| author | wenzelm | 
| Sat, 20 Aug 2011 23:35:30 +0200 | |
| changeset 44338 | 700008399ee5 | 
| parent 35416 | d8d7d1b785af | 
| child 44871 | fbfdc5ac86be | 
| permissions | -rw-r--r-- | 
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 1 | (* Title: HOL/UNITY/Guar.thy | 
| 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
27682diff
changeset | 3 | Author: Sidi Ehmety | 
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 4 | |
| 11190 | 5 | From Chandy and Sanders, "Reasoning About Program Composition", | 
| 6 | Technical Report 2000-003, University of Florida, 2000. | |
| 7 | ||
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
27682diff
changeset | 8 | Compatibility, weakest guarantees, etc. and Weakest existential | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
27682diff
changeset | 9 | property, from Charpentier and Chandy "Theorems about Composition", | 
| 11190 | 10 | Fifth International Conference on Mathematics of Program, 2000. | 
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 11 | *) | 
| 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 12 | |
| 13798 | 13 | header{*Guarantees Specifications*}
 | 
| 14 | ||
| 27682 | 15 | theory Guar | 
| 16 | imports Comp | |
| 17 | begin | |
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 18 | |
| 12338 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 wenzelm parents: 
11190diff
changeset | 19 | instance program :: (type) order | 
| 27682 | 20 | proof qed (auto simp add: program_less_le dest: component_antisym intro: component_refl component_trans) | 
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 21 | |
| 14112 | 22 | text{*Existential and Universal properties.  I formalize the two-program
 | 
| 23 | case, proving equivalence with Chandy and Sanders's n-ary definitions*} | |
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 24 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 25 | definition ex_prop :: "'a program set => bool" where | 
| 13819 | 26 | "ex_prop X == \<forall>F G. F ok G -->F \<in> X | G \<in> X --> (F\<squnion>G) \<in> X" | 
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 27 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 28 | definition strict_ex_prop :: "'a program set => bool" where | 
| 13819 | 29 | "strict_ex_prop X == \<forall>F G. F ok G --> (F \<in> X | G \<in> X) = (F\<squnion>G \<in> X)" | 
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 30 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 31 | definition uv_prop :: "'a program set => bool" where | 
| 13819 | 32 | "uv_prop X == SKIP \<in> X & (\<forall>F G. F ok G --> F \<in> X & G \<in> X --> (F\<squnion>G) \<in> X)" | 
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 33 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 34 | definition strict_uv_prop :: "'a program set => bool" where | 
| 13792 | 35 | "strict_uv_prop X == | 
| 13819 | 36 | SKIP \<in> X & (\<forall>F G. F ok G --> (F \<in> X & G \<in> X) = (F\<squnion>G \<in> X))" | 
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 37 | |
| 14112 | 38 | |
| 39 | text{*Guarantees properties*}
 | |
