| author | wenzelm | 
| Mon, 24 Jun 2019 16:26:25 +0200 | |
| changeset 70359 | 470d4f145e4c | 
| parent 69593 | 3dda49e08b9d | 
| child 70927 | cc204e10385c | 
| permissions | -rw-r--r-- | 
| 60036 | 1 | (* Title: HOL/Filter.thy | 
| 2 | Author: Brian Huffman | |
| 3 | Author: Johannes Hölzl | |
| 4 | *) | |
| 5 | ||
| 60758 | 6 | section \<open>Filters on predicates\<close> | 
| 60036 | 7 | |
| 8 | theory Filter | |
| 9 | imports Set_Interval Lifting_Set | |
| 10 | begin | |
| 11 | ||
| 60758 | 12 | subsection \<open>Filters\<close> | 
| 60036 | 13 | |
| 60758 | 14 | text \<open> | 
| 60036 | 15 | This definition also allows non-proper filters. | 
| 60758 | 16 | \<close> | 
| 60036 | 17 | |
| 18 | locale is_filter = | |
| 19 |   fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
 | |
| 20 | assumes True: "F (\<lambda>x. True)" | |
| 21 | assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)" | |
| 22 | assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)" | |
| 23 | ||
| 24 | typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
 | |
| 25 | proof | |
| 26 | show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro) | |
| 27 | qed | |
| 28 | ||
| 29 | lemma is_filter_Rep_filter: "is_filter (Rep_filter F)" | |
| 30 | using Rep_filter [of F] by simp | |
| 31 | ||
| 32 | lemma Abs_filter_inverse': | |
| 33 | assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F" | |
| 34 | using assms by (simp add: Abs_filter_inverse) | |
| 35 | ||
| 36 | ||
| 60758 | 37 | subsubsection \<open>Eventually\<close> | 
| 60036 | 38 | |
| 39 | definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
 | |
| 40 | where "eventually P F \<longleftrightarrow> Rep_filter F P" | |
| 41 | ||
| 61953 | 42 | syntax | 
| 43 |   "_eventually" :: "pttrn => 'a filter => bool => bool"  ("(3\<forall>\<^sub>F _ in _./ _)" [0, 0, 10] 10)
 | |
| 60037 | 44 | translations | 
| 60038 | 45 | "\<forall>\<^sub>Fx in F. P" == "CONST eventually (\<lambda>x. P) F" | 
| 60037 | 46 | |
| 60036 | 47 | lemma eventually_Abs_filter: | 
| 48 | assumes "is_filter F" shows "eventually P (Abs_filter F) = F P" | |
| 49 | unfolding eventually_def using assms by (simp add: Abs_filter_inverse) | |
| 50 | ||
| 51 | lemma filter_eq_iff: | |
| 52 | shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')" | |
| 53 | unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def .. | |
| 54 | ||
| 55 | lemma eventually_True [simp]: "eventually (\<lambda>x. True) F" | |
| 56 | unfolding eventually_def | |
| 57 | by (rule is_filter.True [OF is_filter_Rep_filter]) | |
| 58 | ||
| 59 | lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F" | |
| 60 | proof - | |
| 61 | assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext) | |
| 62 | thus "eventually P F" by simp | |
| 63 | qed | |
| 64 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 65 | lemma eventuallyI: "(\<And>x. P x) \<Longrightarrow> eventually P F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 66 | by (auto intro: always_eventually) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 67 | |
| 60036 | 68 | lemma eventually_mono: | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 69 | "\<lbrakk>eventually P F; \<And>x. P x \<Longrightarrow> Q x\<rbrakk> \<Longrightarrow> eventually Q F" | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 70 | unfolding eventually_def | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 71 | by (blast intro: is_filter.mono [OF is_filter_Rep_filter]) | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 72 | |
| 60036 | 73 | lemma eventually_conj: | 
| 74 | assumes P: "eventually (\<lambda>x. P x) F" | |
| 75 | assumes Q: "eventually (\<lambda>x. Q x) F" | |
| 76 | shows "eventually (\<lambda>x. P x \<and> Q x) F" | |
| 77 | using assms unfolding eventually_def | |
| 78 | by (rule is_filter.conj [OF is_filter_Rep_filter]) | |
| 79 | ||
| 80 | lemma eventually_mp: | |
| 81 | assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 82 | assumes "eventually (\<lambda>x. P x) F" | |
| 83 | shows "eventually (\<lambda>x. Q x) F" | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 84 | proof - | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 85 | have "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F" | 
| 60036 | 86 | using assms by (rule eventually_conj) | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 87 | then show ?thesis | 
| 61810 | 88 | by (blast intro: eventually_mono) | 
| 60036 | 89 | qed | 
| 90 | ||
| 91 | lemma eventually_rev_mp: | |
| 92 | assumes "eventually (\<lambda>x. P x) F" | |
| 93 | assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 94 | shows "eventually (\<lambda>x. Q x) F" | |
| 95 | using assms(2) assms(1) by (rule eventually_mp) | |
| 96 | ||
| 97 | lemma eventually_conj_iff: | |
| 98 | "eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F" | |
| 99 | by (auto intro: eventually_conj elim: eventually_rev_mp) | |
| 100 | ||
| 101 | lemma eventually_elim2: | |
| 102 | assumes "eventually (\<lambda>i. P i) F" | |
| 103 | assumes "eventually (\<lambda>i. Q i) F" | |
| 104 | assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i" | |
| 105 | shows "eventually (\<lambda>i. R i) F" | |
| 106 | using assms by (auto elim!: eventually_rev_mp) | |
| 107 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 108 | lemma eventually_ball_finite_distrib: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 109 | "finite A \<Longrightarrow> (eventually (\<lambda>x. \<forall>y\<in>A. P x y) net) \<longleftrightarrow> (\<forall>y\<in>A. eventually (\<lambda>x. P x y) net)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 110 | by (induction A rule: finite_induct) (auto simp: eventually_conj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 111 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 112 | lemma eventually_ball_finite: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 113 | "finite A \<Longrightarrow> \<forall>y\<in>A. eventually (\<lambda>x. P x y) net \<Longrightarrow> eventually (\<lambda>x. \<forall>y\<in>A. P x y) net" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 114 | by (auto simp: eventually_ball_finite_distrib) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 115 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 116 | lemma eventually_all_finite: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 117 | fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 118 | assumes "\<And>y. eventually (\<lambda>x. P x y) net" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 119 | shows "eventually (\<lambda>x. \<forall>y. P x y) net" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 120 | using eventually_ball_finite [of UNIV P] assms by simp | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 121 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 122 | lemma eventually_ex: "(\<forall>\<^sub>Fx in F. \<exists>y. P x y) \<longleftrightarrow> (\<exists>Y. \<forall>\<^sub>Fx in F. P x (Y x))" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 123 | proof | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 124 | assume "\<forall>\<^sub>Fx in F. \<exists>y. P x y" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 125 | then have "\<forall>\<^sub>Fx in F. P x (SOME y. P x y)" | 
| 61810 | 126 | by (auto intro: someI_ex eventually_mono) | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 127 | then show "\<exists>Y. \<forall>\<^sub>Fx in F. P x (Y x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 128 | by auto | 
| 61810 | 129 | qed (auto intro: eventually_mono) | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 130 | |
| 60036 | 131 | lemma not_eventually_impI: "eventually P F \<Longrightarrow> \<not> eventually Q F \<Longrightarrow> \<not> eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | 
| 132 | by (auto intro: eventually_mp) | |
| 133 | ||
| 134 | lemma not_eventuallyD: "\<not> eventually P F \<Longrightarrow> \<exists>x. \<not> P x" | |
| 135 | by (metis always_eventually) | |
| 136 | ||
| 137 | lemma eventually_subst: | |
| 138 | assumes "eventually (\<lambda>n. P n = Q n) F" | |
| 139 | shows "eventually P F = eventually Q F" (is "?L = ?R") | |
| 140 | proof - | |
| 141 | from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 142 | and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F" | |
| 61810 | 143 | by (auto elim: eventually_mono) | 
| 60036 | 144 | then show ?thesis by (auto elim: eventually_elim2) | 
| 145 | qed | |
| 146 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 147 | subsection \<open> Frequently as dual to eventually \<close> | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 148 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 149 | definition frequently :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
 | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 150 | where "frequently P F \<longleftrightarrow> \<not> eventually (\<lambda>x. \<not> P x) F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 151 | |
| 61953 | 152 | syntax | 
| 153 |   "_frequently" :: "pttrn \<Rightarrow> 'a filter \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<exists>\<^sub>F _ in _./ _)" [0, 0, 10] 10)
 | |
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 154 | translations | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 155 | "\<exists>\<^sub>Fx in F. P" == "CONST frequently (\<lambda>x. P) F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 156 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 157 | lemma not_frequently_False [simp]: "\<not> (\<exists>\<^sub>Fx in F. False)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 158 | by (simp add: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 159 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 160 | lemma frequently_ex: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> \<exists>x. P x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 161 | by (auto simp: frequently_def dest: not_eventuallyD) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 162 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 163 | lemma frequentlyE: assumes "frequently P F" obtains x where "P x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 164 | using frequently_ex[OF assms] by auto | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 165 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 166 | lemma frequently_mp: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 167 | assumes ev: "\<forall>\<^sub>Fx in F. P x \<longrightarrow> Q x" and P: "\<exists>\<^sub>Fx in F. P x" shows "\<exists>\<^sub>Fx in F. Q x" | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 168 | proof - | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 169 | from ev have "eventually (\<lambda>x. \<not> Q x \<longrightarrow> \<not> P x) F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 170 | by (rule eventually_rev_mp) (auto intro!: always_eventually) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 171 | from eventually_mp[OF this] P show ?thesis | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 172 | by (auto simp: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 173 | qed | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 174 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 175 | lemma frequently_rev_mp: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 176 | assumes "\<exists>\<^sub>Fx in F. P x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 177 | assumes "\<forall>\<^sub>Fx in F. P x \<longrightarrow> Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 178 | shows "\<exists>\<^sub>Fx in F. Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 179 | using assms(2) assms(1) by (rule frequently_mp) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 180 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 181 | lemma frequently_mono: "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> frequently P F \<Longrightarrow> frequently Q F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 182 | using frequently_mp[of P Q] by (simp add: always_eventually) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 183 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 184 | lemma frequently_elim1: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> (\<And>i. P i \<Longrightarrow> Q i) \<Longrightarrow> \<exists>\<^sub>Fx in F. Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 185 | by (metis frequently_mono) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 186 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 187 | lemma frequently_disj_iff: "(\<exists>\<^sub>Fx in F. P x \<or> Q x) \<longleftrightarrow> (\<exists>\<^sub>Fx in F. P x) \<or> (\<exists>\<^sub>Fx in F. Q x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 188 | by (simp add: frequently_def eventually_conj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 189 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 190 | lemma frequently_disj: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> \<exists>\<^sub>Fx in F. Q x \<Longrightarrow> \<exists>\<^sub>Fx in F. P x \<or> Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 191 | by (simp add: frequently_disj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 192 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 193 | lemma frequently_bex_finite_distrib: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 194 | assumes "finite A" shows "(\<exists>\<^sub>Fx in F. \<exists>y\<in>A. P x y) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>\<^sub>Fx in F. P x y)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 195 | using assms by induction (auto simp: frequently_disj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 196 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 197 | lemma frequently_bex_finite: "finite A \<Longrightarrow> \<exists>\<^sub>Fx in F. \<exists>y\<in>A. P x y \<Longrightarrow> \<exists>y\<in>A. \<exists>\<^sub>Fx in F. P x y" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 198 | by (simp add: frequently_bex_finite_distrib) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 199 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 200 | lemma frequently_all: "(\<exists>\<^sub>Fx in F. \<forall>y. P x y) \<longleftrightarrow> (\<forall>Y. \<exists>\<^sub>Fx in F. P x (Y x))" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 201 | using eventually_ex[of "\<lambda>x y. \<not> P x y" F] by (simp add: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 202 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 203 | lemma | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 204 | shows not_eventually: "\<not> eventually P F \<longleftrightarrow> (\<exists>\<^sub>Fx in F. \<not> P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 205 | and not_frequently: "\<not> frequently P F \<longleftrightarrow> (\<forall>\<^sub>Fx in F. \<not> P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 206 | by (auto simp: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 207 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 208 | lemma frequently_imp_iff: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 209 | "(\<exists>\<^sub>Fx in F. P x \<longrightarrow> Q x) \<longleftrightarrow> (eventually P F \<longrightarrow> frequently Q F)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 210 | unfolding imp_conv_disj frequently_disj_iff not_eventually[symmetric] .. | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 211 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 212 | lemma eventually_frequently_const_simps: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 213 | "(\<exists>\<^sub>Fx in F. P x \<and> C) \<longleftrightarrow> (\<exists>\<^sub>Fx in F. P x) \<and> C" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 214 | "(\<exists>\<^sub>Fx in F. C \<and> P x) \<longleftrightarrow> C \<and> (\<exists>\<^sub>Fx in F. P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 215 | "(\<forall>\<^sub>Fx in F. P x \<or> C) \<longleftrightarrow> (\<forall>\<^sub>Fx in F. P x) \<or> C" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 216 | "(\<forall>\<^sub>Fx in F. C \<or> P x) \<longleftrightarrow> C \<or> (\<forall>\<^sub>Fx in F. P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 217 | "(\<forall>\<^sub>Fx in F. P x \<longrightarrow> C) \<longleftrightarrow> ((\<exists>\<^sub>Fx in F. P x) \<longrightarrow> C)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 218 | "(\<forall>\<^sub>Fx in F. C \<longrightarrow> P x) \<longleftrightarrow> (C \<longrightarrow> (\<forall>\<^sub>Fx in F. P x))" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 219 | by (cases C; simp add: not_frequently)+ | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 220 | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 221 | lemmas eventually_frequently_simps = | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 222 | eventually_frequently_const_simps | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 223 | not_eventually | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 224 | eventually_conj_iff | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 225 | eventually_ball_finite_distrib | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 226 | eventually_ex | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 227 | not_frequently | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 228 | frequently_disj_iff | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 229 | frequently_bex_finite_distrib | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 230 | frequently_all | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 231 | frequently_imp_iff | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 232 | |
| 60758 | 233 | ML \<open> | 
| 61841 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 234 | fun eventually_elim_tac facts = | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 235 | CONTEXT_SUBGOAL (fn (goal, i) => fn (ctxt, st) => | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 236 | let | 
| 67855 | 237 |         val mp_facts = facts RL @{thms eventually_rev_mp}
 | 
| 238 | val rule = | |
| 239 |           @{thm eventuallyI}
 | |
| 240 | |> fold (fn mp_fact => fn th => th RS mp_fact) mp_facts | |
| 241 |           |> funpow (length facts) (fn th => @{thm impI} RS th)
 | |
| 61841 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 242 | val cases_prop = | 
| 67855 | 243 | Thm.prop_of (Rule_Cases.internalize_params (rule RS Goal.init (Thm.cterm_of ctxt goal))) | 
| 61841 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 244 |         val cases = Rule_Cases.make_common ctxt cases_prop [(("elim", []), [])]
 | 
| 67855 | 245 | in CONTEXT_CASES cases (resolve_tac ctxt [rule] i) (ctxt, st) end) | 
| 60758 | 246 | \<close> | 
| 60036 | 247 | |
| 60758 | 248 | method_setup eventually_elim = \<open> | 
| 61841 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 249 | Scan.succeed (fn _ => CONTEXT_METHOD (fn facts => eventually_elim_tac facts 1)) | 
| 60758 | 250 | \<close> "elimination of eventually quantifiers" | 
| 60036 | 251 | |
| 60758 | 252 | subsubsection \<open>Finer-than relation\<close> | 
| 60036 | 253 | |
| 69593 | 254 | text \<open>\<^term>\<open>F \<le> F'\<close> means that filter \<^term>\<open>F\<close> is finer than | 
| 255 | filter \<^term>\<open>F'\<close>.\<close> | |
| 60036 | 256 | |
| 257 | instantiation filter :: (type) complete_lattice | |
| 258 | begin | |
| 259 | ||
| 260 | definition le_filter_def: | |
| 261 | "F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)" | |
| 262 | ||
| 263 | definition | |
| 264 | "(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F" | |
| 265 | ||
| 266 | definition | |
| 267 | "top = Abs_filter (\<lambda>P. \<forall>x. P x)" | |
| 268 | ||
| 269 | definition | |
| 270 | "bot = Abs_filter (\<lambda>P. True)" | |
| 271 | ||
| 272 | definition | |
| 273 | "sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')" | |
| 274 | ||
| 275 | definition | |
| 276 | "inf F F' = Abs_filter | |
| 277 | (\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))" | |
| 278 | ||
| 279 | definition | |
| 280 | "Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)" | |
| 281 | ||
| 282 | definition | |
| 283 |   "Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
 | |
| 284 | ||
| 285 | lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)" | |
| 286 | unfolding top_filter_def | |
| 287 | by (rule eventually_Abs_filter, rule is_filter.intro, auto) | |
| 288 | ||
| 289 | lemma eventually_bot [simp]: "eventually P bot" | |
| 290 | unfolding bot_filter_def | |
| 291 | by (subst eventually_Abs_filter, rule is_filter.intro, auto) | |
| 292 | ||
| 293 | lemma eventually_sup: | |
| 294 | "eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'" | |
| 295 | unfolding sup_filter_def | |
| 296 | by (rule eventually_Abs_filter, rule is_filter.intro) | |
| 297 | (auto elim!: eventually_rev_mp) | |
| 298 | ||
| 299 | lemma eventually_inf: | |
| 300 | "eventually P (inf F F') \<longleftrightarrow> | |
| 301 | (\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))" | |
| 302 | unfolding inf_filter_def | |
| 303 | apply (rule eventually_Abs_filter, rule is_filter.intro) | |
| 304 | apply (fast intro: eventually_True) | |
| 305 | apply clarify | |
| 306 | apply (intro exI conjI) | |
| 307 | apply (erule (1) eventually_conj) | |
| 308 | apply (erule (1) eventually_conj) | |
| 309 | apply simp | |
| 310 | apply auto | |
| 311 | done | |
| 312 | ||
| 313 | lemma eventually_Sup: | |
| 314 | "eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)" | |
| 315 | unfolding Sup_filter_def | |
| 316 | apply (rule eventually_Abs_filter, rule is_filter.intro) | |
| 317 | apply (auto intro: eventually_conj elim!: eventually_rev_mp) | |
| 318 | done | |
| 319 | ||
| 320 | instance proof | |
| 321 | fix F F' F'' :: "'a filter" and S :: "'a filter set" | |
| 322 |   { show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
 | |
| 323 | by (rule less_filter_def) } | |
| 324 |   { show "F \<le> F"
 | |
| 325 | unfolding le_filter_def by simp } | |
| 326 |   { assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
 | |
| 327 | unfolding le_filter_def by simp } | |
| 328 |   { assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
 | |
| 329 | unfolding le_filter_def filter_eq_iff by fast } | |
| 330 |   { show "inf F F' \<le> F" and "inf F F' \<le> F'"
 | |
| 331 | unfolding le_filter_def eventually_inf by (auto intro: eventually_True) } | |
| 332 |   { assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
 | |
| 333 | unfolding le_filter_def eventually_inf | |
| 61810 | 334 | by (auto intro: eventually_mono [OF eventually_conj]) } | 
| 60036 | 335 |   { show "F \<le> sup F F'" and "F' \<le> sup F F'"
 | 
| 336 | unfolding le_filter_def eventually_sup by simp_all } | |
| 337 |   { assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
 | |
| 338 | unfolding le_filter_def eventually_sup by simp } | |
| 339 |   { assume "F'' \<in> S" thus "Inf S \<le> F''"
 | |
| 340 | unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp } | |
| 341 |   { assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
 | |
| 342 | unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp } | |
| 343 |   { assume "F \<in> S" thus "F \<le> Sup S"
 | |
| 344 | unfolding le_filter_def eventually_Sup by simp } | |
| 345 |   { assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
 | |
| 346 | unfolding le_filter_def eventually_Sup by simp } | |
| 347 |   { show "Inf {} = (top::'a filter)"
 | |
| 348 | by (auto simp: top_filter_def Inf_filter_def Sup_filter_def) | |
| 349 | (metis (full_types) top_filter_def always_eventually eventually_top) } | |
| 350 |   { show "Sup {} = (bot::'a filter)"
 | |
| 351 | by (auto simp: bot_filter_def Sup_filter_def) } | |
| 352 | qed | |
| 353 | ||
| 354 | end | |
| 355 | ||
| 66171 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 356 | instance filter :: (type) distrib_lattice | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 357 | proof | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 358 | fix F G H :: "'a filter" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 359 | show "sup F (inf G H) = inf (sup F G) (sup F H)" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 360 | proof (rule order.antisym) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 361 | show "inf (sup F G) (sup F H) \<le> sup F (inf G H)" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 362 | unfolding le_filter_def eventually_sup | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 363 | proof safe | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 364 | fix P assume 1: "eventually P F" and 2: "eventually P (inf G H)" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 365 | from 2 obtain Q R | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 366 | where QR: "eventually Q G" "eventually R H" "\<And>x. Q x \<Longrightarrow> R x \<Longrightarrow> P x" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 367 | by (auto simp: eventually_inf) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 368 | define Q' where "Q' = (\<lambda>x. Q x \<or> P x)" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 369 | define R' where "R' = (\<lambda>x. R x \<or> P x)" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 370 | from 1 have "eventually Q' F" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 371 | by (elim eventually_mono) (auto simp: Q'_def) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 372 | moreover from 1 have "eventually R' F" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 373 | by (elim eventually_mono) (auto simp: R'_def) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 374 | moreover from QR(1) have "eventually Q' G" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 375 | by (elim eventually_mono) (auto simp: Q'_def) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 376 | moreover from QR(2) have "eventually R' H" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 377 | by (elim eventually_mono)(auto simp: R'_def) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 378 | moreover from QR have "P x" if "Q' x" "R' x" for x | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 379 | using that by (auto simp: Q'_def R'_def) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 380 | ultimately show "eventually P (inf (sup F G) (sup F H))" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 381 | by (auto simp: eventually_inf eventually_sup) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 382 | qed | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 383 | qed (auto intro: inf.coboundedI1 inf.coboundedI2) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 384 | qed | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 385 | |
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 386 | |
| 60036 | 387 | lemma filter_leD: | 
| 388 | "F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F" | |
| 389 | unfolding le_filter_def by simp | |
| 390 | ||
| 391 | lemma filter_leI: | |
| 392 | "(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'" | |
| 393 | unfolding le_filter_def by simp | |
| 394 | ||
| 395 | lemma eventually_False: | |
| 396 | "eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot" | |
| 397 | unfolding filter_eq_iff by (auto elim: eventually_rev_mp) | |
| 398 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 399 | lemma eventually_frequently: "F \<noteq> bot \<Longrightarrow> eventually P F \<Longrightarrow> frequently P F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 400 | using eventually_conj[of P F "\<lambda>x. \<not> P x"] | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 401 | by (auto simp add: frequently_def eventually_False) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 402 | |
| 67706 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 403 | lemma eventually_frequentlyE: | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 404 | assumes "eventually P F" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 405 | assumes "eventually (\<lambda>x. \<not> P x \<or> Q x) F" "F\<noteq>bot" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 406 | shows "frequently Q F" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 407 | proof - | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 408 | have "eventually Q F" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 409 | using eventually_conj[OF assms(1,2),simplified] by (auto elim:eventually_mono) | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 410 | then show ?thesis using eventually_frequently[OF \<open>F\<noteq>bot\<close>] by auto | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 411 | qed | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 412 | |
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 413 | lemma eventually_const_iff: "eventually (\<lambda>x. P) F \<longleftrightarrow> P \<or> F = bot" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 414 | by (cases P) (auto simp: eventually_False) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 415 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 416 | lemma eventually_const[simp]: "F \<noteq> bot \<Longrightarrow> eventually (\<lambda>x. P) F \<longleftrightarrow> P" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 417 | by (simp add: eventually_const_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 418 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 419 | lemma frequently_const_iff: "frequently (\<lambda>x. P) F \<longleftrightarrow> P \<and> F \<noteq> bot" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 420 | by (simp add: frequently_def eventually_const_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 421 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 422 | lemma frequently_const[simp]: "F \<noteq> bot \<Longrightarrow> frequently (\<lambda>x. P) F \<longleftrightarrow> P" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 423 | by (simp add: frequently_const_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 424 | |
| 61245 | 425 | lemma eventually_happens: "eventually P net \<Longrightarrow> net = bot \<or> (\<exists>x. P x)" | 
| 426 | by (metis frequentlyE eventually_frequently) | |
