author | wenzelm |
Sun, 02 Mar 2014 18:20:08 +0100 | |
changeset 55833 | 6fe16c8a6474 |
parent 55337 | 5d45fb978d5a |
child 57512 | cc97b347b301 |
permissions | -rw-r--r-- |
51173 | 1 |
(* Title: HOL/Number_Theory/Eratosthenes.thy |
2 |
Author: Florian Haftmann, TU Muenchen |
|
3 |
*) |
|
4 |
||
5 |
header {* The sieve of Eratosthenes *} |
|
6 |
||
7 |
theory Eratosthenes |
|
52379 | 8 |
imports Main Primes |
51173 | 9 |
begin |
10 |
||
52379 | 11 |
|
51173 | 12 |
subsection {* Preliminary: strict divisibility *} |
13 |
||
14 |
context dvd |
|
15 |
begin |
|
16 |
||
17 |
abbreviation dvd_strict :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd'_strict" 50) |
|
18 |
where |
|
19 |
"b dvd_strict a \<equiv> b dvd a \<and> \<not> a dvd b" |
|
20 |
||
21 |
end |
|
22 |
||
23 |
subsection {* Main corpus *} |
|
24 |
||
25 |
text {* The sieve is modelled as a list of booleans, where @{const False} means \emph{marked out}. *} |
|
26 |
||
27 |
type_synonym marks = "bool list" |
|
28 |
||
29 |
definition numbers_of_marks :: "nat \<Rightarrow> marks \<Rightarrow> nat set" |
|
30 |
where |
|
31 |
"numbers_of_marks n bs = fst ` {x \<in> set (enumerate n bs). snd x}" |
|
32 |
||
33 |
lemma numbers_of_marks_simps [simp, code]: |
|
34 |
"numbers_of_marks n [] = {}" |
|
35 |
"numbers_of_marks n (True # bs) = insert n (numbers_of_marks (Suc n) bs)" |
|
36 |
"numbers_of_marks n (False # bs) = numbers_of_marks (Suc n) bs" |
|
37 |
by (auto simp add: numbers_of_marks_def intro!: image_eqI) |
|
38 |
||
39 |
lemma numbers_of_marks_Suc: |
|
40 |
"numbers_of_marks (Suc n) bs = Suc ` numbers_of_marks n bs" |
|
41 |
by (auto simp add: numbers_of_marks_def enumerate_Suc_eq image_iff Bex_def) |
|
42 |
||
43 |
lemma numbers_of_marks_replicate_False [simp]: |
|
44 |
"numbers_of_marks n (replicate m False) = {}" |
|
45 |
by (auto simp add: numbers_of_marks_def enumerate_replicate_eq) |
|
46 |
||
47 |
lemma numbers_of_marks_replicate_True [simp]: |
|
48 |
"numbers_of_marks n (replicate m True) = {n..<n+m}" |
|
49 |
by (auto simp add: numbers_of_marks_def enumerate_replicate_eq image_def) |
|
50 |
||
51 |
lemma in_numbers_of_marks_eq: |
|
52 |
"m \<in> numbers_of_marks n bs \<longleftrightarrow> m \<in> {n..<n + length bs} \<and> bs ! (m - n)" |
|
53 |
by (simp add: numbers_of_marks_def in_set_enumerate_eq image_iff add_commute) |
|
54 |
||
52379 | 55 |
lemma sorted_list_of_set_numbers_of_marks: |
56 |
"sorted_list_of_set (numbers_of_marks n bs) = map fst (filter snd (enumerate n bs))" |
|
57 |
by (auto simp add: numbers_of_marks_def distinct_map |
|
58 |
intro!: sorted_filter distinct_filter inj_onI sorted_distinct_set_unique) |
|
59 |
||
51173 | 60 |
|
61 |
text {* Marking out multiples in a sieve *} |
|
62 |
||
63 |
definition mark_out :: "nat \<Rightarrow> marks \<Rightarrow> marks" |
|
64 |
where |
|
65 |
"mark_out n bs = map (\<lambda>(q, b). b \<and> \<not> Suc n dvd Suc (Suc q)) (enumerate n bs)" |
|
66 |
||
67 |
lemma mark_out_Nil [simp]: |
|
68 |
"mark_out n [] = []" |
|
69 |
by (simp add: mark_out_def) |
|
70 |
||
71 |
lemma length_mark_out [simp]: |
|
72 |
"length (mark_out n bs) = length bs" |
|
73 |
by (simp add: mark_out_def) |
|
74 |
||
75 |
lemma numbers_of_marks_mark_out: |