| 40 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 41 | definition guar :: "['a program set, 'a program set] => 'a program set" (infixl "guarantees" 55) where | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 42 | (*higher than membership, lower than Co*) | 
| 13819 | 43 |    "X guarantees Y == {F. \<forall>G. F ok G --> F\<squnion>G \<in> X --> F\<squnion>G \<in> Y}"
 | 
| 11190 | 44 | |
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 45 | |
| 11190 | 46 | (* Weakest guarantees *) | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 47 | definition wg :: "['a program, 'a program set] => 'a program set" where | 
| 13805 | 48 |   "wg F Y == Union({X. F \<in> X guarantees Y})"
 | 
| 11190 | 49 | |
| 50 | (* Weakest existential property stronger than X *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 51 | definition wx :: "('a program) set => ('a program)set" where
 | 
| 13805 | 52 |    "wx X == Union({Y. Y \<subseteq> X & ex_prop Y})"
 | 
| 11190 | 53 | |
| 54 | (*Ill-defined programs can arise through "Join"*) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 55 | definition welldef :: "'a program set" where | 
| 13805 | 56 |   "welldef == {F. Init F \<noteq> {}}"
 | 
| 11190 | 57 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 58 | definition refines :: "['a program, 'a program, 'a program set] => bool" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 59 |                         ("(3_ refines _ wrt _)" [10,10,10] 10) where
 | 
| 11190 | 60 | "G refines F wrt X == | 
| 14112 | 61 | \<forall>H. (F ok H & G ok H & F\<squnion>H \<in> welldef \<inter> X) --> | 
| 13819 | 62 | (G\<squnion>H \<in> welldef \<inter> X)" | 
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 63 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 64 | definition iso_refines :: "['a program, 'a program, 'a program set] => bool" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 65 |                               ("(3_ iso'_refines _ wrt _)" [10,10,10] 10) where
 | 
| 11190 | 66 | "G iso_refines F wrt X == | 
| 13805 | 67 | F \<in> welldef \<inter> X --> G \<in> welldef \<inter> X" | 
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 68 | |
| 13792 | 69 | |
| 70 | lemma OK_insert_iff: | |
| 71 | "(OK (insert i I) F) = | |
| 13805 | 72 | (if i \<in> I then OK I F else OK I F & (F i ok JOIN I F))" | 
| 13792 | 73 | by (auto intro: ok_sym simp add: OK_iff_ok) | 
| 74 | ||
| 75 | ||
| 14112 | 76 | subsection{*Existential Properties*}
 | 
| 77 | ||
| 13798 | 78 | lemma ex1 [rule_format]: | 
| 13792 | 79 | "[| ex_prop X; finite GG |] ==> | 
| 13805 | 80 |      GG \<inter> X \<noteq> {}--> OK GG (%G. G) --> (\<Squnion>G \<in> GG. G) \<in> X"
 | 
| 13792 | 81 | apply (unfold ex_prop_def) | 
| 82 | apply (erule finite_induct) | |
| 83 | apply (auto simp add: OK_insert_iff Int_insert_left) | |
| 84 | done | |
| 85 | ||
| 86 | ||
| 87 | lemma ex2: | |
| 13805 | 88 |      "\<forall>GG. finite GG & GG \<inter> X \<noteq> {} --> OK GG (%G. G) -->(\<Squnion>G \<in> GG. G):X 
 | 
| 13792 | 89 | ==> ex_prop X" | 
| 90 | apply (unfold ex_prop_def, clarify) | |
| 91 | apply (drule_tac x = "{F,G}" in spec)
 | |
| 92 | apply (auto dest: ok_sym simp add: OK_iff_ok) | |
| 93 | done | |