| 427 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 428 | lemma eventually_happens': | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 429 | assumes "F \<noteq> bot" "eventually P F" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 430 | shows "\<exists>x. P x" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 431 | using assms eventually_frequently frequentlyE by blast | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 432 | |
| 60036 | 433 | abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool" | 
| 434 | where "trivial_limit F \<equiv> F = bot" | |
| 435 | ||
| 436 | lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F" | |
| 437 | by (rule eventually_False [symmetric]) | |
| 438 | ||
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 439 | lemma False_imp_not_eventually: "(\<forall>x. \<not> P x ) \<Longrightarrow> \<not> trivial_limit net \<Longrightarrow> \<not> eventually (\<lambda>x. P x) net" | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 440 | by (simp add: eventually_False) | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 441 | |
| 60036 | 442 | lemma eventually_Inf: "eventually P (Inf B) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X))" | 
| 443 | proof - | |
| 444 | let ?F = "\<lambda>P. \<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X)" | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 445 | |
| 60036 | 446 |   { fix P have "eventually P (Abs_filter ?F) \<longleftrightarrow> ?F P"
 | 
| 447 | proof (rule eventually_Abs_filter is_filter.intro)+ | |
| 448 | show "?F (\<lambda>x. True)" | |
| 449 |         by (rule exI[of _ "{}"]) (simp add: le_fun_def)
 | |
| 450 | next | |
| 451 | fix P Q | |
| 452 | assume "?F P" then guess X .. | |
| 453 | moreover | |
| 454 | assume "?F Q" then guess Y .. | |
| 455 | ultimately show "?F (\<lambda>x. P x \<and> Q x)" | |
| 456 | by (intro exI[of _ "X \<union> Y"]) | |
| 457 | (auto simp: Inf_union_distrib eventually_inf) | |
| 458 | next | |
| 459 | fix P Q | |
| 460 | assume "?F P" then guess X .. | |
| 461 | moreover assume "\<forall>x. P x \<longrightarrow> Q x" | |
| 462 | ultimately show "?F Q" | |
| 61810 | 463 | by (intro exI[of _ X]) (auto elim: eventually_mono) | 
| 60036 | 464 | qed } | 
| 465 | note eventually_F = this | |
| 466 | ||
| 467 | have "Inf B = Abs_filter ?F" | |
| 468 | proof (intro antisym Inf_greatest) | |
| 469 | show "Inf B \<le> Abs_filter ?F" | |
| 470 | by (auto simp: le_filter_def eventually_F dest: Inf_superset_mono) | |
| 471 | next | |
| 472 | fix F assume "F \<in> B" then show "Abs_filter ?F \<le> F" | |
| 473 |       by (auto simp add: le_filter_def eventually_F intro!: exI[of _ "{F}"])
 | |
| 474 | qed | |
| 475 | then show ?thesis | |
| 476 | by (simp add: eventually_F) | |
| 477 | qed | |
| 478 | ||
| 67613 | 479 | lemma eventually_INF: "eventually P (\<Sqinter>b\<in>B. F b) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (\<Sqinter>b\<in>X. F b))" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 480 | unfolding eventually_Inf [of P "F`B"] | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 481 | by (metis finite_imageI image_mono finite_subset_image) | 
| 60036 | 482 | |
| 483 | lemma Inf_filter_not_bot: | |
| 484 | fixes B :: "'a filter set" | |
| 485 | shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> Inf X \<noteq> bot) \<Longrightarrow> Inf B \<noteq> bot" | |
| 486 | unfolding trivial_limit_def eventually_Inf[of _ B] | |
| 487 | bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp | |
| 488 | ||
| 489 | lemma INF_filter_not_bot: | |
| 490 | fixes F :: "'i \<Rightarrow> 'a filter" | |
| 67613 | 491 | shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> (\<Sqinter>b\<in>X. F b) \<noteq> bot) \<Longrightarrow> (\<Sqinter>b\<in>B. F b) \<noteq> bot" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 492 | unfolding trivial_limit_def eventually_INF [of _ _ B] | 
| 60036 | 493 | bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp | 
| 494 | ||
| 495 | lemma eventually_Inf_base: | |
| 496 |   assumes "B \<noteq> {}" and base: "\<And>F G. F \<in> B \<Longrightarrow> G \<in> B \<Longrightarrow> \<exists>x\<in>B. x \<le> inf F G"
 | |
| 497 | shows "eventually P (Inf B) \<longleftrightarrow> (\<exists>b\<in>B. eventually P b)" | |
| 498 | proof (subst eventually_Inf, safe) | |
| 499 | fix X assume "finite X" "X \<subseteq> B" | |
| 500 | then have "\<exists>b\<in>B. \<forall>x\<in>X. b \<le> x" | |
| 501 | proof induct | |
| 502 | case empty then show ?case | |
| 60758 | 503 |       using \<open>B \<noteq> {}\<close> by auto
 | 
| 60036 | 504 | next | 
| 505 | case (insert x X) | |
| 506 | then obtain b where "b \<in> B" "\<And>x. x \<in> X \<Longrightarrow> b \<le> x" | |
| 507 | by auto | |
| 60758 | 508 | with \<open>insert x X \<subseteq> B\<close> base[of b x] show ?case | 
| 60036 | 509 | by (auto intro: order_trans) | 
| 510 | qed | |
| 511 | then obtain b where "b \<in> B" "b \<le> Inf X" | |
| 512 | by (auto simp: le_Inf_iff) | |
| 513 | then show "eventually P (Inf X) \<Longrightarrow> Bex B (eventually P)" | |
| 514 | by (intro bexI[of _ b]) (auto simp: le_filter_def) | |
| 515 | qed (auto intro!: exI[of _ "{x}" for x])
 | |
| 516 | ||
| 517 | lemma eventually_INF_base: | |
| 518 |   "B \<noteq> {} \<Longrightarrow> (\<And>a b. a \<in> B \<Longrightarrow> b \<in> B \<Longrightarrow> \<exists>x\<in>B. F x \<le> inf (F a) (F b)) \<Longrightarrow>
 | |
| 67613 | 519 | eventually P (\<Sqinter>b\<in>B. F b) \<longleftrightarrow> (\<exists>b\<in>B. eventually P (F b))" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 520 | by (subst eventually_Inf_base) auto | 
| 60036 | 521 | |
| 67613 | 522 | lemma eventually_INF1: "i \<in> I \<Longrightarrow> eventually P (F i) \<Longrightarrow> eventually P (\<Sqinter>i\<in>I. F i)" | 
| 62369 | 523 | using filter_leD[OF INF_lower] . | 
| 524 | ||
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 525 | lemma eventually_INF_finite: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 526 | assumes "finite A" | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
68860diff
changeset | 527 | shows "eventually P (\<Sqinter> x\<in>A. F x) \<longleftrightarrow> | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 528 | (\<exists>Q. (\<forall>x\<in>A. eventually (Q x) (F x)) \<and> (\<forall>y. (\<forall>x\<in>A. Q x y) \<longrightarrow> P y))" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 529 | using assms | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 530 | proof (induction arbitrary: P rule: finite_induct) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 531 | case (insert a A P) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 532 | from insert.hyps have [simp]: "x \<noteq> a" if "x \<in> A" for x | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 533 | using that by auto | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
68860diff
changeset | 534 | have "eventually P (\<Sqinter> x\<in>insert a A. F x) \<longleftrightarrow> | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 535 | (\<exists>Q R S. eventually Q (F a) \<and> (( (\<forall>x\<in>A. eventually (S x) (F x)) \<and> | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 536 | (\<forall>y. (\<forall>x\<in>A. S x y) \<longrightarrow> R y)) \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x)))" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 537 | unfolding ex_simps by (simp add: eventually_inf insert.IH) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 538 | also have "\<dots> \<longleftrightarrow> (\<exists>Q. (\<forall>x\<in>insert a A. eventually (Q x) (F x)) \<and> | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 539 | (\<forall>y. (\<forall>x\<in>insert a A. Q x y) \<longrightarrow> P y))" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 540 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 541 | case (1 Q R S) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 542 | thus ?case using 1 by (intro exI[of _ "S(a := Q)"]) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 543 | next | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 544 | case (2 Q) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 545 | show ?case | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 546 | by (rule exI[of _ "Q a"], rule exI[of _ "\<lambda>y. \<forall>x\<in>A. Q x y"], | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 547 | rule exI[of _ "Q(a := (\<lambda>_. True))"]) (use 2 in auto) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 548 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 549 | finally show ?case . | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 550 | qed auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 551 | |
| 60758 | 552 | subsubsection \<open>Map function for filters\<close> | 
| 60036 | 553 | |
| 554 | definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
 | |
| 555 | where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)" | |
| 556 | ||
| 557 | lemma eventually_filtermap: | |
| 558 | "eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F" | |
| 559 | unfolding filtermap_def | |
| 560 | apply (rule eventually_Abs_filter) | |
| 561 | apply (rule is_filter.intro) | |
| 562 | apply (auto elim!: eventually_rev_mp) | |
| 563 | done | |
| 564 | ||
| 565 | lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F" | |
| 566 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 567 | ||
| 568 | lemma filtermap_filtermap: | |
| 569 | "filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F" | |
| 570 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 571 | ||
| 572 | lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'" | |
| 573 | unfolding le_filter_def eventually_filtermap by simp | |
| 574 | ||
| 575 | lemma filtermap_bot [simp]: "filtermap f bot = bot" | |
| 576 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 577 | ||
| 67956 | 578 | lemma filtermap_bot_iff: "filtermap f F = bot \<longleftrightarrow> F = bot" | 
| 579 | by (simp add: trivial_limit_def eventually_filtermap) | |
| 580 | ||
| 60036 | 581 | lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)" | 
| 67956 | 582 | by (simp add: filter_eq_iff eventually_filtermap eventually_sup) | 
| 583 | ||
| 584 | lemma filtermap_SUP: "filtermap f (\<Squnion>b\<in>B. F b) = (\<Squnion>b\<in>B. filtermap f (F b))" | |
| 585 | by (simp add: filter_eq_iff eventually_Sup eventually_filtermap) | |
| 60036 | 586 | |
| 587 | lemma filtermap_inf: "filtermap f (inf F1 F2) \<le> inf (filtermap f F1) (filtermap f F2)" | |
| 67956 | 588 | by (intro inf_greatest filtermap_mono inf_sup_ord) | 
| 60036 | 589 | |
| 67613 | 590 | lemma filtermap_INF: "filtermap f (\<Sqinter>b\<in>B. F b) \<le> (\<Sqinter>b\<in>B. filtermap f (F b))" | 
| 67956 | 591 | by (rule INF_greatest, rule filtermap_mono, erule INF_lower) | 
| 62101 | 592 | |
| 66162 | 593 | |
| 594 | subsubsection \<open>Contravariant map function for filters\<close> | |
| 595 | ||
| 596 | definition filtercomap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter" where
 | |
| 597 | "filtercomap f F = Abs_filter (\<lambda>P. \<exists>Q. eventually Q F \<and> (\<forall>x. Q (f x) \<longrightarrow> P x))" | |
| 598 | ||
| 599 | lemma eventually_filtercomap: | |
| 600 | "eventually P (filtercomap f F) \<longleftrightarrow> (\<exists>Q. eventually Q F \<and> (\<forall>x. Q (f x) \<longrightarrow> P x))" | |
| 601 | unfolding filtercomap_def | |
| 602 | proof (intro eventually_Abs_filter, unfold_locales, goal_cases) | |
| 603 | case 1 | |
| 604 | show ?case by (auto intro!: exI[of _ "\<lambda>_. True"]) | |
| 605 | next | |
| 606 | case (2 P Q) | |
| 607 | from 2(1) guess P' by (elim exE conjE) note P' = this | |
| 608 | from 2(2) guess Q' by (elim exE conjE) note Q' = this | |
| 609 | show ?case | |
| 610 | by (rule exI[of _ "\<lambda>x. P' x \<and> Q' x"]) | |
| 611 | (insert P' Q', auto intro!: eventually_conj) | |
| 612 | next | |
| 613 | case (3 P Q) | |
| 614 | thus ?case by blast | |
| 615 | qed | |
| 616 | ||
| 617 | lemma filtercomap_ident: "filtercomap (\<lambda>x. x) F = F" | |
| 618 | by (auto simp: filter_eq_iff eventually_filtercomap elim!: eventually_mono) | |
| 619 | ||
| 620 | lemma filtercomap_filtercomap: "filtercomap f (filtercomap g F) = filtercomap (\<lambda>x. g (f x)) F" | |
| 621 | unfolding filter_eq_iff by (auto simp: eventually_filtercomap) | |
| 622 | ||
| 623 | lemma filtercomap_mono: "F \<le> F' \<Longrightarrow> filtercomap f F \<le> filtercomap f F'" | |
| 624 | by (auto simp: eventually_filtercomap le_filter_def) | |
| 625 | ||
| 626 | lemma filtercomap_bot [simp]: "filtercomap f bot = bot" | |
| 627 | by (auto simp: filter_eq_iff eventually_filtercomap) | |
| 628 | ||
| 629 | lemma filtercomap_top [simp]: "filtercomap f top = top" | |
| 630 | by (auto simp: filter_eq_iff eventually_filtercomap) | |
| 631 | ||
| 632 | lemma filtercomap_inf: "filtercomap f (inf F1 F2) = inf (filtercomap f F1) (filtercomap f F2)" | |
| 633 | unfolding filter_eq_iff | |
| 634 | proof safe | |
| 635 | fix P | |
| 636 | assume "eventually P (filtercomap f (F1 \<sqinter> F2))" | |
| 637 | then obtain Q R S where *: | |
| 638 | "eventually Q F1" "eventually R F2" "\<And>x. Q x \<Longrightarrow> R x \<Longrightarrow> S x" "\<And>x. S (f x) \<Longrightarrow> P x" | |
| 639 | unfolding eventually_filtercomap eventually_inf by blast | |
| 640 | from * have "eventually (\<lambda>x. Q (f x)) (filtercomap f F1)" | |
| 641 | "eventually (\<lambda>x. R (f x)) (filtercomap f F2)" | |
| 642 | by (auto simp: eventually_filtercomap) | |
| 643 | with * show "eventually P (filtercomap f F1 \<sqinter> filtercomap f F2)" | |
| 644 | unfolding eventually_inf by blast | |
| 645 | next | |
| 646 | fix P | |
| 647 | assume "eventually P (inf (filtercomap f F1) (filtercomap f F2))" | |
| 648 | then obtain Q Q' R R' where *: | |
| 649 | "eventually Q F1" "eventually R F2" "\<And>x. Q (f x) \<Longrightarrow> Q' x" "\<And>x. R (f x) \<Longrightarrow> R' x" | |
| 650 | "\<And>x. Q' x \<Longrightarrow> R' x \<Longrightarrow> P x" | |
| 651 | unfolding eventually_filtercomap eventually_inf by blast | |
| 652 | from * have "eventually (\<lambda>x. Q x \<and> R x) (F1 \<sqinter> F2)" by (auto simp: eventually_inf) | |
| 653 | with * show "eventually P (filtercomap f (F1 \<sqinter> F2))" | |
| 654 | by (auto simp: eventually_filtercomap) | |
| 655 | qed | |
| 656 | ||
| 657 | lemma filtercomap_sup: "filtercomap f (sup F1 F2) \<ge> sup (filtercomap f F1) (filtercomap f F2)" | |
| 67956 | 658 | by (intro sup_least filtercomap_mono inf_sup_ord) | 
| 66162 | 659 | |
| 67613 | 660 | lemma filtercomap_INF: "filtercomap f (\<Sqinter>b\<in>B. F b) = (\<Sqinter>b\<in>B. filtercomap f (F b))" | 
| 66162 | 661 | proof - | 
| 67613 | 662 | have *: "filtercomap f (\<Sqinter>b\<in>B. F b) = (\<Sqinter>b\<in>B. filtercomap f (F b))" if "finite B" for B | 
| 66162 | 663 | using that by induction (simp_all add: filtercomap_inf) | 
| 664 | show ?thesis unfolding filter_eq_iff | |
| 665 | proof | |
| 666 | fix P | |
| 67613 | 667 | have "eventually P (\<Sqinter>b\<in>B. filtercomap f (F b)) \<longleftrightarrow> | 
| 66162 | 668 | (\<exists>X. (X \<subseteq> B \<and> finite X) \<and> eventually P (\<Sqinter>b\<in>X. filtercomap f (F b)))" | 