|
76 |
"numbers_of_marks n (mark_out m bs) = {q \<in> numbers_of_marks n bs. \<not> Suc m dvd Suc q - n}" |
|
77 |
by (auto simp add: numbers_of_marks_def mark_out_def in_set_enumerate_eq image_iff |
|
54222 | 78 |
nth_enumerate_eq less_eq_dvd_minus) |
51173 | 79 |
|
80 |
||
81 |
text {* Auxiliary operation for efficient implementation *} |
|
82 |
||
83 |
definition mark_out_aux :: "nat \<Rightarrow> nat \<Rightarrow> marks \<Rightarrow> marks" |
|
84 |
where |
|
85 |
"mark_out_aux n m bs = |
|
86 |
map (\<lambda>(q, b). b \<and> (q < m + n \<or> \<not> Suc n dvd Suc (Suc q) + (n - m mod Suc n))) (enumerate n bs)" |
|
87 |
||
88 |
lemma mark_out_code [code]: |
|
89 |
"mark_out n bs = mark_out_aux n n bs" |
|
90 |
proof - |
|
91 |
{ fix a |
|
92 |
assume A: "Suc n dvd Suc (Suc a)" |
|
93 |
and B: "a < n + n" |
|
94 |
and C: "n \<le> a" |
|
95 |
have False |
|
96 |
proof (cases "n = 0") |
|
97 |
case True with A B C show False by simp |
|
98 |
next |
|
99 |
def m \<equiv> "Suc n" then have "m > 0" by simp |
|
100 |
case False then have "n > 0" by simp |
|
101 |
from A obtain q where q: "Suc (Suc a) = Suc n * q" by (rule dvdE) |
|
102 |
have "q > 0" |
|
103 |
proof (rule ccontr) |
|
104 |
assume "\<not> q > 0" |
|
105 |
with q show False by simp |
|
106 |
qed |
|
107 |
with `n > 0` have "Suc n * q \<ge> 2" by (auto simp add: gr0_conv_Suc) |
|
108 |
with q have a: "a = Suc n * q - 2" by simp |
|
109 |
with B have "q + n * q < n + n + 2" |
|
110 |
by auto |
|
111 |
then have "m * q < m * 2" by (simp add: m_def) |
|
112 |
with `m > 0` have "q < 2" by simp |
|
113 |
with `q > 0` have "q = 1" by simp |
|
114 |
with a have "a = n - 1" by simp |
|
115 |
with `n > 0` C show False by simp |
|
116 |
qed |
|
117 |
} note aux = this |
|
118 |
show ?thesis |
|
119 |
by (auto simp add: mark_out_def mark_out_aux_def in_set_enumerate_eq intro: aux) |
|
120 |
qed |
|
121 |
||
122 |
lemma mark_out_aux_simps [simp, code]: |
|
123 |
"mark_out_aux n m [] = []" (is ?thesis1) |
|
124 |
"mark_out_aux n 0 (b # bs) = False # mark_out_aux n n bs" (is ?thesis2) |
|
125 |
"mark_out_aux n (Suc m) (b # bs) = b # mark_out_aux n m bs" (is ?thesis3) |
|
126 |
proof - |
|
127 |
show ?thesis1 |
|
128 |
by (simp add: mark_out_aux_def) |
|
129 |
show ?thesis2 |
|
130 |
by (auto simp add: mark_out_code [symmetric] mark_out_aux_def mark_out_def |
|
54222 | 131 |
enumerate_Suc_eq in_set_enumerate_eq less_eq_dvd_minus) |
51173 | 132 |
{ def v \<equiv> "Suc m" and w \<equiv> "Suc n" |
133 |
fix q |
|
134 |
assume "m + n \<le> q" |
|
135 |
then obtain r where q: "q = m + n + r" by (auto simp add: le_iff_add) |
|
136 |
{ fix u |
|
137 |
from w_def have "u mod w < w" by simp |
|
138 |
then have "u + (w - u mod w) = w + (u - u mod w)" |
|
139 |
by simp |
|
140 |
then have "u + (w - u mod w) = w + u div w * w" |
|
141 |
by (simp add: div_mod_equality' [symmetric]) |
|
142 |
} |
|
143 |
then have "w dvd v + w + r + (w - v mod w) \<longleftrightarrow> w dvd m + w + r + (w - m mod w)" |
|
144 |
by (simp add: add_assoc add_left_commute [of m] add_left_commute [of v] |
|
145 |
dvd_plus_eq_left dvd_plus_eq_right) |
|
146 |
moreover from q have "Suc q = m + w + r" by (simp add: w_def) |
|
147 |