| 94 | ||
| 95 | ||
| 96 | (*Chandy & Sanders take this as a definition*) | |
| 97 | lemma ex_prop_finite: | |
| 98 | "ex_prop X = | |
| 13805 | 99 |       (\<forall>GG. finite GG & GG \<inter> X \<noteq> {} & OK GG (%G. G)--> (\<Squnion>G \<in> GG. G) \<in> X)"
 | 
| 13792 | 100 | by (blast intro: ex1 ex2) | 
| 101 | ||
| 102 | ||
| 103 | (*Their "equivalent definition" given at the end of section 3*) | |
| 104 | lemma ex_prop_equiv: | |
| 13805 | 105 | "ex_prop X = (\<forall>G. G \<in> X = (\<forall>H. (G component_of H) --> H \<in> X))" | 
| 13792 | 106 | apply auto | 
| 14112 | 107 | apply (unfold ex_prop_def component_of_def, safe, blast, blast) | 
| 13792 | 108 | apply (subst Join_commute) | 
| 109 | apply (drule ok_sym, blast) | |
| 110 | done | |
| 111 | ||
| 112 | ||
| 14112 | 113 | subsection{*Universal Properties*}
 | 
| 114 | ||
| 13792 | 115 | lemma uv1 [rule_format]: | 
| 116 | "[| uv_prop X; finite GG |] | |
| 13805 | 117 | ==> GG \<subseteq> X & OK GG (%G. G) --> (\<Squnion>G \<in> GG. G) \<in> X" | 
| 13792 | 118 | apply (unfold uv_prop_def) | 
| 119 | apply (erule finite_induct) | |
| 120 | apply (auto simp add: Int_insert_left OK_insert_iff) | |
| 121 | done | |
| 122 | ||
| 123 | lemma uv2: | |
| 13805 | 124 | "\<forall>GG. finite GG & GG \<subseteq> X & OK GG (%G. G) --> (\<Squnion>G \<in> GG. G) \<in> X | 
| 13792 | 125 | ==> uv_prop X" | 
| 126 | apply (unfold uv_prop_def) | |
| 127 | apply (rule conjI) | |
| 128 |  apply (drule_tac x = "{}" in spec)
 | |
| 129 | prefer 2 | |
| 130 | apply clarify | |
| 131 |  apply (drule_tac x = "{F,G}" in spec)
 | |
| 132 | apply (auto dest: ok_sym simp add: OK_iff_ok) | |
| 133 | done | |
| 134 | ||
| 135 | (*Chandy & Sanders take this as a definition*) | |
| 136 | lemma uv_prop_finite: | |
| 137 | "uv_prop X = | |
| 13805 | 138 | (\<forall>GG. finite GG & GG \<subseteq> X & OK GG (%G. G) --> (\<Squnion>G \<in> GG. G): X)" | 
| 13792 | 139 | by (blast intro: uv1 uv2) | 
| 140 | ||
| 14112 | 141 | subsection{*Guarantees*}
 | 
| 13792 | 142 | |
| 143 | lemma guaranteesI: | |
| 14112 | 144 | "(!!G. [| F ok G; F\<squnion>G \<in> X |] ==> F\<squnion>G \<in> Y) ==> F \<in> X guarantees Y" | 
| 13792 | 145 | by (simp add: guar_def component_def) | 
| 146 | ||
| 147 | lemma guaranteesD: | |
| 14112 | 148 | "[| F \<in> X guarantees Y; F ok G; F\<squnion>G \<in> X |] ==> F\<squnion>G \<in> Y" | 
| 13792 | 149 | by (unfold guar_def component_def, blast) | 
| 150 | ||
| 151 | (*This version of guaranteesD matches more easily in the conclusion | |
| 13805 | 152 | The major premise can no longer be F \<subseteq> H since we need to reason about G*) | 
| 13792 | 153 | lemma component_guaranteesD: | 
| 14112 | 154 | "[| F \<in> X guarantees Y; F\<squnion>G = H; H \<in> X; F ok G |] ==> H \<in> Y" | 
| 13792 | 155 | by (unfold guar_def, blast) | 
| 156 | ||
| 157 | lemma guarantees_weaken: | |
| 13805 | 158 | "[| F \<in> X guarantees X'; Y \<subseteq> X; X' \<subseteq> Y' |] ==> F \<in> Y guarantees Y'" | 
| 13792 | 159 | by (unfold guar_def, blast) | 
| 160 | ||
| 13805 | 161 | lemma subset_imp_guarantees_UNIV: "X \<subseteq> Y ==> X guarantees Y = UNIV" | 
| 13792 | 162 | by (unfold guar_def, blast) | 