| 669 | by (subst eventually_INF) blast | |
| 67613 | 670 | also have "\<dots> \<longleftrightarrow> (\<exists>X. (X \<subseteq> B \<and> finite X) \<and> eventually P (filtercomap f (\<Sqinter>b\<in>X. F b)))" | 
| 66162 | 671 | by (rule ex_cong) (simp add: *) | 
| 69275 | 672 | also have "\<dots> \<longleftrightarrow> eventually P (filtercomap f (\<Sqinter>(F ` B)))" | 
| 66162 | 673 | unfolding eventually_filtercomap by (subst eventually_INF) blast | 
| 69275 | 674 | finally show "eventually P (filtercomap f (\<Sqinter>(F ` B))) = | 
| 66162 | 675 | eventually P (\<Sqinter>b\<in>B. filtercomap f (F b))" .. | 
| 676 | qed | |
| 677 | qed | |
| 678 | ||
| 67956 | 679 | lemma filtercomap_SUP: | 
| 680 | "filtercomap f (\<Squnion>b\<in>B. F b) \<ge> (\<Squnion>b\<in>B. filtercomap f (F b))" | |
| 681 | by (intro SUP_least filtercomap_mono SUP_upper) | |
| 682 | ||
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 683 | lemma filtermap_le_iff_le_filtercomap: "filtermap f F \<le> G \<longleftrightarrow> F \<le> filtercomap f G" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 684 | unfolding le_filter_def eventually_filtermap eventually_filtercomap | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 685 | using eventually_mono by auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 686 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 687 | lemma filtercomap_neq_bot: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 688 | assumes "\<And>P. eventually P F \<Longrightarrow> \<exists>x. P (f x)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 689 | shows "filtercomap f F \<noteq> bot" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 690 | using assms by (auto simp: trivial_limit_def eventually_filtercomap) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 691 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 692 | lemma filtercomap_neq_bot_surj: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 693 | assumes "F \<noteq> bot" and "surj f" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 694 | shows "filtercomap f F \<noteq> bot" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 695 | proof (rule filtercomap_neq_bot) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 696 | fix P assume *: "eventually P F" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 697 | show "\<exists>x. P (f x)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 698 | proof (rule ccontr) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 699 | assume **: "\<not>(\<exists>x. P (f x))" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 700 | from * have "eventually (\<lambda>_. False) F" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 701 | proof eventually_elim | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 702 | case (elim x) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 703 | from \<open>surj f\<close> obtain y where "x = f y" by auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 704 | with elim and ** show False by auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 705 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 706 | with assms show False by (simp add: trivial_limit_def) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 707 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 708 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 709 | |
| 66162 | 710 | lemma eventually_filtercomapI [intro]: | 
| 711 | assumes "eventually P F" | |
| 712 | shows "eventually (\<lambda>x. P (f x)) (filtercomap f F)" | |
| 713 | using assms by (auto simp: eventually_filtercomap) | |
| 714 | ||
| 715 | lemma filtermap_filtercomap: "filtermap f (filtercomap f F) \<le> F" | |
| 716 | by (auto simp: le_filter_def eventually_filtermap eventually_filtercomap) | |
| 67956 | 717 | |
| 66162 | 718 | lemma filtercomap_filtermap: "filtercomap f (filtermap f F) \<ge> F" | 
| 719 | unfolding le_filter_def eventually_filtermap eventually_filtercomap | |
| 720 | by (auto elim!: eventually_mono) | |
| 721 | ||
| 722 | ||
| 60758 | 723 | subsubsection \<open>Standard filters\<close> | 
| 60036 | 724 | |
| 725 | definition principal :: "'a set \<Rightarrow> 'a filter" where | |
| 726 | "principal S = Abs_filter (\<lambda>P. \<forall>x\<in>S. P x)" | |
| 727 | ||
| 728 | lemma eventually_principal: "eventually P (principal S) \<longleftrightarrow> (\<forall>x\<in>S. P x)" | |
| 729 | unfolding principal_def | |
| 730 | by (rule eventually_Abs_filter, rule is_filter.intro) auto | |
| 731 | ||
| 732 | lemma eventually_inf_principal: "eventually P (inf F (principal s)) \<longleftrightarrow> eventually (\<lambda>x. x \<in> s \<longrightarrow> P x) F" | |
| 61810 | 733 | unfolding eventually_inf eventually_principal by (auto elim: eventually_mono) | 
| 60036 | 734 | |
| 735 | lemma principal_UNIV[simp]: "principal UNIV = top" | |
| 736 | by (auto simp: filter_eq_iff eventually_principal) | |
| 737 | ||
| 738 | lemma principal_empty[simp]: "principal {} = bot"
 | |
| 739 | by (auto simp: filter_eq_iff eventually_principal) | |
| 740 | ||
| 741 | lemma principal_eq_bot_iff: "principal X = bot \<longleftrightarrow> X = {}"
 | |
| 742 | by (auto simp add: filter_eq_iff eventually_principal) | |
| 743 | ||
| 744 | lemma principal_le_iff[iff]: "principal A \<le> principal B \<longleftrightarrow> A \<subseteq> B" | |
| 745 | by (auto simp: le_filter_def eventually_principal) | |
| 746 | ||
| 747 | lemma le_principal: "F \<le> principal A \<longleftrightarrow> eventually (\<lambda>x. x \<in> A) F" | |
| 748 | unfolding le_filter_def eventually_principal | |
| 749 | apply safe | |
| 750 | apply (erule_tac x="\<lambda>x. x \<in> A" in allE) | |
| 61810 | 751 | apply (auto elim: eventually_mono) | 
| 60036 | 752 | done | 
| 753 | ||
| 754 | lemma principal_inject[iff]: "principal A = principal B \<longleftrightarrow> A = B" | |
| 755 | unfolding eq_iff by simp | |
| 756 | ||
| 757 | lemma sup_principal[simp]: "sup (principal A) (principal B) = principal (A \<union> B)" | |
| 758 | unfolding filter_eq_iff eventually_sup eventually_principal by auto | |
| 759 | ||
| 760 | lemma inf_principal[simp]: "inf (principal A) (principal B) = principal (A \<inter> B)" | |
| 761 | unfolding filter_eq_iff eventually_inf eventually_principal | |
| 762 | by (auto intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"]) | |
| 763 | ||
| 67613 | 764 | lemma SUP_principal[simp]: "(\<Squnion>i\<in>I. principal (A i)) = principal (\<Union>i\<in>I. A i)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 765 | unfolding filter_eq_iff eventually_Sup by (auto simp: eventually_principal) | 
| 60036 | 766 | |
| 67613 | 767 | lemma INF_principal_finite: "finite X \<Longrightarrow> (\<Sqinter>x\<in>X. principal (f x)) = principal (\<Inter>x\<in>X. f x)" | 
| 60036 | 768 | by (induct X rule: finite_induct) auto | 
| 769 | ||
| 770 | lemma filtermap_principal[simp]: "filtermap f (principal A) = principal (f ` A)" | |
| 771 | unfolding filter_eq_iff eventually_filtermap eventually_principal by simp | |
| 66162 | 772 | |
| 773 | lemma filtercomap_principal[simp]: "filtercomap f (principal A) = principal (f -` A)" | |
| 774 | unfolding filter_eq_iff eventually_filtercomap eventually_principal by fast | |
| 60036 | 775 | |
| 60758 | 776 | subsubsection \<open>Order filters\<close> | 
| 60036 | 777 | |
| 778 | definition at_top :: "('a::order) filter"
 | |
| 67613 | 779 |   where "at_top = (\<Sqinter>k. principal {k ..})"
 | 
| 60036 | 780 | |
| 67613 | 781 | lemma at_top_sub: "at_top = (\<Sqinter>k\<in>{c::'a::linorder..}. principal {k ..})"
 | 
| 60036 | 782 | by (auto intro!: INF_eq max.cobounded1 max.cobounded2 simp: at_top_def) | 
| 783 | ||
| 784 | lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)" | |
| 785 | unfolding at_top_def | |
| 786 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2) | |
| 787 | ||
| 66162 | 788 | lemma eventually_filtercomap_at_top_linorder: | 
| 789 | "eventually P (filtercomap f at_top) \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>x. f x \<ge> N \<longrightarrow> P x)" | |
| 790 | by (auto simp: eventually_filtercomap eventually_at_top_linorder) | |
| 791 | ||
| 63556 | 792 | lemma eventually_at_top_linorderI: | 
| 793 | fixes c::"'a::linorder" | |
| 794 | assumes "\<And>x. c \<le> x \<Longrightarrow> P x" | |
| 795 | shows "eventually P at_top" | |
| 796 | using assms by (auto simp: eventually_at_top_linorder) | |
| 797 | ||
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 798 | lemma eventually_ge_at_top [simp]: | 
| 60036 | 799 | "eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top" | 
| 800 | unfolding eventually_at_top_linorder by auto | |
| 801 | ||
| 802 | lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>n>N. P n)"
 | |
| 803 | proof - | |
| 67613 | 804 |   have "eventually P (\<Sqinter>k. principal {k <..}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n>N. P n)"
 | 
| 60036 | 805 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2) | 
| 67613 | 806 |   also have "(\<Sqinter>k. principal {k::'a <..}) = at_top"
 | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 807 | unfolding at_top_def | 
| 60036 | 808 | by (intro INF_eq) (auto intro: less_imp_le simp: Ici_subset_Ioi_iff gt_ex) | 
| 809 | finally show ?thesis . | |
| 810 | qed | |
| 66162 | 811 | |
| 812 | lemma eventually_filtercomap_at_top_dense: | |
| 813 |   "eventually P (filtercomap f at_top) \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>x. f x > N \<longrightarrow> P x)"
 | |
| 814 | by (auto simp: eventually_filtercomap eventually_at_top_dense) | |
| 60036 | 815 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 816 | lemma eventually_at_top_not_equal [simp]: "eventually (\<lambda>x::'a::{no_top, linorder}. x \<noteq> c) at_top"
 | 
| 60721 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 817 | unfolding eventually_at_top_dense by auto | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 818 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 819 | lemma eventually_gt_at_top [simp]: "eventually (\<lambda>x. (c::_::{no_top, linorder}) < x) at_top"
 | 
| 60036 | 820 | unfolding eventually_at_top_dense by auto | 
| 821 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 822 | lemma eventually_all_ge_at_top: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 823 |   assumes "eventually P (at_top :: ('a :: linorder) filter)"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 824 | shows "eventually (\<lambda>x. \<forall>y\<ge>x. P y) at_top" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 825 | proof - | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 826 | from assms obtain x where "\<And>y. y \<ge> x \<Longrightarrow> P y" by (auto simp: eventually_at_top_linorder) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 827 | hence "\<forall>z\<ge>y. P z" if "y \<ge> x" for y using that by simp | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 828 | thus ?thesis by (auto simp: eventually_at_top_linorder) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 829 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 830 | |
| 60036 | 831 | definition at_bot :: "('a::order) filter"
 | 
| 67613 | 832 |   where "at_bot = (\<Sqinter>k. principal {.. k})"
 | 
| 60036 | 833 | |
| 67613 | 834 | lemma at_bot_sub: "at_bot = (\<Sqinter>k\<in>{.. c::'a::linorder}. principal {.. k})"
 | 
| 60036 | 835 | by (auto intro!: INF_eq min.cobounded1 min.cobounded2 simp: at_bot_def) | 
| 836 | ||
| 837 | lemma eventually_at_bot_linorder: | |
| 838 | fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)" | |
| 839 | unfolding at_bot_def | |
| 840 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2) | |
| 841 | ||
| 66162 | 842 | lemma eventually_filtercomap_at_bot_linorder: | 
| 843 | "eventually P (filtercomap f at_bot) \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>x. f x \<le> N \<longrightarrow> P x)" | |
| 844 | by (auto simp: eventually_filtercomap eventually_at_bot_linorder) | |
| 845 | ||
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 846 | lemma eventually_le_at_bot [simp]: | 
| 60036 | 847 | "eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot" | 
| 848 | unfolding eventually_at_bot_linorder by auto | |
| 849 | ||
| 850 | lemma eventually_at_bot_dense: "eventually P at_bot \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>n<N. P n)"
 | |
| 851 | proof - | |
| 67613 | 852 |   have "eventually P (\<Sqinter>k. principal {..< k}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n<N. P n)"
 | 
| 60036 | 853 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2) | 
| 67613 | 854 |   also have "(\<Sqinter>k. principal {..< k::'a}) = at_bot"
 | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 855 | unfolding at_bot_def | 
| 60036 | 856 | by (intro INF_eq) (auto intro: less_imp_le simp: Iic_subset_Iio_iff lt_ex) | 
| 857 | finally show ?thesis . | |
| 858 | qed | |
| 859 | ||
| 66162 | 860 | lemma eventually_filtercomap_at_bot_dense: | 
| 861 |   "eventually P (filtercomap f at_bot) \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>x. f x < N \<longrightarrow> P x)"
 | |
| 862 | by (auto simp: eventually_filtercomap eventually_at_bot_dense) | |
| 863 | ||
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 864 | lemma eventually_at_bot_not_equal [simp]: "eventually (\<lambda>x::'a::{no_bot, linorder}. x \<noteq> c) at_bot"
 | 
| 60721 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 865 | unfolding eventually_at_bot_dense by auto | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 866 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 867 | lemma eventually_gt_at_bot [simp]: | 
| 60036 | 868 | "eventually (\<lambda>x. x < (c::_::unbounded_dense_linorder)) at_bot" | 
| 869 | unfolding eventually_at_bot_dense by auto | |
| 870 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 871 | lemma trivial_limit_at_bot_linorder [simp]: "\<not> trivial_limit (at_bot ::('a::linorder) filter)"
 | 
| 60036 | 872 | unfolding trivial_limit_def | 
| 873 | by (metis eventually_at_bot_linorder order_refl) | |
| 874 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 875 | lemma trivial_limit_at_top_linorder [simp]: "\<not> trivial_limit (at_top ::('a::linorder) filter)"
 | 
| 60036 | 876 | unfolding trivial_limit_def | 
| 877 | by (metis eventually_at_top_linorder order_refl) | |
| 878 | ||
| 60758 | 879 | subsection \<open>Sequentially\<close> | 
| 60036 | 880 | |
| 881 | abbreviation sequentially :: "nat filter" | |
| 882 | where "sequentially \<equiv> at_top" | |
| 883 | ||
| 884 | lemma eventually_sequentially: | |
| 885 | "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)" | |
| 886 | by (rule eventually_at_top_linorder) | |
| 887 | ||
| 888 | lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot" | |
| 889 | unfolding filter_eq_iff eventually_sequentially by auto | |
| 890 | ||
| 891 | lemmas trivial_limit_sequentially = sequentially_bot | |
| 892 | ||
| 893 | lemma eventually_False_sequentially [simp]: | |
| 894 | "\<not> eventually (\<lambda>n. False) sequentially" | |
| 895 | by (simp add: eventually_False) | |
| 896 | ||