moreover from q have "Suc (Suc q) = v + w + r" by (simp add: v_def w_def) |
|
148 |
ultimately have "w dvd Suc (Suc (q + (w - v mod w))) \<longleftrightarrow> w dvd Suc (q + (w - m mod w))" |
|
149 |
by (simp only: add_Suc [symmetric]) |
|
150 |
then have "Suc n dvd Suc (Suc (Suc (q + n) - Suc m mod Suc n)) \<longleftrightarrow> |
|
151 |
Suc n dvd Suc (Suc (q + n - m mod Suc n))" |
|
152 |
by (simp add: v_def w_def Suc_diff_le trans_le_add2) |
|
153 |
} |
|
154 |
then show ?thesis3 |
|
155 |
by (auto simp add: mark_out_aux_def |
|
156 |
enumerate_Suc_eq in_set_enumerate_eq not_less) |
|
157 |
qed |
|
158 |
||
159 |
||
160 |
text {* Main entry point to sieve *} |
|
161 |
||
162 |
fun sieve :: "nat \<Rightarrow> marks \<Rightarrow> marks" |
|
163 |
where |
|
164 |
"sieve n [] = []" |
|
165 |
| "sieve n (False # bs) = False # sieve (Suc n) bs" |
|
166 |
| "sieve n (True # bs) = True # sieve (Suc n) (mark_out n bs)" |
|
167 |
||
168 |
text {* |
|
169 |
There are the following possible optimisations here: |
|
170 |
||
171 |
\begin{itemize} |
|
172 |
||
173 |
\item @{const sieve} can abort as soon as @{term n} is too big to let |
|
174 |
@{const mark_out} have any effect. |
|
175 |
||
176 |
\item Search for further primes can be given up as soon as the search |
|
177 |
position exceeds the square root of the maximum candidate. |
|
178 |
||
179 |
\end{itemize} |
|
180 |
||
181 |
This is left as an constructive exercise to the reader. |
|
182 |
*} |
|
183 |
||
184 |
lemma numbers_of_marks_sieve: |
|
185 |
"numbers_of_marks (Suc n) (sieve n bs) = |
|
186 |
{q \<in> numbers_of_marks (Suc n) bs. \<forall>m \<in> numbers_of_marks (Suc n) bs. \<not> m dvd_strict q}" |
|
187 |
proof (induct n bs rule: sieve.induct) |
|
188 |
case 1 show ?case by simp |
|
189 |
next |
|
190 |
case 2 then show ?case by simp |
|
191 |
next |
|
192 |
case (3 n bs) |
|
193 |
have aux: "\<And>M n. n \<in> Suc ` M \<longleftrightarrow> n > 0 \<and> n - 1 \<in> M" |
|
194 |
proof |
|
195 |
fix M and n |
|
196 |
assume "n \<in> Suc ` M" then show "n > 0 \<and> n - 1 \<in> M" by auto |
|
197 |
next |
|
198 |
fix M and n :: nat |
|
199 |
assume "n > 0 \<and> n - 1 \<in> M" |
|
200 |
then have "n > 0" and "n - 1 \<in> M" by auto |
|
201 |
then have "Suc (n - 1) \<in> Suc ` M" by blast |
|
202 |
with `n > 0` show "n \<in> Suc ` M" by simp |
|
203 |
qed |
|
204 |
{ fix m :: nat |
|
205 |
assume "Suc (Suc n) \<le> m" and "m dvd Suc n" |
|
206 |
from `m dvd Suc n` obtain q where "Suc n = m * q" .. |
|
207 |
with `Suc (Suc n) \<le> m` have "Suc (m * q) \<le> m" by simp |
|
208 |
then have "m * q < m" by arith |
|
209 |
then have "q = 0" by simp |
|
210 |
with `Suc n = m * q` have False by simp |
|
211 |
} note aux1 = this |
|
212 |
{ fix m q :: nat |
|
213 |
assume "\<forall>q>0. 1 < q \<longrightarrow> Suc n < q \<longrightarrow> q \<le> Suc (n + length bs) |
|
214 |
\<longrightarrow> bs ! (q - Suc (Suc n)) \<longrightarrow> \<not> Suc n dvd q \<longrightarrow> q dvd m \<longrightarrow> m dvd q" |
|
215 |
then have *: "\<And>q. Suc n < q \<Longrightarrow> q \<le> Suc (n + length bs) |
|
216 |
\<Longrightarrow> bs ! (q - Suc (Suc n)) \<Longrightarrow> \<not> Suc n dvd q \<Longrightarrow> q dvd m \<Longrightarrow> m dvd q" |