| 163 | ||
| 164 | (*Equivalent to subset_imp_guarantees_UNIV but more intuitive*) | |
| 13805 | 165 | lemma subset_imp_guarantees: "X \<subseteq> Y ==> F \<in> X guarantees Y" | 
| 13792 | 166 | by (unfold guar_def, blast) | 
| 167 | ||
| 168 | (*Remark at end of section 4.1 *) | |
| 169 | ||
| 170 | lemma ex_prop_imp: "ex_prop Y ==> (Y = UNIV guarantees Y)" | |
| 171 | apply (simp (no_asm_use) add: guar_def ex_prop_equiv) | |
| 172 | apply safe | |
| 173 | apply (drule_tac x = x in spec) | |
| 174 | apply (drule_tac [2] x = x in spec) | |
| 175 | apply (drule_tac [2] sym) | |
| 176 | apply (auto simp add: component_of_def) | |
| 177 | done | |
| 178 | ||
| 179 | lemma guarantees_imp: "(Y = UNIV guarantees Y) ==> ex_prop(Y)" | |
| 14112 | 180 | by (auto simp add: guar_def ex_prop_equiv component_of_def dest: sym) | 
| 13792 | 181 | |
| 182 | lemma ex_prop_equiv2: "(ex_prop Y) = (Y = UNIV guarantees Y)" | |
| 183 | apply (rule iffI) | |
| 184 | apply (rule ex_prop_imp) | |
| 185 | apply (auto simp add: guarantees_imp) | |
| 186 | done | |
| 187 | ||
| 188 | ||
| 14112 | 189 | subsection{*Distributive Laws.  Re-Orient to Perform Miniscoping*}
 | 
| 13792 | 190 | |
| 191 | lemma guarantees_UN_left: | |
| 13805 | 192 | "(\<Union>i \<in> I. X i) guarantees Y = (\<Inter>i \<in> I. X i guarantees Y)" | 
| 13792 | 193 | by (unfold guar_def, blast) | 
| 194 | ||
| 195 | lemma guarantees_Un_left: | |
| 13805 | 196 | "(X \<union> Y) guarantees Z = (X guarantees Z) \<inter> (Y guarantees Z)" | 
| 13792 | 197 | by (unfold guar_def, blast) | 
| 198 | ||
| 199 | lemma guarantees_INT_right: | |
| 13805 | 200 | "X guarantees (\<Inter>i \<in> I. Y i) = (\<Inter>i \<in> I. X guarantees Y i)" | 
| 13792 | 201 | by (unfold guar_def, blast) | 
| 202 | ||
| 203 | lemma guarantees_Int_right: | |
| 13805 | 204 | "Z guarantees (X \<inter> Y) = (Z guarantees X) \<inter> (Z guarantees Y)" | 
| 13792 | 205 | by (unfold guar_def, blast) | 
| 206 | ||
| 207 | lemma guarantees_Int_right_I: | |
| 13805 | 208 | "[| F \<in> Z guarantees X; F \<in> Z guarantees Y |] | 
| 209 | ==> F \<in> Z guarantees (X \<inter> Y)" | |
| 13792 | 210 | by (simp add: guarantees_Int_right) | 
| 211 | ||
| 212 | lemma guarantees_INT_right_iff: | |
| 13805 | 213 | "(F \<in> X guarantees (INTER I Y)) = (\<forall>i\<in>I. F \<in> X guarantees (Y i))" | 
| 13792 | 214 | by (simp add: guarantees_INT_right) | 
| 215 | ||
| 13805 | 216 | lemma shunting: "(X guarantees Y) = (UNIV guarantees (-X \<union> Y))" | 
| 13792 | 217 | by (unfold guar_def, blast) | 
| 218 | ||
| 219 | lemma contrapositive: "(X guarantees Y) = -Y guarantees -X" | |
| 220 | by (unfold guar_def, blast) | |
| 221 | ||
| 222 | (** The following two can be expressed using intersection and subset, which | |
| 223 | is more faithful to the text but looks cryptic. | |
| 224 | **) | |
| 225 | ||
| 226 | lemma combining1: | |
| 13805 | 227 | "[| F \<in> V guarantees X; F \<in> (X \<inter> Y) guarantees Z |] | 
| 228 | ==> F \<in> (V \<inter> Y) guarantees Z" | |
| 13792 | 229 | by (unfold guar_def, blast) | 
| 230 | ||
| 231 | lemma combining2: | |
| 13805 | 232 | "[| F \<in> V guarantees (X \<union> Y); F \<in> Y guarantees Z |] | 