| 897 | lemma le_sequentially: | |
| 898 | "F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)" | |
| 899 | by (simp add: at_top_def le_INF_iff le_principal) | |
| 900 | ||
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60758diff
changeset | 901 | lemma eventually_sequentiallyI [intro?]: | 
| 60036 | 902 | assumes "\<And>x. c \<le> x \<Longrightarrow> P x" | 
| 903 | shows "eventually P sequentially" | |
| 904 | using assms by (auto simp: eventually_sequentially) | |
| 905 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 906 | lemma eventually_sequentially_Suc [simp]: "eventually (\<lambda>i. P (Suc i)) sequentially \<longleftrightarrow> eventually P sequentially" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 907 | unfolding eventually_sequentially by (metis Suc_le_D Suc_le_mono le_Suc_eq) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 908 | |
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 909 | lemma eventually_sequentially_seg [simp]: "eventually (\<lambda>n. P (n + k)) sequentially \<longleftrightarrow> eventually P sequentially" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 910 | using eventually_sequentially_Suc[of "\<lambda>n. P (n + k)" for k] by (induction k) auto | 
| 60036 | 911 | |
| 67956 | 912 | lemma filtermap_sequentually_ne_bot: "filtermap f sequentially \<noteq> bot" | 
| 913 | by (simp add: filtermap_bot_iff) | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 914 | |
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 915 | subsection \<open>Increasing finite subsets\<close> | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 916 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 917 | definition finite_subsets_at_top where | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
68860diff
changeset | 918 |   "finite_subsets_at_top A = (\<Sqinter> X\<in>{X. finite X \<and> X \<subseteq> A}. principal {Y. finite Y \<and> X \<subseteq> Y \<and> Y \<subseteq> A})"
 | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 919 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 920 | lemma eventually_finite_subsets_at_top: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 921 | "eventually P (finite_subsets_at_top A) \<longleftrightarrow> | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 922 | (\<exists>X. finite X \<and> X \<subseteq> A \<and> (\<forall>Y. finite Y \<and> X \<subseteq> Y \<and> Y \<subseteq> A \<longrightarrow> P Y))" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 923 | unfolding finite_subsets_at_top_def | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 924 | proof (subst eventually_INF_base, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 925 |   show "{X. finite X \<and> X \<subseteq> A} \<noteq> {}" by auto
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 926 | next | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 927 | case (2 B C) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 928 | thus ?case by (intro bexI[of _ "B \<union> C"]) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 929 | qed (simp_all add: eventually_principal) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 930 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 931 | lemma eventually_finite_subsets_at_top_weakI [intro]: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 932 | assumes "\<And>X. finite X \<Longrightarrow> X \<subseteq> A \<Longrightarrow> P X" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 933 | shows "eventually P (finite_subsets_at_top A)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 934 | proof - | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 935 | have "eventually (\<lambda>X. finite X \<and> X \<subseteq> A) (finite_subsets_at_top A)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 936 | by (auto simp: eventually_finite_subsets_at_top) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 937 | thus ?thesis by eventually_elim (use assms in auto) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 938 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 939 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 940 | lemma finite_subsets_at_top_neq_bot [simp]: "finite_subsets_at_top A \<noteq> bot" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 941 | proof - | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 942 | have "\<not>eventually (\<lambda>x. False) (finite_subsets_at_top A)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 943 | by (auto simp: eventually_finite_subsets_at_top) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 944 | thus ?thesis by auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 945 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 946 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 947 | lemma filtermap_image_finite_subsets_at_top: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 948 | assumes "inj_on f A" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 949 | shows "filtermap ((`) f) (finite_subsets_at_top A) = finite_subsets_at_top (f ` A)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 950 | unfolding filter_eq_iff eventually_filtermap | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 951 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 952 | case (1 P) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 953 | then obtain X where X: "finite X" "X \<subseteq> A" "\<And>Y. finite Y \<Longrightarrow> X \<subseteq> Y \<Longrightarrow> Y \<subseteq> A \<Longrightarrow> P (f ` Y)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 954 | unfolding eventually_finite_subsets_at_top by force | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 955 | show ?case unfolding eventually_finite_subsets_at_top eventually_filtermap | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 956 | proof (rule exI[of _ "f ` X"], intro conjI allI impI, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 957 | case (3 Y) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 958 | with assms and X(1,2) have "P (f ` (f -` Y \<inter> A))" using X(1,2) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 959 | by (intro X(3) finite_vimage_IntI) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 960 | also have "f ` (f -` Y \<inter> A) = Y" using assms 3 by blast | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 961 | finally show ?case . | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 962 | qed (insert assms X(1,2), auto intro!: finite_vimage_IntI) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 963 | next | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 964 | case (2 P) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 965 | then obtain X where X: "finite X" "X \<subseteq> f ` A" "\<And>Y. finite Y \<Longrightarrow> X \<subseteq> Y \<Longrightarrow> Y \<subseteq> f ` A \<Longrightarrow> P Y" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 966 | unfolding eventually_finite_subsets_at_top by force | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 967 | show ?case unfolding eventually_finite_subsets_at_top eventually_filtermap | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 968 | proof (rule exI[of _ "f -` X \<inter> A"], intro conjI allI impI, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 969 | case (3 Y) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 970 | with X(1,2) and assms show ?case by (intro X(3)) force+ | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 971 | qed (insert assms X(1), auto intro!: finite_vimage_IntI) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 972 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 973 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 974 | lemma eventually_finite_subsets_at_top_finite: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 975 | assumes "finite A" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 976 | shows "eventually P (finite_subsets_at_top A) \<longleftrightarrow> P A" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 977 | unfolding eventually_finite_subsets_at_top using assms by force | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 978 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 979 | lemma finite_subsets_at_top_finite: "finite A \<Longrightarrow> finite_subsets_at_top A = principal {A}"
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 980 | by (auto simp: filter_eq_iff eventually_finite_subsets_at_top_finite eventually_principal) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 981 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 982 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 983 | subsection \<open>The cofinite filter\<close> | 
| 60039 | 984 | |
| 985 | definition "cofinite = Abs_filter (\<lambda>P. finite {x. \<not> P x})"
 | |
| 986 | ||
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 987 | abbreviation Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<exists>\<^sub>\<infinity>" 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 988 | where "Inf_many P \<equiv> frequently P cofinite" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 989 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 990 | abbreviation Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<forall>\<^sub>\<infinity>" 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 991 | where "Alm_all P \<equiv> eventually P cofinite" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 992 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 993 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 994 | Inf_many (binder "INFM " 10) and | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 995 | Alm_all (binder "MOST " 10) | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 996 | |
| 60039 | 997 | lemma eventually_cofinite: "eventually P cofinite \<longleftrightarrow> finite {x. \<not> P x}"
 | 
| 998 | unfolding cofinite_def | |
| 999 | proof (rule eventually_Abs_filter, rule is_filter.intro) | |
| 1000 |   fix P Q :: "'a \<Rightarrow> bool" assume "finite {x. \<not> P x}" "finite {x. \<not> Q x}"
 | |
| 1001 |   from finite_UnI[OF this] show "finite {x. \<not> (P x \<and> Q x)}"
 | |
| 1002 | by (rule rev_finite_subset) auto | |
| 1003 | next | |
| 1004 |   fix P Q :: "'a \<Rightarrow> bool" assume P: "finite {x. \<not> P x}" and *: "\<forall>x. P x \<longrightarrow> Q x"
 | |
| 1005 |   from * show "finite {x. \<not> Q x}"
 | |
| 1006 | by (intro finite_subset[OF _ P]) auto | |
| 1007 | qed simp | |
| 1008 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 1009 | lemma frequently_cofinite: "frequently P cofinite \<longleftrightarrow> \<not> finite {x. P x}"
 | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 1010 | by (simp add: frequently_def eventually_cofinite) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 1011 | |
| 60039 | 1012 | lemma cofinite_bot[simp]: "cofinite = (bot::'a filter) \<longleftrightarrow> finite (UNIV :: 'a set)" | 
| 1013 | unfolding trivial_limit_def eventually_cofinite by simp | |
| 1014 | ||
| 1015 | lemma cofinite_eq_sequentially: "cofinite = sequentially" | |
| 1016 | unfolding filter_eq_iff eventually_sequentially eventually_cofinite | |
| 1017 | proof safe | |
| 1018 |   fix P :: "nat \<Rightarrow> bool" assume [simp]: "finite {x. \<not> P x}"
 | |
| 1019 | show "\<exists>N. \<forall>n\<ge>N. P n" | |
| 1020 | proof cases | |
| 1021 |     assume "{x. \<not> P x} \<noteq> {}" then show ?thesis
 | |
| 1022 |       by (intro exI[of _ "Suc (Max {x. \<not> P x})"]) (auto simp: Suc_le_eq)
 | |
| 1023 | qed auto | |
| 1024 | next | |
| 1025 | fix P :: "nat \<Rightarrow> bool" and N :: nat assume "\<forall>n\<ge>N. P n" | |
| 1026 |   then have "{x. \<not> P x} \<subseteq> {..< N}"
 | |
| 1027 | by (auto simp: not_le) | |
| 1028 |   then show "finite {x. \<not> P x}"
 | |
| 1029 | by (blast intro: finite_subset) | |
| 1030 | qed | |
| 60036 | 1031 | |
| 62101 | 1032 | subsubsection \<open>Product of filters\<close> | 
| 1033 | ||
| 1034 | definition prod_filter :: "'a filter \<Rightarrow> 'b filter \<Rightarrow> ('a \<times> 'b) filter" (infixr "\<times>\<^sub>F" 80) where
 | |
| 1035 | "prod_filter F G = | |
| 67613 | 1036 |     (\<Sqinter>(P, Q)\<in>{(P, Q). eventually P F \<and> eventually Q G}. principal {(x, y). P x \<and> Q y})"
 | 
| 62101 | 1037 | |
| 1038 | lemma eventually_prod_filter: "eventually P (F \<times>\<^sub>F G) \<longleftrightarrow> | |
| 1039 | (\<exists>Pf Pg. eventually Pf F \<and> eventually Pg G \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P (x, y)))" | |
| 1040 | unfolding prod_filter_def | |
| 1041 | proof (subst eventually_INF_base, goal_cases) | |
| 1042 | case 2 | |
| 1043 | moreover have "eventually Pf F \<Longrightarrow> eventually Qf F \<Longrightarrow> eventually Pg G \<Longrightarrow> eventually Qg G \<Longrightarrow> | |
| 1044 | \<exists>P Q. eventually P F \<and> eventually Q G \<and> | |
| 1045 | Collect P \<times> Collect Q \<subseteq> Collect Pf \<times> Collect Pg \<inter> Collect Qf \<times> Collect Qg" for Pf Pg Qf Qg | |
| 1046 | by (intro conjI exI[of _ "inf Pf Qf"] exI[of _ "inf Pg Qg"]) | |
| 1047 | (auto simp: inf_fun_def eventually_conj) | |
| 1048 | ultimately show ?case | |
| 1049 | by auto | |
| 1050 | qed (auto simp: eventually_principal intro: eventually_True) | |
| 1051 | ||
| 62367 | 1052 | lemma eventually_prod1: | 
| 1053 | assumes "B \<noteq> bot" | |
| 1054 | shows "(\<forall>\<^sub>F (x, y) in A \<times>\<^sub>F B. P x) \<longleftrightarrow> (\<forall>\<^sub>F x in A. P x)" | |
| 1055 | unfolding eventually_prod_filter | |
| 1056 | proof safe | |
| 63540 | 1057 | fix R Q | 
| 1058 | assume *: "\<forall>\<^sub>F x in A. R x" "\<forall>\<^sub>F x in B. Q x" "\<forall>x y. R x \<longrightarrow> Q y \<longrightarrow> P x" | |
| 1059 | with \<open>B \<noteq> bot\<close> obtain y where "Q y" by (auto dest: eventually_happens) | |
| 1060 | with * show "eventually P A" | |
| 62367 | 1061 | by (force elim: eventually_mono) | 
| 1062 | next | |
| 1063 | assume "eventually P A" | |
| 1064 | then show "\<exists>Pf Pg. eventually Pf A \<and> eventually Pg B \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P x)" | |
| 1065 | by (intro exI[of _ P] exI[of _ "\<lambda>x. True"]) auto | |
| 1066 | qed | |
| 1067 | ||
| 1068 | lemma eventually_prod2: | |
| 1069 | assumes "A \<noteq> bot" | |
| 1070 | shows "(\<forall>\<^sub>F (x, y) in A \<times>\<^sub>F B. P y) \<longleftrightarrow> (\<forall>\<^sub>F y in B. P y)" | |
| 1071 | unfolding eventually_prod_filter | |
| 1072 | proof safe | |
| 63540 | 1073 | fix R Q | 
| 1074 | assume *: "\<forall>\<^sub>F x in A. R x" "\<forall>\<^sub>F x in B. Q x" "\<forall>x y. R x \<longrightarrow> Q y \<longrightarrow> P y" | |
| 1075 | with \<open>A \<noteq> bot\<close> obtain x where "R x" by (auto dest: eventually_happens) | |
| 1076 | with * show "eventually P B" | |
| 62367 | 1077 | by (force elim: eventually_mono) | 
| 1078 | next | |
| 1079 | assume "eventually P B" | |
| 1080 | then show "\<exists>Pf Pg. eventually Pf A \<and> eventually Pg B \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P y)" | |
| 1081 | by (intro exI[of _ P] exI[of _ "\<lambda>x. True"]) auto | |
| 1082 | qed | |
