL x. Q(x))" | |
| 59529 | 407 | apply (assumption | rule iffI allI | mp | erule allE | iff assms)+ | 
| 26322 | 408 | done | 
| 409 | ||
| 61337 | 410 | schematic_goal ex_cong: | 
| 26322 | 411 | assumes "!!x. f(x):P(x) <-> Q(x)" | 
| 412 | shows "?p:(EX x. P(x)) <-> (EX x. Q(x))" | |
| 59529 | 413 | apply (erule exE | assumption | rule iffI exI | mp | iff assms)+ | 
| 26322 | 414 | done | 
| 415 | ||
| 416 | (*NOT PROVED | |
| 56199 | 417 | ML_Thms.bind_thm ("ex1_cong", prove_goal (the_context ())
 | 
| 26322 | 418 | "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX! x.P(x)) <-> (EX! x.Q(x))" | 
| 419 | (fn prems => | |
| 420 | [ (REPEAT (eresolve_tac [ex1E, spec RS mp] 1 ORELSE ares_tac [iffI,ex1I] 1 | |
| 421 | ORELSE mp_tac 1 | |
| 422 | ORELSE iff_tac prems 1)) ])) | |
| 423 | *) | |
| 424 | ||
| 425 | (*** Equality rules ***) | |
| 426 | ||
| 427 | lemmas refl = ieqI | |
| 428 | ||
| 61337 | 429 | schematic_goal subst: | 
| 26322 | 430 | assumes prem1: "p:a=b" | 
| 431 | and prem2: "q:P(a)" | |
| 432 | shows "?p : P(b)" | |
| 433 | apply (rule prem2 [THEN rev_mp]) | |
| 434 | apply (rule prem1 [THEN ieqE]) | |
| 435 | apply (rule impI) | |
| 436 | apply assumption | |
| 437 | done | |
| 438 | ||
| 61337 | 439 | schematic_goal sym: "q:a=b ==> ?c:b=a" | 
| 26322 | 440 | apply (erule subst) | 
| 441 | apply (rule refl) | |
| 442 | done | |
| 443 | ||
| 61337 | 444 | schematic_goal trans: "[| p:a=b; q:b=c |] ==> ?d:a=c" | 
| 26322 | 445 | apply (erule (1) subst) | 
| 446 | done | |
| 447 | ||
| 448 | (** ~ b=a ==> ~ a=b **) | |
| 61337 | 449 | schematic_goal not_sym: "p:~ b=a ==> ?q:~ a=b" | 
| 26322 | 450 | apply (erule contrapos) | 
| 451 | apply (erule sym) | |
| 452 | done | |
| 453 | ||
| 61337 | 454 | schematic_goal ssubst: "p:b=a \<Longrightarrow> q:P(a) \<Longrightarrow> ?p:P(b)" | 
| 45594 | 455 | apply (drule sym) | 
| 456 | apply (erule subst) | |
| 457 | apply assumption | |
| 458 | done | |
| 26322 | 459 | |
| 460 | (*A special case of ex1E that would otherwise need quantifier expansion*) | |
| 61337 | 461 | schematic_goal ex1_equalsE: "[| p:EX! x. P(x); q:P(a); r:P(b) |] ==> ?d:a=b" | 
| 26322 | 462 | apply (erule ex1E) | 
| 463 | apply (rule trans) | |
| 464 | apply (rule_tac [2] sym) | |
| 465 | apply (assumption | erule spec [THEN mp])+ | |
| 466 | done | |
| 467 | ||
| 468 | (** Polymorphic congruence rules **) | |
| 469 | ||
| 61337 | 470 | schematic_goal subst_context: "[| p:a=b |] ==> ?d:t(a)=t(b)" | 
| 26322 | 471 | apply (erule ssubst) | 
| 472 | apply (rule refl) | |
| 473 | done | |
| 474 | ||
| 61337 | 475 | schematic_goal subst_context2: "[| p:a=b; q:c=d |] ==> ?p:t(a,c)=t(b,d)" | 
| 26322 | 476 | apply (erule ssubst)+ | 
| 477 | apply (rule refl) | |
| 478 | done | |
| 479 | ||
| 61337 | 480 | schematic_goal subst_context3: "[| p:a=b; q:c=d; r:e=f |] ==> ?p:t(a,c,e)=t(b,d,f)" | 
| 26322 | 481 | apply (erule ssubst)+ | 
| 482 | apply (rule refl) | |
| 483 | done | |
| 484 | ||
| 485 | (*Useful with eresolve_tac for proving equalties from known equalities. | |
| 486 | a = b | |
| 487 | | | | |
| 488 | c = d *) | |
| 61337 | 489 | schematic_goal box_equals: "[| p:a=b; q:a=c; r:b=d |] ==> ?p:c=d" | 
| 26322 | 490 | apply (rule trans) | 
| 491 | apply (rule trans) | |
| 492 | apply (rule sym) | |