| 233 | ==> F \<in> V guarantees (X \<union> Z)" | |
| 13792 | 234 | by (unfold guar_def, blast) | 
| 235 | ||
| 236 | (** The following two follow Chandy-Sanders, but the use of object-quantifiers | |
| 237 | does not suit Isabelle... **) | |
| 238 | ||
| 13805 | 239 | (*Premise should be (!!i. i \<in> I ==> F \<in> X guarantees Y i) *) | 
| 13792 | 240 | lemma all_guarantees: | 
| 13805 | 241 | "\<forall>i\<in>I. F \<in> X guarantees (Y i) ==> F \<in> X guarantees (\<Inter>i \<in> I. Y i)" | 
| 13792 | 242 | by (unfold guar_def, blast) | 
| 243 | ||
| 13805 | 244 | (*Premises should be [| F \<in> X guarantees Y i; i \<in> I |] *) | 
| 13792 | 245 | lemma ex_guarantees: | 
| 13805 | 246 | "\<exists>i\<in>I. F \<in> X guarantees (Y i) ==> F \<in> X guarantees (\<Union>i \<in> I. Y i)" | 
| 13792 | 247 | by (unfold guar_def, blast) | 
| 248 | ||
| 249 | ||
| 14112 | 250 | subsection{*Guarantees: Additional Laws (by lcp)*}
 | 
| 13792 | 251 | |
| 252 | lemma guarantees_Join_Int: | |
| 13805 | 253 | "[| F \<in> U guarantees V; G \<in> X guarantees Y; F ok G |] | 
| 13819 | 254 | ==> F\<squnion>G \<in> (U \<inter> X) guarantees (V \<inter> Y)" | 
| 14112 | 255 | apply (simp add: guar_def, safe) | 
| 256 | apply (simp add: Join_assoc) | |
| 13819 | 257 | apply (subgoal_tac "F\<squnion>G\<squnion>Ga = G\<squnion>(F\<squnion>Ga) ") | 
| 14112 | 258 | apply (simp add: ok_commute) | 
| 259 | apply (simp add: Join_ac) | |
| 13792 | 260 | done | 
| 261 | ||
| 262 | lemma guarantees_Join_Un: | |
| 13805 | 263 | "[| F \<in> U guarantees V; G \<in> X guarantees Y; F ok G |] | 
| 13819 | 264 | ==> F\<squnion>G \<in> (U \<union> X) guarantees (V \<union> Y)" | 
| 14112 | 265 | apply (simp add: guar_def, safe) | 
| 266 | apply (simp add: Join_assoc) | |
| 13819 | 267 | apply (subgoal_tac "F\<squnion>G\<squnion>Ga = G\<squnion>(F\<squnion>Ga) ") | 
| 14112 | 268 | apply (simp add: ok_commute) | 
| 269 | apply (simp add: Join_ac) | |
| 13792 | 270 | done | 
| 271 | ||
| 272 | lemma guarantees_JN_INT: | |
| 13805 | 273 | "[| \<forall>i\<in>I. F i \<in> X i guarantees Y i; OK I F |] | 
| 274 | ==> (JOIN I F) \<in> (INTER I X) guarantees (INTER I Y)" | |
| 13792 | 275 | apply (unfold guar_def, auto) | 
| 276 | apply (drule bspec, assumption) | |
| 277 | apply (rename_tac "i") | |
| 13819 | 278 | apply (drule_tac x = "JOIN (I-{i}) F\<squnion>G" in spec)
 | 
| 13792 | 279 | apply (auto intro: OK_imp_ok | 
| 280 | simp add: Join_assoc [symmetric] JN_Join_diff JN_absorb) | |
| 281 | done | |
| 282 | ||
| 283 | lemma guarantees_JN_UN: | |
| 13805 | 284 | "[| \<forall>i\<in>I. F i \<in> X i guarantees Y i; OK I F |] | 
| 285 | ==> (JOIN I F) \<in> (UNION I X) guarantees (UNION I Y)" | |
| 13792 | 286 | apply (unfold guar_def, auto) | 
| 287 | apply (drule bspec, assumption) | |
| 288 | apply (rename_tac "i") | |
| 13819 | 289 | apply (drule_tac x = "JOIN (I-{i}) F\<squnion>G" in spec)
 | 
| 13792 | 290 | apply (auto intro: OK_imp_ok | 
| 291 | simp add: Join_assoc [symmetric] JN_Join_diff JN_absorb) | |
| 292 | done | |
| 293 | ||
| 294 | ||
| 14112 | 295 | subsection{*Guarantees Laws for Breaking Down the Program (by lcp)*}