| 1083 | ||
| 1084 | lemma INF_filter_bot_base: | |
| 1085 | fixes F :: "'a \<Rightarrow> 'b filter" | |
| 1086 | assumes *: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. F k \<le> F i \<sqinter> F j" | |
| 67613 | 1087 | shows "(\<Sqinter>i\<in>I. F i) = bot \<longleftrightarrow> (\<exists>i\<in>I. F i = bot)" | 
| 63540 | 1088 | proof (cases "\<exists>i\<in>I. F i = bot") | 
| 1089 | case True | |
| 67613 | 1090 | then have "(\<Sqinter>i\<in>I. F i) \<le> bot" | 
| 62367 | 1091 | by (auto intro: INF_lower2) | 
| 63540 | 1092 | with True show ?thesis | 
| 62367 | 1093 | by (auto simp: bot_unique) | 
| 1094 | next | |
| 63540 | 1095 | case False | 
| 67613 | 1096 | moreover have "(\<Sqinter>i\<in>I. F i) \<noteq> bot" | 
| 63540 | 1097 |   proof (cases "I = {}")
 | 
| 1098 | case True | |
| 1099 | then show ?thesis | |
| 1100 | by (auto simp add: filter_eq_iff) | |
| 1101 | next | |
| 1102 | case False': False | |
| 62367 | 1103 | show ?thesis | 
| 1104 | proof (rule INF_filter_not_bot) | |
| 63540 | 1105 | fix J | 
| 1106 | assume "finite J" "J \<subseteq> I" | |
| 62367 | 1107 | then have "\<exists>k\<in>I. F k \<le> (\<Sqinter>i\<in>J. F i)" | 
| 63540 | 1108 | proof (induct J) | 
| 1109 | case empty | |
| 1110 | then show ?case | |
| 62367 | 1111 |           using \<open>I \<noteq> {}\<close> by auto
 | 
| 1112 | next | |
| 1113 | case (insert i J) | |
| 63540 | 1114 | then obtain k where "k \<in> I" "F k \<le> (\<Sqinter>i\<in>J. F i)" by auto | 
| 1115 | with insert *[of i k] show ?case | |
| 62367 | 1116 | by auto | 
| 1117 | qed | |
| 63540 | 1118 | with False show "(\<Sqinter>i\<in>J. F i) \<noteq> \<bottom>" | 
| 62367 | 1119 | by (auto simp: bot_unique) | 
| 1120 | qed | |
| 63540 | 1121 | qed | 
| 62367 | 1122 | ultimately show ?thesis | 
| 1123 | by auto | |
| 1124 | qed | |
| 1125 | ||
| 1126 | lemma Collect_empty_eq_bot: "Collect P = {} \<longleftrightarrow> P = \<bottom>"
 | |
| 1127 | by auto | |
| 1128 | ||
| 1129 | lemma prod_filter_eq_bot: "A \<times>\<^sub>F B = bot \<longleftrightarrow> A = bot \<or> B = bot" | |
| 67956 | 1130 | unfolding trivial_limit_def | 
| 1131 | proof | |
| 1132 | assume "\<forall>\<^sub>F x in A \<times>\<^sub>F B. False" | |
| 1133 | then obtain Pf Pg | |
| 1134 | where Pf: "eventually (\<lambda>x. Pf x) A" and Pg: "eventually (\<lambda>y. Pg y) B" | |
| 1135 | and *: "\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> False" | |
| 1136 | unfolding eventually_prod_filter by fast | |
| 1137 | from * have "(\<forall>x. \<not> Pf x) \<or> (\<forall>y. \<not> Pg y)" by fast | |
| 1138 | with Pf Pg show "(\<forall>\<^sub>F x in A. False) \<or> (\<forall>\<^sub>F x in B. False)" by auto | |
| 62367 | 1139 | next | 
| 67956 | 1140 | assume "(\<forall>\<^sub>F x in A. False) \<or> (\<forall>\<^sub>F x in B. False)" | 
| 1141 | then show "\<forall>\<^sub>F x in A \<times>\<^sub>F B. False" | |
| 1142 | unfolding eventually_prod_filter by (force intro: eventually_True) | |
| 62367 | 1143 | qed | 
| 1144 | ||
| 62101 | 1145 | lemma prod_filter_mono: "F \<le> F' \<Longrightarrow> G \<le> G' \<Longrightarrow> F \<times>\<^sub>F G \<le> F' \<times>\<^sub>F G'" | 
| 1146 | by (auto simp: le_filter_def eventually_prod_filter) | |
| 1147 | ||
| 62367 | 1148 | lemma prod_filter_mono_iff: | 
| 1149 | assumes nAB: "A \<noteq> bot" "B \<noteq> bot" | |
| 1150 | shows "A \<times>\<^sub>F B \<le> C \<times>\<^sub>F D \<longleftrightarrow> A \<le> C \<and> B \<le> D" | |
| 1151 | proof safe | |
| 1152 | assume *: "A \<times>\<^sub>F B \<le> C \<times>\<^sub>F D" | |
| 63540 | 1153 | with assms have "A \<times>\<^sub>F B \<noteq> bot" | 
| 62367 | 1154 | by (auto simp: bot_unique prod_filter_eq_bot) | 
| 63540 | 1155 | with * have "C \<times>\<^sub>F D \<noteq> bot" | 
| 62367 | 1156 | by (auto simp: bot_unique) | 
| 1157 | then have nCD: "C \<noteq> bot" "D \<noteq> bot" | |
| 1158 | by (auto simp: prod_filter_eq_bot) | |
| 1159 | ||
| 1160 | show "A \<le> C" | |
| 1161 | proof (rule filter_leI) | |
| 1162 | fix P assume "eventually P C" with *[THEN filter_leD, of "\<lambda>(x, y). P x"] show "eventually P A" | |
| 1163 | using nAB nCD by (simp add: eventually_prod1 eventually_prod2) | |
| 1164 | qed | |
| 1165 | ||
| 1166 | show "B \<le> D" | |
| 1167 | proof (rule filter_leI) | |
| 1168 | fix P assume "eventually P D" with *[THEN filter_leD, of "\<lambda>(x, y). P y"] show "eventually P B" | |
| 1169 | using nAB nCD by (simp add: eventually_prod1 eventually_prod2) | |
| 1170 | qed | |
| 1171 | qed (intro prod_filter_mono) | |
| 1172 | ||
| 62101 | 1173 | lemma eventually_prod_same: "eventually P (F \<times>\<^sub>F F) \<longleftrightarrow> | 
| 1174 | (\<exists>Q. eventually Q F \<and> (\<forall>x y. Q x \<longrightarrow> Q y \<longrightarrow> P (x, y)))" | |
| 1175 | unfolding eventually_prod_filter | |
| 1176 | apply safe | |
| 1177 | apply (rule_tac x="inf Pf Pg" in exI) | |
| 1178 | apply (auto simp: inf_fun_def intro!: eventually_conj) | |
| 1179 | done | |
| 1180 | ||
| 1181 | lemma eventually_prod_sequentially: | |
| 1182 | "eventually P (sequentially \<times>\<^sub>F sequentially) \<longleftrightarrow> (\<exists>N. \<forall>m \<ge> N. \<forall>n \<ge> N. P (n, m))" | |
| 1183 | unfolding eventually_prod_same eventually_sequentially by auto | |
| 1184 | ||
| 1185 | lemma principal_prod_principal: "principal A \<times>\<^sub>F principal B = principal (A \<times> B)" | |
| 67956 | 1186 | unfolding filter_eq_iff eventually_prod_filter eventually_principal | 
| 1187 | by (fast intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"]) | |
| 1188 | ||
| 1189 | lemma le_prod_filterI: | |
| 1190 | "filtermap fst F \<le> A \<Longrightarrow> filtermap snd F \<le> B \<Longrightarrow> F \<le> A \<times>\<^sub>F B" | |
| 1191 | unfolding le_filter_def eventually_filtermap eventually_prod_filter | |
| 1192 | by (force elim: eventually_elim2) | |
| 1193 | ||
| 1194 | lemma filtermap_fst_prod_filter: "filtermap fst (A \<times>\<^sub>F B) \<le> A" | |
| 1195 | unfolding le_filter_def eventually_filtermap eventually_prod_filter | |
| 1196 | by (force intro: eventually_True) | |
| 1197 | ||
| 1198 | lemma filtermap_snd_prod_filter: "filtermap snd (A \<times>\<^sub>F B) \<le> B" | |
| 1199 | unfolding le_filter_def eventually_filtermap eventually_prod_filter | |
| 1200 | by (force intro: eventually_True) | |
| 62101 | 1201 | |
| 62367 | 1202 | lemma prod_filter_INF: | 
| 67956 | 1203 |   assumes "I \<noteq> {}" and "J \<noteq> {}"
 | 
| 67613 | 1204 | shows "(\<Sqinter>i\<in>I. A i) \<times>\<^sub>F (\<Sqinter>j\<in>J. B j) = (\<Sqinter>i\<in>I. \<Sqinter>j\<in>J. A i \<times>\<^sub>F B j)" | 
| 67956 | 1205 | proof (rule antisym) | 
| 62367 | 1206 |   from \<open>I \<noteq> {}\<close> obtain i where "i \<in> I" by auto
 | 
| 1207 |   from \<open>J \<noteq> {}\<close> obtain j where "j \<in> J" by auto
 | |
| 1208 | ||
| 1209 | show "(\<Sqinter>i\<in>I. \<Sqinter>j\<in>J. A i \<times>\<^sub>F B j) \<le> (\<Sqinter>i\<in>I. A i) \<times>\<^sub>F (\<Sqinter>j\<in>J. B j)" | |
| 67956 | 1210 | by (fast intro: le_prod_filterI INF_greatest INF_lower2 | 
| 69272 | 1211 | order_trans[OF filtermap_INF] \<open>i \<in> I\<close> \<open>j \<in> J\<close> | 
| 67956 | 1212 | filtermap_fst_prod_filter filtermap_snd_prod_filter) | 
| 1213 | show "(\<Sqinter>i\<in>I. A i) \<times>\<^sub>F (\<Sqinter>j\<in>J. B j) \<le> (\<Sqinter>i\<in>I. \<Sqinter>j\<in>J. A i \<times>\<^sub>F B j)" | |
| 1214 | by (intro INF_greatest prod_filter_mono INF_lower) | |
| 1215 | qed | |
| 62367 | 1216 | |
| 1217 | lemma filtermap_Pair: "filtermap (\<lambda>x. (f x, g x)) F \<le> filtermap f F \<times>\<^sub>F filtermap g F" | |
| 67956 | 1218 | by (rule le_prod_filterI, simp_all add: filtermap_filtermap) | 
| 62367 | 1219 | |
| 62369 | 1220 | lemma eventually_prodI: "eventually P F \<Longrightarrow> eventually Q G \<Longrightarrow> eventually (\<lambda>x. P (fst x) \<and> Q (snd x)) (F \<times>\<^sub>F G)" | 
| 67956 | 1221 | unfolding eventually_prod_filter by auto | 
| 62369 | 1222 | |
| 67613 | 1223 | lemma prod_filter_INF1: "I \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>I. A i) \<times>\<^sub>F B = (\<Sqinter>i\<in>I. A i \<times>\<^sub>F B)"
 | 
| 62369 | 1224 |   using prod_filter_INF[of I "{B}" A "\<lambda>x. x"] by simp
 | 
| 1225 | ||
| 67613 | 1226 | lemma prod_filter_INF2: "J \<noteq> {} \<Longrightarrow> A \<times>\<^sub>F (\<Sqinter>i\<in>J. B i) = (\<Sqinter>i\<in>J. A \<times>\<^sub>F B i)"
 | 
| 62369 | 1227 |   using prod_filter_INF[of "{A}" J "\<lambda>x. x" B] by simp
 | 
| 1228 | ||
| 68667 | 1229 | lemma prod_filtermap1: "prod_filter (filtermap f F) G = filtermap (apfst f) (prod_filter F G)" | 
| 1230 | apply(clarsimp simp add: filter_eq_iff eventually_filtermap eventually_prod_filter; safe) | |
| 1231 | subgoal by auto | |
| 1232 | subgoal for P Q R by(rule exI[where x="\<lambda>y. \<exists>x. y = f x \<and> Q x"])(auto intro: eventually_mono) | |
| 1233 | done | |
| 1234 | ||
| 1235 | lemma prod_filtermap2: "prod_filter F (filtermap g G) = filtermap (apsnd g) (prod_filter F G)" | |
| 1236 | apply(clarsimp simp add: filter_eq_iff eventually_filtermap eventually_prod_filter; safe) | |
| 1237 | subgoal by auto | |
| 1238 | subgoal for P Q R by(auto intro: exI[where x="\<lambda>y. \<exists>x. y = g x \<and> R x"] eventually_mono) | |
| 1239 | done | |
| 1240 | ||
| 1241 | lemma prod_filter_assoc: | |
| 1242 | "prod_filter (prod_filter F G) H = filtermap (\<lambda>(x, y, z). ((x, y), z)) (prod_filter F (prod_filter G H))" | |
| 1243 | apply(clarsimp simp add: filter_eq_iff eventually_filtermap eventually_prod_filter; safe) | |
| 1244 | subgoal for P Q R S T by(auto 4 4 intro: exI[where x="\<lambda>(a, b). T a \<and> S b"]) | |
| 1245 | subgoal for P Q R S T by(auto 4 3 intro: exI[where x="\<lambda>(a, b). Q a \<and> S b"]) | |
| 1246 | done | |
| 1247 | ||
| 1248 | lemma prod_filter_principal_singleton: "prod_filter (principal {x}) F = filtermap (Pair x) F"
 | |
| 1249 | by(fastforce simp add: filter_eq_iff eventually_prod_filter eventually_principal eventually_filtermap elim: eventually_mono intro: exI[where x="\<lambda>a. a = x"]) | |
| 1250 | ||
| 1251 | lemma prod_filter_principal_singleton2: "prod_filter F (principal {x}) = filtermap (\<lambda>a. (a, x)) F"
 | |
| 1252 | by(fastforce simp add: filter_eq_iff eventually_prod_filter eventually_principal eventually_filtermap elim: eventually_mono intro: exI[where x="\<lambda>a. a = x"]) | |
| 1253 | ||
| 1254 | lemma prod_filter_commute: "prod_filter F G = filtermap prod.swap (prod_filter G F)" | |
| 1255 | by(auto simp add: filter_eq_iff eventually_prod_filter eventually_filtermap) | |
| 1256 | ||
| 60758 | 1257 | subsection \<open>Limits\<close> | 
| 60036 | 1258 | |
| 1259 | definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
 | |
| 1260 | "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2" | |
| 1261 | ||
| 1262 | syntax | |
| 1263 |   "_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10)
 | |
| 1264 | ||
| 1265 | translations | |
| 62367 | 1266 | "LIM x F1. f :> F2" == "CONST filterlim (\<lambda>x. f) F2 F1" | 
| 60036 | 1267 | |
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1268 | lemma filterlim_top [simp]: "filterlim f top F" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1269 | by (simp add: filterlim_def) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1270 | |
| 60036 | 1271 | lemma filterlim_iff: | 
| 1272 | "(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)" | |
| 1273 | unfolding filterlim_def le_filter_def eventually_filtermap .. | |
| 1274 | ||
| 1275 | lemma filterlim_compose: | |
| 1276 | "filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1" | |
| 1277 | unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans) | |
| 1278 | ||
| 1279 | lemma filterlim_mono: | |
| 1280 | "filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'" | |
| 1281 | unfolding filterlim_def by (metis filtermap_mono order_trans) | |
| 1282 | ||
| 1283 | lemma filterlim_ident: "LIM x F. x :> F" | |
| 1284 | by (simp add: filterlim_def filtermap_ident) | |
| 1285 | ||
| 1286 | lemma filterlim_cong: | |
| 1287 | "F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'" | |
| 1288 | by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2) | |
| 1289 | ||
| 1290 | lemma filterlim_mono_eventually: | |
| 1291 | assumes "filterlim f F G" and ord: "F \<le> F'" "G' \<le> G" | |
| 1292 | assumes eq: "eventually (\<lambda>x. f x = f' x) G'" | |
| 1293 | shows "filterlim f' F' G'" | |
| 1294 | apply (rule filterlim_cong[OF refl refl eq, THEN iffD1]) | |
| 1295 | apply (rule filterlim_mono[OF _ ord]) | |
| 1296 | apply fact | |
| 1297 | done | |
| 1298 | ||
| 1299 | lemma filtermap_mono_strong: "inj f \<Longrightarrow> filtermap f F \<le> filtermap f G \<longleftrightarrow> F \<le> G" | |
| 67956 | 1300 | apply (safe intro!: filtermap_mono) | 
| 60036 | 1301 | apply (auto simp: le_filter_def eventually_filtermap) | 
| 1302 | apply (erule_tac x="\<lambda>x. P (inv f x)" in allE) | |
| 1303 | apply auto | |
| 1304 | done | |
| 1305 | ||
| 67950 
99eaa5cedbb7
Added some simple facts about limits
 Manuel Eberl <eberlm@in.tum.de> parents: 
67855diff
changeset | 1306 | lemma eventually_compose_filterlim: | 
| 
99eaa5cedbb7
Added some simple facts about limits
 Manuel Eberl <eberlm@in.tum.de> parents: 
67855diff
changeset | 1307 | assumes "eventually P F" "filterlim f F G" | 
| 
99eaa5cedbb7
Added some simple facts about limits
 Manuel Eberl <eberlm@in.tum.de> parents: 
67855diff
changeset | 1308 | shows "eventually (\<lambda>x. P (f x)) G" | 
| 
99eaa5cedbb7
Added some simple facts about limits
 Manuel Eberl <eberlm@in.tum.de> parents: 
67855diff
changeset | 1309 | using assms by (simp add: filterlim_iff) | 
| 
99eaa5cedbb7
Added some simple facts about limits
 Manuel Eberl <eberlm@in.tum.de> parents: 
67855diff
changeset | 1310 | |
| 60036 | 1311 | lemma filtermap_eq_strong: "inj f \<Longrightarrow> filtermap f F = filtermap f G \<longleftrightarrow> F = G" | 
| 1312 | by (simp add: filtermap_mono_strong eq_iff) | |
| 1313 | ||
| 60721 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1314 | lemma filtermap_fun_inverse: | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1315 | assumes g: "filterlim g F G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1316 | assumes f: "filterlim f G F" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1317 | assumes ev: "eventually (\<lambda>x. f (g x) = x) G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1318 | shows "filtermap f F = G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1319 | proof (rule antisym) | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1320 | show "filtermap f F \<le> G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1321 | using f unfolding filterlim_def . | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1322 | have "G = filtermap f (filtermap g G)" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1323 | using ev by (auto elim: eventually_elim2 simp: filter_eq_iff eventually_filtermap) | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1324 | also have "\<dots> \<le> filtermap f F" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1325 | using g by (intro filtermap_mono) (simp add: filterlim_def) | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1326 | finally show "G \<le> filtermap f F" . | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1327 | qed | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1328 | |