| 493 | apply assumption+ | |
| 494 | done | |
| 495 | ||
| 496 | (*Dual of box_equals: for proving equalities backwards*) | |
| 61337 | 497 | schematic_goal simp_equals: "[| p:a=c; q:b=d; r:c=d |] ==> ?p:a=b" | 
| 26322 | 498 | apply (rule trans) | 
| 499 | apply (rule trans) | |
| 500 | apply (assumption | rule sym)+ | |
| 501 | done | |
| 502 | ||
| 503 | (** Congruence rules for predicate letters **) | |
| 504 | ||
| 61337 | 505 | schematic_goal pred1_cong: "p:a=a' ==> ?p:P(a) <-> P(a')" | 
| 26322 | 506 | apply (rule iffI) | 
| 60770 | 507 | apply (tactic \<open> | 
| 69593 | 508 |      DEPTH_SOLVE (assume_tac \<^context> 1 ORELSE eresolve_tac \<^context> [@{thm subst}, @{thm ssubst}] 1)\<close>)
 | 
| 26322 | 509 | done | 
| 510 | ||
| 61337 | 511 | schematic_goal pred2_cong: "[| p:a=a'; q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')" | 
| 26322 | 512 | apply (rule iffI) | 
| 60770 | 513 | apply (tactic \<open> | 
| 69593 | 514 |      DEPTH_SOLVE (assume_tac \<^context> 1 ORELSE eresolve_tac \<^context> [@{thm subst}, @{thm ssubst}] 1)\<close>)
 | 
| 26322 | 515 | done | 
| 516 | ||
| 61337 | 517 | schematic_goal pred3_cong: "[| p:a=a'; q:b=b'; r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')" | 
| 26322 | 518 | apply (rule iffI) | 
| 60770 | 519 | apply (tactic \<open> | 
| 69593 | 520 |      DEPTH_SOLVE (assume_tac \<^context> 1 ORELSE eresolve_tac \<^context> [@{thm subst}, @{thm ssubst}] 1)\<close>)
 | 
| 26322 | 521 | done | 
| 522 | ||
| 27152 
192954a9a549
changed pred_congs: merely cover pred1_cong pred2_cong pred3_cong;
 wenzelm parents: 
27150diff
changeset | 523 | lemmas pred_congs = pred1_cong pred2_cong pred3_cong | 
| 26322 | 524 | |
| 525 | (*special case for the equality predicate!*) | |
| 67399 | 526 | lemmas eq_cong = pred2_cong [where P = "(=)"] | 
| 26322 | 527 | |
| 528 | ||
| 529 | (*** Simplifications of assumed implications. | |
| 530 | Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE | |
| 531 | used with mp_tac (restricted to atomic formulae) is COMPLETE for | |
| 532 | intuitionistic propositional logic. See | |
| 533 | R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic | |
| 534 | (preprint, University of St Andrews, 1991) ***) | |
| 535 | ||
| 61337 | 536 | schematic_goal conj_impE: | 
| 26322 | 537 | assumes major: "p:(P&Q)-->S" | 
| 538 | and minor: "!!x. x:P-->(Q-->S) ==> q(x):R" | |
| 539 | shows "?p:R" | |
| 540 | apply (assumption | rule conjI impI major [THEN mp] minor)+ | |
| 541 | done | |
| 542 | ||
| 61337 | 543 | schematic_goal disj_impE: | 
| 26322 | 544 | assumes major: "p:(P|Q)-->S" | 
| 545 | and minor: "!!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R" | |
| 546 | shows "?p:R" | |
| 69593 | 547 | apply (tactic \<open>DEPTH_SOLVE (assume_tac \<^context> 1 ORELSE | 
| 548 |       resolve_tac \<^context> [@{thm disjI1}, @{thm disjI2}, @{thm impI},
 | |
| 60770 | 549 |         @{thm major} RS @{thm mp}, @{thm minor}] 1)\<close>)
 | 
| 26322 | 550 | done | 
| 551 | ||
| 552 | (*Simplifies the implication. Classical version is stronger. | |
| 553 | Still UNSAFE since Q must be provable -- backtracking needed. *) | |
| 61337 | 554 | schematic_goal imp_impE: | 
| 26322 | 555 | assumes major: "p:(P-->Q)-->S" | 