 | 
| 13792 | 296 | |
| 297 | lemma guarantees_Join_I1: | |
| 13819 | 298 | "[| F \<in> X guarantees Y; F ok G |] ==> F\<squnion>G \<in> X guarantees Y" | 
| 14112 | 299 | by (simp add: guar_def Join_assoc) | 
| 13792 | 300 | |
| 14112 | 301 | lemma guarantees_Join_I2: | 
| 13819 | 302 | "[| G \<in> X guarantees Y; F ok G |] ==> F\<squnion>G \<in> X guarantees Y" | 
| 13792 | 303 | apply (simp add: Join_commute [of _ G] ok_commute [of _ G]) | 
| 304 | apply (blast intro: guarantees_Join_I1) | |
| 305 | done | |
| 306 | ||
| 307 | lemma guarantees_JN_I: | |
| 13805 | 308 | "[| i \<in> I; F i \<in> X guarantees Y; OK I F |] | 
| 309 | ==> (\<Squnion>i \<in> I. (F i)) \<in> X guarantees Y" | |
| 13792 | 310 | apply (unfold guar_def, clarify) | 
| 13819 | 311 | apply (drule_tac x = "JOIN (I-{i}) F\<squnion>G" in spec)
 | 
| 14112 | 312 | apply (auto intro: OK_imp_ok | 
| 313 | simp add: JN_Join_diff JN_Join_diff Join_assoc [symmetric]) | |
| 13792 | 314 | done | 
| 315 | ||
| 316 | ||
| 317 | (*** well-definedness ***) | |
| 318 | ||
| 13819 | 319 | lemma Join_welldef_D1: "F\<squnion>G \<in> welldef ==> F \<in> welldef" | 
| 13792 | 320 | by (unfold welldef_def, auto) | 
| 321 | ||
| 13819 | 322 | lemma Join_welldef_D2: "F\<squnion>G \<in> welldef ==> G \<in> welldef" | 
| 13792 | 323 | by (unfold welldef_def, auto) | 
| 324 | ||
| 325 | (*** refinement ***) | |
| 326 | ||
| 327 | lemma refines_refl: "F refines F wrt X" | |
| 328 | by (unfold refines_def, blast) | |
| 329 | ||
| 14112 | 330 | (*We'd like transitivity, but how do we get it?*) | 
| 331 | lemma refines_trans: | |
| 13792 | 332 | "[| H refines G wrt X; G refines F wrt X |] ==> H refines F wrt X" | 
| 14112 | 333 | apply (simp add: refines_def) | 
| 334 | oops | |
| 13792 | 335 | |
| 336 | ||
| 337 | lemma strict_ex_refine_lemma: | |
| 338 | "strict_ex_prop X | |
| 13819 | 339 | ==> (\<forall>H. F ok H & G ok H & F\<squnion>H \<in> X --> G\<squnion>H \<in> X) | 
| 13805 | 340 | = (F \<in> X --> G \<in> X)" | 
| 13792 | 341 | by (unfold strict_ex_prop_def, auto) | 
| 342 | ||
| 343 | lemma strict_ex_refine_lemma_v: | |
| 344 | "strict_ex_prop X | |
| 13819 | 345 | ==> (\<forall>H. F ok H & G ok H & F\<squnion>H \<in> welldef & F\<squnion>H \<in> X --> G\<squnion>H \<in> X) = | 
| 13805 | 346 | (F \<in> welldef \<inter> X --> G \<in> X)" | 
| 13792 | 347 | apply (unfold strict_ex_prop_def, safe) | 
| 348 | apply (erule_tac x = SKIP and P = "%H. ?PP H --> ?RR H" in allE) | |
| 349 | apply (auto dest: Join_welldef_D1 Join_welldef_D2) | |
| 350 | done | |
| 351 | ||
| 352 | lemma ex_refinement_thm: | |
| 353 | "[| strict_ex_prop X; | |
| 13819 | 354 | \<forall>H. F ok H & G ok H & F\<squnion>H \<in> welldef \<inter> X --> G\<squnion>H \<in> welldef |] | 
| 13792 | 355 | ==> (G refines F wrt X) = (G iso_refines F wrt X)" | 
| 356 | apply (rule_tac x = SKIP in allE, assumption) | |
| 357 | apply (simp add: refines_def iso_refines_def strict_ex_refine_lemma_v) | |
| 358 | done | |
| 359 | ||
| 360 | ||
| 361 | lemma strict_uv_refine_lemma: | |
| 362 | "strict_uv_prop X ==> | |
| 13819 | 363 | (\<forall>H. F ok H & G ok H & F\<squnion>H \<in> X --> G\<squnion>H \<in> X) = (F \<in> X --> G \<in> X)" | 