|
217 |
by auto |
|
218 |
assume "\<not> Suc n dvd m" and "q dvd m" |
|
219 |
then have "\<not> Suc n dvd q" by (auto elim: dvdE) |
|
220 |
moreover assume "Suc n < q" and "q \<le> Suc (n + length bs)" |
|
221 |
and "bs ! (q - Suc (Suc n))" |
|
222 |
moreover note `q dvd m` |
|
223 |
ultimately have "m dvd q" by (auto intro: *) |
|
224 |
} note aux2 = this |
|
225 |
from 3 show ?case |
|
226 |
apply (simp_all add: numbers_of_marks_mark_out numbers_of_marks_Suc Compr_image_eq inj_image_eq_iff |
|
227 |
in_numbers_of_marks_eq Ball_def imp_conjL aux) |
|
228 |
apply safe |
|
229 |
apply (simp_all add: less_diff_conv2 le_diff_conv2 dvd_minus_self not_less) |
|
230 |
apply (clarsimp dest!: aux1) |
|
231 |
apply (simp add: Suc_le_eq less_Suc_eq_le) |
|
232 |
apply (rule aux2) apply (clarsimp dest!: aux1)+ |
|
233 |
done |
|
234 |
qed |
|
235 |
||
236 |
||
52379 | 237 |
text {* Relation of the sieve algorithm to actual primes *} |
51173 | 238 |
|
52379 | 239 |
definition primes_upto :: "nat \<Rightarrow> nat list" |
51173 | 240 |
where |
52379 | 241 |
"primes_upto n = sorted_list_of_set {m. m \<le> n \<and> prime m}" |
51173 | 242 |
|
52379 | 243 |
lemma set_primes_upto: |
244 |
"set (primes_upto n) = {m. m \<le> n \<and> prime m}" |
|
51173 | 245 |
by (simp add: primes_upto_def) |
246 |
||
52379 | 247 |
lemma sorted_primes_upto [iff]: |
248 |
"sorted (primes_upto n)" |
|
249 |
by (simp add: primes_upto_def) |
|
250 |
||
251 |
lemma distinct_primes_upto [iff]: |
|
252 |
"distinct (primes_upto n)" |
|
253 |
by (simp add: primes_upto_def) |
|
254 |
||
255 |
lemma set_primes_upto_sieve: |
|
256 |
"set (primes_upto n) = numbers_of_marks 2 (sieve 1 (replicate (n - 1) True))" |
|
51173 | 257 |
proof (cases "n > 1") |
258 |
case False then have "n = 0 \<or> n = 1" by arith |
|
259 |
then show ?thesis |
|
55130
70db8d380d62
Restored Suc rather than +1, and using Library/Binimial
paulson <lp15@cam.ac.uk>
parents:
54222
diff
changeset
|
260 |
by (auto simp add: numbers_of_marks_sieve numeral_2_eq_2 set_primes_upto dest: prime_gt_Suc_0_nat) |
51173 | 261 |
next |
262 |
{ fix m q |
|
263 |
assume "Suc (Suc 0) \<le> q" |
|
264 |
and "q < Suc n" |
|
265 |
and "m dvd q" |
|
266 |
then have "m < Suc n" by (auto dest: dvd_imp_le) |
|
267 |
assume *: "\<forall>m\<in>{Suc (Suc 0)..<Suc n}. m dvd q \<longrightarrow> q dvd m" |
|
268 |
and "m dvd q" and "m \<noteq> 1" |
|
269 |
have "m = q" proof (cases "m = 0") |
|
270 |
case True with `m dvd q` show ?thesis by simp |
|
271 |
next |
|
272 |
case False with `m \<noteq> 1` have "Suc (Suc 0) \<le> m" by arith |
|
273 |
with `m < Suc n` * `m dvd q` have "q dvd m" by simp |
|
274 |
with `m dvd q` show ?thesis by (simp add: dvd.eq_iff) |
|
275 |
qed |
|
276 |
} |
|
277 |
then have aux: "\<And>m q. Suc (Suc 0) \<le> q \<Longrightarrow> |
|
278 |
q < Suc n \<Longrightarrow> |
|
279 |
m dvd q \<Longrightarrow> |
|
280 |
\<forall>m\<in>{Suc (Suc 0)..<Suc n}. m dvd q \<longrightarrow> q dvd m \<Longrightarrow> |
|
281 |
m dvd q \<Longrightarrow> m \<noteq> q \<Longrightarrow> m = 1" by auto |
|
282 |
case True then show ?thesis |
|
55337
5d45fb978d5a
Number_Theory no longer introduces One_nat_def as a simprule. Tidied some proofs.