| 60036 | 1329 | lemma filterlim_principal: | 
| 1330 | "(LIM x F. f x :> principal S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F)" | |
| 1331 | unfolding filterlim_def eventually_filtermap le_principal .. | |
| 1332 | ||
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1333 | lemma filterlim_filtercomap [intro]: "filterlim f F (filtercomap f F)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1334 | unfolding filterlim_def by (rule filtermap_filtercomap) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1335 | |
| 60036 | 1336 | lemma filterlim_inf: | 
| 1337 | "(LIM x F1. f x :> inf F2 F3) \<longleftrightarrow> ((LIM x F1. f x :> F2) \<and> (LIM x F1. f x :> F3))" | |
| 1338 | unfolding filterlim_def by simp | |
| 1339 | ||
| 1340 | lemma filterlim_INF: | |
| 67613 | 1341 | "(LIM x F. f x :> (\<Sqinter>b\<in>B. G b)) \<longleftrightarrow> (\<forall>b\<in>B. LIM x F. f x :> G b)" | 
| 60036 | 1342 | unfolding filterlim_def le_INF_iff .. | 
| 1343 | ||
| 1344 | lemma filterlim_INF_INF: | |
| 67613 | 1345 | "(\<And>m. m \<in> J \<Longrightarrow> \<exists>i\<in>I. filtermap f (F i) \<le> G m) \<Longrightarrow> LIM x (\<Sqinter>i\<in>I. F i). f x :> (\<Sqinter>j\<in>J. G j)" | 
| 60036 | 1346 | unfolding filterlim_def by (rule order_trans[OF filtermap_INF INF_mono]) | 
| 1347 | ||
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
68860diff
changeset | 1348 | lemma filterlim_INF': "x \<in> A \<Longrightarrow> filterlim f F (G x) \<Longrightarrow> filterlim f F (\<Sqinter> x\<in>A. G x)" | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1349 | unfolding filterlim_def by (rule order.trans[OF filtermap_mono[OF INF_lower]]) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1350 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1351 | lemma filterlim_filtercomap_iff: "filterlim f (filtercomap g G) F \<longleftrightarrow> filterlim (g \<circ> f) G F" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1352 | by (simp add: filterlim_def filtermap_le_iff_le_filtercomap filtercomap_filtercomap o_def) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1353 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1354 | lemma filterlim_iff_le_filtercomap: "filterlim f F G \<longleftrightarrow> G \<le> filtercomap f F" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1355 | by (simp add: filterlim_def filtermap_le_iff_le_filtercomap) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1356 | |
| 60036 | 1357 | lemma filterlim_base: | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1358 | "(\<And>m x. m \<in> J \<Longrightarrow> i m \<in> I) \<Longrightarrow> (\<And>m x. m \<in> J \<Longrightarrow> x \<in> F (i m) \<Longrightarrow> f x \<in> G m) \<Longrightarrow> | 
| 67613 | 1359 | LIM x (\<Sqinter>i\<in>I. principal (F i)). f x :> (\<Sqinter>j\<in>J. principal (G j))" | 
| 60036 | 1360 | by (force intro!: filterlim_INF_INF simp: image_subset_iff) | 
| 1361 | ||
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1362 | lemma filterlim_base_iff: | 
| 60036 | 1363 |   assumes "I \<noteq> {}" and chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> F i \<subseteq> F j \<or> F j \<subseteq> F i"
 | 
| 67613 | 1364 | shows "(LIM x (\<Sqinter>i\<in>I. principal (F i)). f x :> \<Sqinter>j\<in>J. principal (G j)) \<longleftrightarrow> | 
| 60036 | 1365 | (\<forall>j\<in>J. \<exists>i\<in>I. \<forall>x\<in>F i. f x \<in> G j)" | 
| 1366 | unfolding filterlim_INF filterlim_principal | |
| 1367 | proof (subst eventually_INF_base) | |
| 1368 | fix i j assume "i \<in> I" "j \<in> I" | |
| 1369 | with chain[OF this] show "\<exists>x\<in>I. principal (F x) \<le> inf (principal (F i)) (principal (F j))" | |
| 1370 | by auto | |
| 60758 | 1371 | qed (auto simp: eventually_principal \<open>I \<noteq> {}\<close>)
 | 
| 60036 | 1372 | |
| 1373 | lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2" | |
| 1374 | unfolding filterlim_def filtermap_filtermap .. | |
| 1375 | ||
| 1376 | lemma filterlim_sup: | |
| 1377 | "filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)" | |
| 1378 | unfolding filterlim_def filtermap_sup by auto | |
| 1379 | ||
| 1380 | lemma filterlim_sequentially_Suc: | |
| 1381 | "(LIM x sequentially. f (Suc x) :> F) \<longleftrightarrow> (LIM x sequentially. f x :> F)" | |
| 1382 | unfolding filterlim_iff by (subst eventually_sequentially_Suc) simp | |
| 1383 | ||
| 1384 | lemma filterlim_Suc: "filterlim Suc sequentially sequentially" | |
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 1385 | by (simp add: filterlim_iff eventually_sequentially) | 
| 60036 | 1386 | |
| 60182 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1387 | lemma filterlim_If: | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1388 |   "LIM x inf F (principal {x. P x}). f x :> G \<Longrightarrow>
 | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1389 |     LIM x inf F (principal {x. \<not> P x}). g x :> G \<Longrightarrow>
 | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1390 | LIM x F. if P x then f x else g x :> G" | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1391 | unfolding filterlim_iff eventually_inf_principal by (auto simp: eventually_conj_iff) | 
| 60036 | 1392 | |
| 62367 | 1393 | lemma filterlim_Pair: | 
| 1394 | "LIM x F. f x :> G \<Longrightarrow> LIM x F. g x :> H \<Longrightarrow> LIM x F. (f x, g x) :> G \<times>\<^sub>F H" | |
| 1395 | unfolding filterlim_def | |
| 1396 | by (rule order_trans[OF filtermap_Pair prod_filter_mono]) | |
| 1397 | ||
| 69593 | 1398 | subsection \<open>Limits to \<^const>\<open>at_top\<close> and \<^const>\<open>at_bot\<close>\<close> | 
| 60036 | 1399 | |
| 1400 | lemma filterlim_at_top: | |
| 1401 |   fixes f :: "'a \<Rightarrow> ('b::linorder)"
 | |
| 1402 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 61810 | 1403 | by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_mono) | 
| 60036 | 1404 | |
| 1405 | lemma filterlim_at_top_mono: | |
| 1406 | "LIM x F. f x :> at_top \<Longrightarrow> eventually (\<lambda>x. f x \<le> (g x::'a::linorder)) F \<Longrightarrow> | |
| 1407 | LIM x F. g x :> at_top" | |
| 1408 | by (auto simp: filterlim_at_top elim: eventually_elim2 intro: order_trans) | |
| 1409 | ||
| 1410 | lemma filterlim_at_top_dense: | |
| 1411 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)"
 | |
| 1412 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)" | |
| 61810 | 1413 | by (metis eventually_mono[of _ F] eventually_gt_at_top order_less_imp_le | 
| 60036 | 1414 | filterlim_at_top[of f F] filterlim_iff[of f at_top F]) | 
| 1415 | ||
| 1416 | lemma filterlim_at_top_ge: | |
| 1417 |   fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
 | |
| 1418 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 1419 | unfolding at_top_sub[of c] filterlim_INF by (auto simp add: filterlim_principal) | |
| 1420 | ||
| 1421 | lemma filterlim_at_top_at_top: | |
| 1422 | fixes f :: "'a::linorder \<Rightarrow> 'b::linorder" | |
| 1423 | assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 1424 | assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)" | |
| 1425 | assumes Q: "eventually Q at_top" | |
| 1426 | assumes P: "eventually P at_top" | |
| 1427 | shows "filterlim f at_top at_top" | |
| 1428 | proof - | |
| 1429 | from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y" | |
| 1430 | unfolding eventually_at_top_linorder by auto | |
| 1431 | show ?thesis | |
| 1432 | proof (intro filterlim_at_top_ge[THEN iffD2] allI impI) | |
| 1433 | fix z assume "x \<le> z" | |
| 1434 | with x have "P z" by auto | |
| 1435 | have "eventually (\<lambda>x. g z \<le> x) at_top" | |
| 1436 | by (rule eventually_ge_at_top) | |
| 1437 | with Q show "eventually (\<lambda>x. z \<le> f x) at_top" | |
| 60758 | 1438 | by eventually_elim (metis mono bij \<open>P z\<close>) | 
| 60036 | 1439 | qed | 
| 1440 | qed | |
| 1441 | ||
| 1442 | lemma filterlim_at_top_gt: | |
| 1443 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
 | |
| 1444 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 1445 | by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge) | |
| 1446 | ||
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1447 | lemma filterlim_at_bot: | 
| 60036 | 1448 |   fixes f :: "'a \<Rightarrow> ('b::linorder)"
 | 
| 1449 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)" | |
| 61810 | 1450 | by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_mono) | 
| 60036 | 1451 | |
| 1452 | lemma filterlim_at_bot_dense: | |
| 1453 |   fixes f :: "'a \<Rightarrow> ('b::{dense_linorder, no_bot})"
 | |
| 1454 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x < Z) F)" | |
| 1455 | proof (auto simp add: filterlim_at_bot[of f F]) | |
| 1456 | fix Z :: 'b | |
| 1457 | from lt_ex [of Z] obtain Z' where 1: "Z' < Z" .. | |
| 1458 | assume "\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F" | |
| 1459 | hence "eventually (\<lambda>x. f x \<le> Z') F" by auto | |
| 1460 | thus "eventually (\<lambda>x. f x < Z) F" | |
| 61810 | 1461 | apply (rule eventually_mono) | 
| 60036 | 1462 | using 1 by auto | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1463 | next | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1464 | fix Z :: 'b | 
| 60036 | 1465 | show "\<forall>Z. eventually (\<lambda>x. f x < Z) F \<Longrightarrow> eventually (\<lambda>x. f x \<le> Z) F" | 
| 61810 | 1466 | by (drule spec [of _ Z], erule eventually_mono, auto simp add: less_imp_le) | 
| 60036 | 1467 | qed | 
| 1468 | ||
| 1469 | lemma filterlim_at_bot_le: | |
| 1470 |   fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
 | |
| 1471 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)" | |
| 1472 | unfolding filterlim_at_bot | |
| 1473 | proof safe | |
| 1474 | fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F" | |
| 1475 | with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F" | |
| 61810 | 1476 | by (auto elim!: eventually_mono) | 
| 60036 | 1477 | qed simp | 
| 1478 | ||
| 1479 | lemma filterlim_at_bot_lt: | |
| 1480 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
 | |
| 1481 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)" | |
| 1482 | by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans) | |
| 66162 | 1483 | |
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1484 | lemma filterlim_finite_subsets_at_top: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1485 | "filterlim f (finite_subsets_at_top A) F \<longleftrightarrow> | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1486 | (\<forall>X. finite X \<and> X \<subseteq> A \<longrightarrow> eventually (\<lambda>y. finite (f y) \<and> X \<subseteq> f y \<and> f y \<subseteq> A) F)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1487 | (is "?lhs = ?rhs") | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1488 | proof | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1489 | assume ?lhs | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1490 | thus ?rhs | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1491 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1492 | case (1 X) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1493 | hence *: "(\<forall>\<^sub>F x in F. P (f x))" if "eventually P (finite_subsets_at_top A)" for P | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1494 | using that by (auto simp: filterlim_def le_filter_def eventually_filtermap) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1495 | have "\<forall>\<^sub>F Y in finite_subsets_at_top A. finite Y \<and> X \<subseteq> Y \<and> Y \<subseteq> A" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1496 | using 1 unfolding eventually_finite_subsets_at_top by force | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1497 | thus ?case by (intro *) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1498 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1499 | next | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1500 | assume rhs: ?rhs | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1501 | show ?lhs unfolding filterlim_def le_filter_def eventually_finite_subsets_at_top | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1502 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1503 | case (1 P X) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1504 | with rhs have "\<forall>\<^sub>F y in F. finite (f y) \<and> X \<subseteq> f y \<and> f y \<subseteq> A" by auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1505 | thus "eventually P (filtermap f F)" unfolding eventually_filtermap | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1506 | by eventually_elim (insert 1, auto) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1507 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1508 | qed | 
| 60036 | 1509 | |
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1510 | lemma filterlim_atMost_at_top: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1511 |   "filterlim (\<lambda>n. {..n}) (finite_subsets_at_top (UNIV :: nat set)) at_top"
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1512 | unfolding filterlim_finite_subsets_at_top | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1513 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1514 | case (1 X) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1515 |   then obtain n where n: "X \<subseteq> {..n}" by (auto simp: finite_nat_set_iff_bounded_le)
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1516 | show ?case using eventually_ge_at_top[of n] | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1517 | by eventually_elim (insert n, auto) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1518 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1519 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1520 | lemma filterlim_lessThan_at_top: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1521 |   "filterlim (\<lambda>n. {..<n}) (finite_subsets_at_top (UNIV :: nat set)) at_top"
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1522 | unfolding filterlim_finite_subsets_at_top | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1523 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1524 | case (1 X) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1525 |   then obtain n where n: "X \<subseteq> {..<n}" by (auto simp: finite_nat_set_iff_bounded)
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1526 | show ?case using eventually_ge_at_top[of n] | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1527 | by eventually_elim (insert n, auto) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1528 | qed | 
| 60036 | 1529 | |
| 69593 | 1530 | subsection \<open>Setup \<^typ>\<open>'a filter\<close> for lifting and transfer\<close> | 
| 60036 | 1531 | |
| 1532 | lemma filtermap_id [simp, id_simps]: "filtermap id = id" | |
| 1533 | by(simp add: fun_eq_iff id_def filtermap_ident) | |
| 1534 | ||