| 13792 | 364 | by (unfold strict_uv_prop_def, blast) | 
| 365 | ||
| 366 | lemma strict_uv_refine_lemma_v: | |
| 367 | "strict_uv_prop X | |
| 13819 | 368 | ==> (\<forall>H. F ok H & G ok H & F\<squnion>H \<in> welldef & F\<squnion>H \<in> X --> G\<squnion>H \<in> X) = | 
| 13805 | 369 | (F \<in> welldef \<inter> X --> G \<in> X)" | 
| 13792 | 370 | apply (unfold strict_uv_prop_def, safe) | 
| 371 | apply (erule_tac x = SKIP and P = "%H. ?PP H --> ?RR H" in allE) | |
| 372 | apply (auto dest: Join_welldef_D1 Join_welldef_D2) | |
| 373 | done | |
| 374 | ||
| 375 | lemma uv_refinement_thm: | |
| 376 | "[| strict_uv_prop X; | |
| 13819 | 377 | \<forall>H. F ok H & G ok H & F\<squnion>H \<in> welldef \<inter> X --> | 
| 378 | G\<squnion>H \<in> welldef |] | |
| 13792 | 379 | ==> (G refines F wrt X) = (G iso_refines F wrt X)" | 
| 380 | apply (rule_tac x = SKIP in allE, assumption) | |
| 381 | apply (simp add: refines_def iso_refines_def strict_uv_refine_lemma_v) | |
| 382 | done | |
| 383 | ||
| 384 | (* Added by Sidi Ehmety from Chandy & Sander, section 6 *) | |
| 385 | lemma guarantees_equiv: | |
| 13805 | 386 | "(F \<in> X guarantees Y) = (\<forall>H. H \<in> X \<longrightarrow> (F component_of H \<longrightarrow> H \<in> Y))" | 
| 13792 | 387 | by (unfold guar_def component_of_def, auto) | 
| 388 | ||
| 14112 | 389 | lemma wg_weakest: "!!X. F\<in> (X guarantees Y) ==> X \<subseteq> (wg F Y)" | 
| 13792 | 390 | by (unfold wg_def, auto) | 
| 391 | ||
| 14112 | 392 | lemma wg_guarantees: "F\<in> ((wg F Y) guarantees Y)" | 
| 13792 | 393 | by (unfold wg_def guar_def, blast) | 
| 394 | ||
| 14112 | 395 | lemma wg_equiv: "(H \<in> wg F X) = (F component_of H --> H \<in> X)" | 
| 396 | by (simp add: guarantees_equiv wg_def, blast) | |
| 13792 | 397 | |
| 13805 | 398 | lemma component_of_wg: "F component_of H ==> (H \<in> wg F X) = (H \<in> X)" | 
| 13792 | 399 | by (simp add: wg_equiv) | 
| 400 | ||
| 401 | lemma wg_finite: | |
| 13805 | 402 |     "\<forall>FF. finite FF & FF \<inter> X \<noteq> {} --> OK FF (%F. F)  
 | 
| 403 | --> (\<forall>F\<in>FF. ((\<Squnion>F \<in> FF. F): wg F X) = ((\<Squnion>F \<in> FF. F):X))" | |
| 13792 | 404 | apply clarify | 
| 13805 | 405 | apply (subgoal_tac "F component_of (\<Squnion>F \<in> FF. F) ") | 
| 13792 | 406 | apply (drule_tac X = X in component_of_wg, simp) | 
| 407 | apply (simp add: component_of_def) | |
| 13805 | 408 | apply (rule_tac x = "\<Squnion>F \<in> (FF-{F}) . F" in exI)
 | 
| 13792 | 409 | apply (auto intro: JN_Join_diff dest: ok_sym simp add: OK_iff_ok) | 
| 410 | done | |
| 411 | ||
| 13805 | 412 | lemma wg_ex_prop: "ex_prop X ==> (F \<in> X) = (\<forall>H. H \<in> wg F X)" | 
| 13792 | 413 | apply (simp (no_asm_use) add: ex_prop_equiv wg_equiv) | 
| 414 | apply blast | |
| 415 | done | |
| 416 | ||
| 417 | (** From Charpentier and Chandy "Theorems About Composition" **) | |
| 418 | (* Proposition 2 *) | |
| 419 | lemma wx_subset: "(wx X)<=X" | |
| 420 | by (unfold wx_def, auto) | |
| 421 | ||
| 422 | lemma wx_ex_prop: "ex_prop (wx X)" | |
| 16647 
c6d81ddebb0e
Proof of wx_ex_prop must now use old bex_cong to prevent simplifier from looping.