paulson <lp15@cam.ac.uk>
parents:
55130
diff
changeset
|
283 |
apply (auto simp add: One_nat_def numbers_of_marks_sieve numeral_2_eq_2 set_primes_upto |
5d45fb978d5a
Number_Theory no longer introduces One_nat_def as a simprule. Tidied some proofs.
paulson <lp15@cam.ac.uk>
parents:
55130
diff
changeset
|
284 |
dest: prime_gt_Suc_0_nat) |
55130
70db8d380d62
Restored Suc rather than +1, and using Library/Binimial
paulson <lp15@cam.ac.uk>
parents:
54222
diff
changeset
|
285 |
apply (metis One_nat_def Suc_le_eq less_not_refl prime_nat_def) |
70db8d380d62
Restored Suc rather than +1, and using Library/Binimial
paulson <lp15@cam.ac.uk>
parents:
54222
diff
changeset
|
286 |
apply (metis One_nat_def Suc_le_eq aux prime_nat_def) |
51173 | 287 |
done |
288 |
qed |
|
289 |
||
52379 | 290 |
lemma primes_upto_sieve [code]: |
291 |
"primes_upto n = map fst (filter snd (enumerate 2 (sieve 1 (replicate (n - 1) True))))" |
|
292 |
proof - |
|
293 |
have "primes_upto n = sorted_list_of_set (numbers_of_marks 2 (sieve 1 (replicate (n - 1) True)))" |
|
294 |
apply (rule sorted_distinct_set_unique) |
|
295 |
apply (simp_all only: set_primes_upto_sieve numbers_of_marks_def) |
|
296 |
apply auto |
|
297 |
done |
|
298 |
then show ?thesis by (simp add: sorted_list_of_set_numbers_of_marks) |
|
299 |
qed |
|
300 |
||
301 |
lemma prime_in_primes_upto: |
|
302 |
"prime n \<longleftrightarrow> n \<in> set (primes_upto n)" |
|
303 |
by (simp add: set_primes_upto) |
|
304 |
||
305 |
||
306 |
subsection {* Application: smallest prime beyond a certain number *} |
|
307 |
||
308 |
definition smallest_prime_beyond :: "nat \<Rightarrow> nat" |
|
309 |
where |
|
310 |
"smallest_prime_beyond n = (LEAST p. prime p \<and> p \<ge> n)" |
|
311 |
||
312 |
lemma |
|
313 |
prime_smallest_prime_beyond [iff]: "prime (smallest_prime_beyond n)" (is ?P) |
|
314 |
and smallest_prime_beyond_le [iff]: "smallest_prime_beyond n \<ge> n" (is ?Q) |
|
315 |
proof - |
|
316 |
let ?least = "LEAST p. prime p \<and> p \<ge> n" |
|
317 |
from primes_infinite obtain q where "prime q \<and> q \<ge> n" |
|
318 |
by (metis finite_nat_set_iff_bounded_le mem_Collect_eq nat_le_linear) |
|
319 |
then have "prime ?least \<and> ?least \<ge> n" by (rule LeastI) |
|
320 |
then show ?P and ?Q by (simp_all add: smallest_prime_beyond_def) |
|
321 |
qed |
|
322 |
||
323 |
lemma smallest_prime_beyond_smallest: |
|
324 |
"prime p \<Longrightarrow> p \<ge> n \<Longrightarrow> smallest_prime_beyond n \<le> p" |
|
325 |
by (simp only: smallest_prime_beyond_def) (auto intro: Least_le) |
|
326 |
||
327 |
lemma smallest_prime_beyond_eq: |
|
328 |
"prime p \<Longrightarrow> p \<ge> n \<Longrightarrow> (\<And>q. prime q \<Longrightarrow> q \<ge> n \<Longrightarrow> q \<ge> p) \<Longrightarrow> smallest_prime_beyond n = p" |