| 556 | and r1: "!!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q" | |
| 557 | and r2: "!!x. x:S ==> r(x):R" | |
| 558 | shows "?p:R" | |
| 559 | apply (assumption | rule impI major [THEN mp] r1 r2)+ | |
| 560 | done | |
| 561 | ||
| 562 | (*Simplifies the implication. Classical version is stronger. | |
| 563 | Still UNSAFE since ~P must be provable -- backtracking needed. *) | |
| 61337 | 564 | schematic_goal not_impE: | 
| 26322 | 565 | assumes major: "p:~P --> S" | 
| 566 | and r1: "!!y. y:P ==> q(y):False" | |
| 567 | and r2: "!!y. y:S ==> r(y):R" | |
| 568 | shows "?p:R" | |
| 569 | apply (assumption | rule notI impI major [THEN mp] r1 r2)+ | |
| 570 | done | |
| 571 | ||
| 572 | (*Simplifies the implication. UNSAFE. *) | |
| 61337 | 573 | schematic_goal iff_impE: | 
| 26322 | 574 | assumes major: "p:(P<->Q)-->S" | 
| 575 | and r1: "!!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q" | |
| 576 | and r2: "!!x y.[| x:Q; y:P-->S |] ==> r(x,y):P" | |
| 577 | and r3: "!!x. x:S ==> s(x):R" | |
| 578 | shows "?p:R" | |
| 579 | apply (assumption | rule iffI impI major [THEN mp] r1 r2 r3)+ | |
| 580 | done | |
| 581 | ||
| 582 | (*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*) | |
| 61337 | 583 | schematic_goal all_impE: | 
| 26322 | 584 | assumes major: "p:(ALL x. P(x))-->S" | 
| 585 | and r1: "!!x. q:P(x)" | |
| 586 | and r2: "!!y. y:S ==> r(y):R" | |
| 587 | shows "?p:R" | |
| 588 | apply (assumption | rule allI impI major [THEN mp] r1 r2)+ | |
| 589 | done | |
| 590 | ||
| 591 | (*Unsafe: (EX x.P(x))-->S is equivalent to ALL x.P(x)-->S. *) | |
| 61337 | 592 | schematic_goal ex_impE: | 
| 26322 | 593 | assumes major: "p:(EX x. P(x))-->S" | 
| 594 | and r: "!!y. y:P(a)-->S ==> q(y):R" | |
| 595 | shows "?p:R" | |
| 596 | apply (assumption | rule exI impI major [THEN mp] r)+ | |
| 597 | done | |
| 598 | ||
| 599 | ||
| 61337 | 600 | schematic_goal rev_cut_eq: | 
| 26322 | 601 | assumes "p:a=b" | 
| 602 | and "!!x. x:a=b ==> f(x):R" | |
| 603 | shows "?p:R" | |
| 604 | apply (rule assms)+ | |
| 605 | done | |
| 606 | ||
| 607 | lemma thin_refl: "!!X. [|p:x=x; PROP W|] ==> PROP W" . | |
| 608 | ||
| 69605 | 609 | ML_file \<open>hypsubst.ML\<close> | 
| 26322 | 610 | |
| 60770 | 611 | ML \<open> | 
| 42799 | 612 | structure Hypsubst = Hypsubst | 
| 613 | ( | |
| 26322 | 614 | (*Take apart an equality judgement; otherwise raise Match!*) | 
| 74375 | 615 | fun dest_eq \<^Const_>\<open>Proof for \<^Const_>\<open>eq _ for t u\<close> _\<close> = (t, u); | 
| 26322 | 616 | |
| 617 |   val imp_intr = @{thm impI}
 | |
| 618 | ||
| 619 | (*etac rev_cut_eq moves an equality to be the last premise. *) | |
| 620 |   val rev_cut_eq = @{thm rev_cut_eq}
 | |
| 621 | ||
| 622 |   val rev_mp = @{thm rev_mp}
 | |
| 623 |   val subst = @{thm subst}
 | |
| 624 |   val sym = @{thm sym}
 | |
| 625 |   val thin_refl = @{thm thin_refl}
 | |
| 42799 | 626 | ); | 
| 26322 | 627 | open Hypsubst; | 
| 60770 | 628 | \<close> | 
| 26322 | 629 | |
| 69605 | 630 | ML_file \<open>intprover.ML\<close> | 
| 26322 | 631 | |
| 632 | ||
| 633 | (*** Rewrite rules ***) | |
| 634 | ||
| 61337 | 635 | schematic_goal conj_rews: | 
| 26322 | 636 | "?p1 : P & True <-> P" | 
| 637 | "?p2 : True & P <-> P" | |
| 638 | "?p3 : P & False <-> False" | |
