| author | wenzelm | 
| Sat, 20 Aug 2011 23:35:30 +0200 | |
| changeset 44338 | 700008399ee5 | 
| parent 41372 | 551eb49a6e91 | 
| child 45802 | b16f976db515 | 
| permissions | -rw-r--r-- | 
| 35788 | 1 | (* Title: HOL/Library/Quotient_Option.thy | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 2 | Author: Cezary Kaliszyk and Christian Urban | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 3 | *) | 
| 35788 | 4 | |
| 5 | header {* Quotient infrastructure for the option type *}
 | |
| 6 | ||
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 7 | theory Quotient_Option | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 8 | imports Main Quotient_Syntax | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 9 | begin | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 10 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 11 | fun | 
| 40542 
9a173a22771c
re-generalized type of option_rel and sum_rel (accident from 2989f9f3aa10)
 haftmann parents: 
40464diff
changeset | 12 |   option_rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a option \<Rightarrow> 'b option \<Rightarrow> bool"
 | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 13 | where | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 14 | "option_rel R None None = True" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 15 | | "option_rel R (Some x) None = False" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 16 | | "option_rel R None (Some x) = False" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 17 | | "option_rel R (Some x) (Some y) = R x y" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 18 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 19 | declare [[map option = (Option.map, option_rel)]] | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 20 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 21 | lemma option_rel_unfold: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 22 | "option_rel R x y = (case (x, y) of (None, None) \<Rightarrow> True | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 23 | | (Some x, Some y) \<Rightarrow> R x y | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 24 | | _ \<Rightarrow> False)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 25 | by (cases x) (cases y, simp_all)+ | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 26 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 27 | lemma option_rel_map1: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 28 | "option_rel R (Option.map f x) y \<longleftrightarrow> option_rel (\<lambda>x. R (f x)) x y" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 29 | by (simp add: option_rel_unfold split: option.split) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 30 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 31 | lemma option_rel_map2: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 32 | "option_rel R x (Option.map f y) \<longleftrightarrow> option_rel (\<lambda>x y. R x (f y)) x y" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 33 | by (simp add: option_rel_unfold split: option.split) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 34 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 35 | lemma option_map_id [id_simps]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 36 | "Option.map id = id" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 37 | by (simp add: id_def Option.map.identity fun_eq_iff) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 38 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 39 | lemma option_rel_eq [id_simps]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 40 | "option_rel (op =) = (op =)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 41 | by (simp add: option_rel_unfold fun_eq_iff split: option.split) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 42 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 43 | lemma option_reflp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 44 | "reflp R \<Longrightarrow> reflp (option_rel R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 45 | by (auto simp add: option_rel_unfold split: option.splits intro!: reflpI elim: reflpE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 46 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 47 | lemma option_symp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 48 | "symp R \<Longrightarrow> symp (option_rel R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 49 | by (auto simp add: option_rel_unfold split: option.splits intro!: sympI elim: sympE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 50 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 51 | lemma option_transp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 52 | "transp R \<Longrightarrow> transp (option_rel R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 53 | by (auto simp add: option_rel_unfold split: option.splits intro!: transpI elim: transpE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 54 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 55 | lemma option_equivp [quot_equiv]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 56 | "equivp R \<Longrightarrow> equivp (option_rel R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 57 | by (blast intro: equivpI option_reflp option_symp option_transp elim: equivpE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 58 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 59 | lemma option_quotient [quot_thm]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 60 | assumes "Quotient R Abs Rep" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 61 | shows "Quotient (option_rel R) (Option.map Abs) (Option.map Rep)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 62 | apply (rule QuotientI) | 
| 41372 | 63 | apply (simp_all add: Option.map.compositionality comp_def Option.map.identity option_rel_eq option_rel_map1 option_rel_map2 Quotient_abs_rep [OF assms] Quotient_rel_rep [OF assms]) | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 64 | using Quotient_rel [OF assms] | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 65 | apply (simp add: option_rel_unfold split: option.split) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 66 | done | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 67 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 68 | lemma option_None_rsp [quot_respect]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 69 | assumes q: "Quotient R Abs Rep" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 70 | shows "option_rel R None None" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 71 | by simp | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 72 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 73 | lemma option_Some_rsp [quot_respect]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 74 | assumes q: "Quotient R Abs Rep" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 75 | shows "(R ===> option_rel R) Some Some" | 
| 40464 
e1db06cf6254
type annotations in specifications; fun_rel_def is no simp rule by default
 haftmann parents: 
39302diff
changeset | 76 | by auto | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 77 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 78 | lemma option_None_prs [quot_preserve]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 79 | assumes q: "Quotient R Abs Rep" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 80 | shows "Option.map Abs None = None" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 81 | by simp | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 82 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40542diff
changeset | 83 | lemma option_Some_prs [quot_preserve]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 84 | assumes q: "Quotient R Abs Rep" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 85 | shows "(Rep ---> Option.map Abs) Some = Some" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 86 | apply(simp add: fun_eq_iff) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 87 | apply(simp add: Quotient_abs_rep[OF q]) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 88 | done | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 89 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 90 | end |