|
329 |
by (simp only: smallest_prime_beyond_def) (auto intro: Least_equality) |
|
330 |
||
331 |
definition smallest_prime_between :: "nat \<Rightarrow> nat \<Rightarrow> nat option" |
|
332 |
where |
|
333 |
"smallest_prime_between m n = |
|
334 |
(if (\<exists>p. prime p \<and> m \<le> p \<and> p \<le> n) then Some (smallest_prime_beyond m) else None)" |
|
335 |
||
336 |
lemma smallest_prime_between_None: |
|
337 |
"smallest_prime_between m n = None \<longleftrightarrow> (\<forall>q. m \<le> q \<and> q \<le> n \<longrightarrow> \<not> prime q)" |
|
338 |
by (auto simp add: smallest_prime_between_def) |
|
339 |
||
340 |
lemma smallest_prime_betwen_Some: |
|
341 |
"smallest_prime_between m n = Some p \<longleftrightarrow> smallest_prime_beyond m = p \<and> p \<le> n" |
|
342 |
by (auto simp add: smallest_prime_between_def dest: smallest_prime_beyond_smallest [of _ m]) |
|
343 |
||
344 |
lemma [code]: |
|
345 |
"smallest_prime_between m n = List.find (\<lambda>p. p \<ge> m) (primes_upto n)" |
|
346 |
proof - |
|
347 |
{ fix p |
|
348 |
def A \<equiv> "{p. p \<le> n \<and> prime p \<and> m \<le> p}" |
|
349 |
assume assms: "m \<le> p" "prime p" "p \<le> n" |
|
350 |
then have "smallest_prime_beyond m \<le> p" by (auto intro: smallest_prime_beyond_smallest) |
|
351 |
from this `p \<le> n` have *: "smallest_prime_beyond m \<le> n" by (rule order_trans) |
|
352 |
from assms have ex: "\<exists>p\<le>n. prime p \<and> m \<le> p" by auto |
|
353 |
then have "finite A" by (auto simp add: A_def) |
|
354 |
with * have "Min A = smallest_prime_beyond m" |
|
355 |
by (auto simp add: A_def intro: Min_eqI smallest_prime_beyond_smallest) |
|
356 |
with ex sorted_primes_upto have "List.find (\<lambda>p. p \<ge> m) (primes_upto n) = Some (smallest_prime_beyond m)" |
|
357 |
by (auto simp add: set_primes_upto sorted_find_Min A_def) |
|
358 |
} then show ?thesis |
|
359 |
by (auto simp add: smallest_prime_between_def find_None_iff set_primes_upto intro!: sym [of _ None]) |
|
360 |
qed |
|
361 |
||
362 |
definition smallest_prime_beyond_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
|
363 |
where |
|
364 |
"smallest_prime_beyond_aux k n = smallest_prime_beyond n" |
|
365 |
||
366 |
lemma [code]: |
|
367 |
"smallest_prime_beyond_aux k n = |
|
368 |
(case smallest_prime_between n (k * n) |
|
369 |
of Some p \<Rightarrow> p |
|
370 |
| None \<Rightarrow> smallest_prime_beyond_aux (Suc k) n)" |
|
371 |
by (simp add: smallest_prime_beyond_aux_def smallest_prime_betwen_Some split: option.split) |
|
372 |
||
373 |
lemma [code]: |
|
374 |
"smallest_prime_beyond n = smallest_prime_beyond_aux 2 n" |
|
375 |
by (simp add: smallest_prime_beyond_aux_def) |
|
376 |
||
51173 | 377 |
end |
378 |