| 639 | "?p4 : False & P <-> False" | |
| 640 | "?p5 : P & P <-> P" | |
| 641 | "?p6 : P & ~P <-> False" | |
| 642 | "?p7 : ~P & P <-> False" | |
| 643 | "?p8 : (P & Q) & R <-> P & (Q & R)" | |
| 69593 | 644 | apply (tactic \<open>fn st => IntPr.fast_tac \<^context> 1 st\<close>)+ | 
| 26322 | 645 | done | 
| 646 | ||
| 61337 | 647 | schematic_goal disj_rews: | 
| 26322 | 648 | "?p1 : P | True <-> True" | 
| 649 | "?p2 : True | P <-> True" | |
| 650 | "?p3 : P | False <-> P" | |
| 651 | "?p4 : False | P <-> P" | |
| 652 | "?p5 : P | P <-> P" | |
| 653 | "?p6 : (P | Q) | R <-> P | (Q | R)" | |
| 69593 | 654 | apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ | 
| 26322 | 655 | done | 
| 656 | ||
| 61337 | 657 | schematic_goal not_rews: | 
| 26322 | 658 | "?p1 : ~ False <-> True" | 
| 659 | "?p2 : ~ True <-> False" | |
| 69593 | 660 | apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ | 
| 26322 | 661 | done | 
| 662 | ||
| 61337 | 663 | schematic_goal imp_rews: | 
| 26322 | 664 | "?p1 : (P --> False) <-> ~P" | 
| 665 | "?p2 : (P --> True) <-> True" | |
| 666 | "?p3 : (False --> P) <-> True" | |
| 667 | "?p4 : (True --> P) <-> P" | |
| 668 | "?p5 : (P --> P) <-> True" | |
| 669 | "?p6 : (P --> ~P) <-> ~P" | |
| 69593 | 670 | apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ | 
| 26322 | 671 | done | 
| 672 | ||
| 61337 | 673 | schematic_goal iff_rews: | 
| 26322 | 674 | "?p1 : (True <-> P) <-> P" | 
| 675 | "?p2 : (P <-> True) <-> P" | |
| 676 | "?p3 : (P <-> P) <-> True" | |
| 677 | "?p4 : (False <-> P) <-> ~P" | |
| 678 | "?p5 : (P <-> False) <-> ~P" | |
| 69593 | 679 | apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ | 
| 26322 | 680 | done | 
| 681 | ||
| 61337 | 682 | schematic_goal quant_rews: | 
| 26322 | 683 | "?p1 : (ALL x. P) <-> P" | 
| 684 | "?p2 : (EX x. P) <-> P" | |
| 69593 | 685 | apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ | 
| 26322 | 686 | done | 
| 687 | ||
| 688 | (*These are NOT supplied by default!*) | |
| 61337 | 689 | schematic_goal distrib_rews1: | 
| 26322 | 690 | "?p1 : ~(P|Q) <-> ~P & ~Q" | 
| 691 | "?p2 : P & (Q | R) <-> P&Q | P&R" | |
| 692 | "?p3 : (Q | R) & P <-> Q&P | R&P" | |
| 693 | "?p4 : (P | Q --> R) <-> (P --> R) & (Q --> R)" | |
| 69593 | 694 | apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ | 
| 26322 | 695 | done | 
| 696 | ||
| 61337 | 697 | schematic_goal distrib_rews2: | 
| 26322 | 698 | "?p1 : ~(EX x. NORM(P(x))) <-> (ALL x. ~NORM(P(x)))" | 
| 699 | "?p2 : ((EX x. NORM(P(x))) --> Q) <-> (ALL x. NORM(P(x)) --> Q)" | |
| 700 | "?p3 : (EX x. NORM(P(x))) & NORM(Q) <-> (EX x. NORM(P(x)) & NORM(Q))" | |
| 701 | "?p4 : NORM(Q) & (EX x. NORM(P(x))) <-> (EX x. NORM(Q) & NORM(P(x)))" | |
| 69593 | 702 | apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>)+ | 
| 26322 | 703 | done | 
| 704 | ||
| 705 | lemmas distrib_rews = distrib_rews1 distrib_rews2 | |
| 706 | ||
| 61337 | 707 | schematic_goal P_Imp_P_iff_T: "p:P ==> ?p:(P <-> True)" | 
| 69593 | 708 | apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>) | 
| 26322 | 709 | done | 
| 710 | ||
| 61337 | 711 | schematic_goal not_P_imp_P_iff_F: "p:~P ==> ?p:(P <-> False)" | 
| 69593 | 712 | apply (tactic \<open>IntPr.fast_tac \<^context> 1\<close>) | 
| 26322 | 713 | done | 
| 0 | 714 | |
| 715 | end |