 berghofe parents: 
16417diff
changeset | 423 | apply (simp add: wx_def ex_prop_equiv cong: bex_cong, safe, blast) | 
| 14112 | 424 | apply force | 
| 13792 | 425 | done | 
| 426 | ||
| 13805 | 427 | lemma wx_weakest: "\<forall>Z. Z<= X --> ex_prop Z --> Z \<subseteq> wx X" | 
| 14112 | 428 | by (auto simp add: wx_def) | 
| 13792 | 429 | |
| 430 | (* Proposition 6 *) | |
| 13819 | 431 | lemma wx'_ex_prop: "ex_prop({F. \<forall>G. F ok G --> F\<squnion>G \<in> X})"
 | 
| 13792 | 432 | apply (unfold ex_prop_def, safe) | 
| 14112 | 433 | apply (drule_tac x = "G\<squnion>Ga" in spec) | 
| 434 | apply (force simp add: ok_Join_iff1 Join_assoc) | |
| 13819 | 435 | apply (drule_tac x = "F\<squnion>Ga" in spec) | 
| 14112 | 436 | apply (simp add: ok_Join_iff1 ok_commute Join_ac) | 
| 13792 | 437 | done | 
| 438 | ||
| 14112 | 439 | text{* Equivalence with the other definition of wx *}
 | 
| 13792 | 440 | |
| 14112 | 441 | lemma wx_equiv: "wx X = {F. \<forall>G. F ok G --> (F\<squnion>G) \<in> X}"
 | 
| 13792 | 442 | apply (unfold wx_def, safe) | 
| 14112 | 443 | apply (simp add: ex_prop_def, blast) | 
| 13792 | 444 | apply (simp (no_asm)) | 
| 13819 | 445 | apply (rule_tac x = "{F. \<forall>G. F ok G --> F\<squnion>G \<in> X}" in exI, safe)
 | 
| 13792 | 446 | apply (rule_tac [2] wx'_ex_prop) | 
| 14112 | 447 | apply (drule_tac x = SKIP in spec)+ | 
| 448 | apply auto | |
| 13792 | 449 | done | 
| 450 | ||
| 451 | ||
| 14112 | 452 | text{* Propositions 7 to 11 are about this second definition of wx. 
 | 
| 453 | They are the same as the ones proved for the first definition of wx, | |
| 454 | by equivalence *} | |
| 13792 | 455 | |
| 456 | (* Proposition 12 *) | |
| 457 | (* Main result of the paper *) | |
| 14112 | 458 | lemma guarantees_wx_eq: "(X guarantees Y) = wx(-X \<union> Y)" | 
| 459 | by (simp add: guar_def wx_equiv) | |
| 13792 | 460 | |
| 461 | ||
| 462 | (* Rules given in section 7 of Chandy and Sander's | |
| 463 | Reasoning About Program composition paper *) | |
| 464 | lemma stable_guarantees_Always: | |
| 14112 | 465 | "Init F \<subseteq> A ==> F \<in> (stable A) guarantees (Always A)" | 
| 13792 | 466 | apply (rule guaranteesI) | 
| 14112 | 467 | apply (simp add: Join_commute) | 
| 13792 | 468 | apply (rule stable_Join_Always1) | 
| 14112 | 469 | apply (simp_all add: invariant_def Join_stable) | 
| 13792 | 470 | done | 
| 471 | ||
| 472 | lemma constrains_guarantees_leadsTo: | |
| 13805 | 473 | "F \<in> transient A ==> F \<in> (A co A \<union> B) guarantees (A leadsTo (B-A))" | 
| 13792 | 474 | apply (rule guaranteesI) | 
| 475 | apply (rule leadsTo_Basis') | |
| 14112 | 476 | apply (drule constrains_weaken_R) | 
| 477 | prefer 2 apply assumption | |
| 478 | apply blast | |
| 13792 | 479 | apply (blast intro: Join_transient_I1) | 
| 480 | done | |
| 481 | ||
| 7400 
fbd5582761e6
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
 paulson parents: diff
changeset | 482 | end |