| 1535 | lemma filtermap_id' [simp]: "filtermap (\<lambda>x. x) = (\<lambda>F. F)" | |
| 1536 | using filtermap_id unfolding id_def . | |
| 1537 | ||
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1538 | context includes lifting_syntax | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1539 | begin | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1540 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1541 | definition map_filter_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter" where
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1542 | "map_filter_on X f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x) \<and> x \<in> X) F)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1543 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1544 | lemma is_filter_map_filter_on: | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1545 | "is_filter (\<lambda>P. \<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X) \<longleftrightarrow> eventually (\<lambda>x. x \<in> X) F" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1546 | proof(rule iffI; unfold_locales) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1547 | show "\<forall>\<^sub>F x in F. True \<and> x \<in> X" if "eventually (\<lambda>x. x \<in> X) F" using that by simp | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1548 | show "\<forall>\<^sub>F x in F. (P (f x) \<and> Q (f x)) \<and> x \<in> X" if "\<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X" "\<forall>\<^sub>F x in F. Q (f x) \<and> x \<in> X" for P Q | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1549 | using eventually_conj[OF that] by(auto simp add: conj_ac cong: conj_cong) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1550 | show "\<forall>\<^sub>F x in F. Q (f x) \<and> x \<in> X" if "\<forall>x. P x \<longrightarrow> Q x" "\<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X" for P Q | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1551 | using that(2) by(rule eventually_mono)(use that(1) in auto) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1552 | show "eventually (\<lambda>x. x \<in> X) F" if "is_filter (\<lambda>P. \<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1553 | using is_filter.True[OF that] by simp | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1554 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1555 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1556 | lemma eventually_map_filter_on: "eventually P (map_filter_on X f F) = (\<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1557 | if "eventually (\<lambda>x. x \<in> X) F" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1558 | by(simp add: is_filter_map_filter_on map_filter_on_def eventually_Abs_filter that) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1559 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1560 | lemma map_filter_on_UNIV: "map_filter_on UNIV = filtermap" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1561 | by(simp add: map_filter_on_def filtermap_def fun_eq_iff) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1562 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1563 | lemma map_filter_on_comp: "map_filter_on X f (map_filter_on Y g F) = map_filter_on Y (f \<circ> g) F" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1564 | if "g ` Y \<subseteq> X" and "eventually (\<lambda>x. x \<in> Y) F" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1565 | unfolding map_filter_on_def using that(1) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1566 | by(auto simp add: eventually_Abs_filter that(2) is_filter_map_filter_on intro!: arg_cong[where f=Abs_filter] arg_cong2[where f=eventually]) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1567 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1568 | inductive rel_filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> 'b filter \<Rightarrow> bool" for R F G where
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1569 |   "rel_filter R F G" if "eventually (case_prod R) Z" "map_filter_on {(x, y). R x y} fst Z = F" "map_filter_on {(x, y). R x y} snd Z = G"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1570 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1571 | lemma rel_filter_eq [relator_eq]: "rel_filter (=) = (=)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1572 | proof(intro ext iffI)+ | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1573 | show "F = G" if "rel_filter (=) F G" for F G using that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1574 | by cases(clarsimp simp add: filter_eq_iff eventually_map_filter_on split_def cong: rev_conj_cong) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1575 | show "rel_filter (=) F G" if "F = G" for F G unfolding \<open>F = G\<close> | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1576 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1577 | let ?Z = "map_filter_on UNIV (\<lambda>x. (x, x)) G" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1578 |     have [simp]: "range (\<lambda>x. (x, x)) \<subseteq> {(x, y). x = y}" by auto
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1579 |     show "map_filter_on {(x, y). x = y} fst ?Z = G" and "map_filter_on {(x, y). x = y} snd ?Z = G"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1580 | by(simp_all add: map_filter_on_comp)(simp_all add: map_filter_on_UNIV o_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1581 | show "\<forall>\<^sub>F (x, y) in ?Z. x = y" by(simp add: eventually_map_filter_on) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1582 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1583 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1584 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1585 | lemma rel_filter_mono [relator_mono]: "rel_filter A \<le> rel_filter B" if le: "A \<le> B" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1586 | proof(clarify elim!: rel_filter.cases) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1587 |   show "rel_filter B (map_filter_on {(x, y). A x y} fst Z) (map_filter_on {(x, y). A x y} snd Z)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1588 | (is "rel_filter _ ?X ?Y") if "\<forall>\<^sub>F (x, y) in Z. A x y" for Z | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1589 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1590 |     let ?Z = "map_filter_on {(x, y). A x y} id Z"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1591 | show "\<forall>\<^sub>F (x, y) in ?Z. B x y" using le that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1592 | by(simp add: eventually_map_filter_on le_fun_def split_def conj_commute cong: conj_cong) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1593 |     have [simp]: "{(x, y). A x y} \<subseteq> {(x, y). B x y}" using le by auto
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1594 |     show "map_filter_on {(x, y). B x y} fst ?Z = ?X" "map_filter_on {(x, y). B x y} snd ?Z = ?Y"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1595 | using le that by(simp_all add: le_fun_def map_filter_on_comp) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1596 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1597 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1598 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1599 | lemma rel_filter_conversep: "rel_filter A\<inverse>\<inverse> = (rel_filter A)\<inverse>\<inverse>" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1600 | proof(safe intro!: ext elim!: rel_filter.cases) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1601 |   show *: "rel_filter A (map_filter_on {(x, y). A\<inverse>\<inverse> x y} snd Z) (map_filter_on {(x, y). A\<inverse>\<inverse> x y} fst Z)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1602 | (is "rel_filter _ ?X ?Y") if "\<forall>\<^sub>F (x, y) in Z. A\<inverse>\<inverse> x y" for A Z | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1603 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1604 |     let ?Z = "map_filter_on {(x, y). A y x} prod.swap Z"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1605 | show "\<forall>\<^sub>F (x, y) in ?Z. A x y" using that by(simp add: eventually_map_filter_on) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1606 |     have [simp]: "prod.swap ` {(x, y). A y x} \<subseteq> {(x, y). A x y}" by auto
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1607 |     show "map_filter_on {(x, y). A x y} fst ?Z = ?X" "map_filter_on {(x, y). A x y} snd ?Z = ?Y"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1608 | using that by(simp_all add: map_filter_on_comp o_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1609 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1610 |   show "rel_filter A\<inverse>\<inverse> (map_filter_on {(x, y). A x y} snd Z) (map_filter_on {(x, y). A x y} fst Z)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1611 | if "\<forall>\<^sub>F (x, y) in Z. A x y" for Z using *[of "A\<inverse>\<inverse>" Z] that by simp | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1612 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1613 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1614 | lemma rel_filter_distr [relator_distr]: | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1615 | "rel_filter A OO rel_filter B = rel_filter (A OO B)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1616 | proof(safe intro!: ext elim!: rel_filter.cases) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1617 |   let ?AB = "{(x, y). (A OO B) x y}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1618 | show "(rel_filter A OO rel_filter B) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1619 |      (map_filter_on {(x, y). (A OO B) x y} fst Z) (map_filter_on {(x, y). (A OO B) x y} snd Z)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1620 | (is "(_ OO _) ?F ?H") if "\<forall>\<^sub>F (x, y) in Z. (A OO B) x y" for Z | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1621 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1622 | let ?G = "map_filter_on ?AB (\<lambda>(x, y). SOME z. A x z \<and> B z y) Z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1623 | show "rel_filter A ?F ?G" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1624 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1625 | let ?Z = "map_filter_on ?AB (\<lambda>(x, y). (x, SOME z. A x z \<and> B z y)) Z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1626 | show "\<forall>\<^sub>F (x, y) in ?Z. A x y" using that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1627 | by(auto simp add: eventually_map_filter_on split_def elim!: eventually_mono intro: someI2) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1628 |       have [simp]: "(\<lambda>p. (fst p, SOME z. A (fst p) z \<and> B z (snd p))) ` {p. (A OO B) (fst p) (snd p)} \<subseteq> {p. A (fst p) (snd p)}" by(auto intro: someI2)
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1629 |       show "map_filter_on {(x, y). A x y} fst ?Z = ?F" "map_filter_on {(x, y). A x y} snd ?Z = ?G"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1630 | using that by(simp_all add: map_filter_on_comp split_def o_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1631 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1632 | show "rel_filter B ?G ?H" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1633 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1634 | let ?Z = "map_filter_on ?AB (\<lambda>(x, y). (SOME z. A x z \<and> B z y, y)) Z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1635 | show "\<forall>\<^sub>F (x, y) in ?Z. B x y" using that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1636 | by(auto simp add: eventually_map_filter_on split_def elim!: eventually_mono intro: someI2) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1637 |       have [simp]: "(\<lambda>p. (SOME z. A (fst p) z \<and> B z (snd p), snd p)) ` {p. (A OO B) (fst p) (snd p)} \<subseteq> {p. B (fst p) (snd p)}" by(auto intro: someI2)
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1638 |       show "map_filter_on {(x, y). B x y} fst ?Z = ?G" "map_filter_on {(x, y). B x y} snd ?Z = ?H"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1639 | using that by(simp_all add: map_filter_on_comp split_def o_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1640 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1641 | qed | 
| 60036 | 1642 | |
| 1643 | fix F G | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1644 | assume F: "\<forall>\<^sub>F (x, y) in F. A x y" and G: "\<forall>\<^sub>F (x, y) in G. B x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1645 |     and eq: "map_filter_on {(x, y). B x y} fst G = map_filter_on {(x, y). A x y} snd F" (is "?Y2 = ?Y1")
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1646 |   let ?X = "map_filter_on {(x, y). A x y} fst F"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1647 |     and ?Z = "(map_filter_on {(x, y). B x y} snd G)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1648 |   have step: "\<exists>P'\<le>P. \<exists>Q' \<le> Q. eventually P' F \<and> eventually Q' G \<and> {y. \<exists>x. P' (x, y)} = {y. \<exists>z. Q' (y, z)}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1649 | if P: "eventually P F" and Q: "eventually Q G" for P Q | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1650 | proof - | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1651 | let ?P = "\<lambda>(x, y). P (x, y) \<and> A x y" and ?Q = "\<lambda>(y, z). Q (y, z) \<and> B y z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1652 | define P' where "P' \<equiv> \<lambda>(x, y). ?P (x, y) \<and> (\<exists>z. ?Q (y, z))" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1653 | define Q' where "Q' \<equiv> \<lambda>(y, z). ?Q (y, z) \<and> (\<exists>x. ?P (x, y))" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1654 |     have "P' \<le> P" "Q' \<le> Q" "{y. \<exists>x. P' (x, y)} = {y. \<exists>z. Q' (y, z)}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1655 | by(auto simp add: P'_def Q'_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1656 | moreover | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1657 | from P Q F G have P': "eventually ?P F" and Q': "eventually ?Q G" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1658 | by(simp_all add: eventually_conj_iff split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1659 | from P' F have "\<forall>\<^sub>F y in ?Y1. \<exists>x. P (x, y) \<and> A x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1660 | by(auto simp add: eventually_map_filter_on elim!: eventually_mono) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1661 | from this[folded eq] obtain Q'' where Q'': "eventually Q'' G" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1662 |       and Q''P: "{y. \<exists>z. Q'' (y, z)} \<subseteq> {y. \<exists>x. ?P (x, y)}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1663 | using G by(fastforce simp add: eventually_map_filter_on) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1664 | have "eventually (inf Q'' ?Q) G" using Q'' Q' by(auto intro: eventually_conj simp add: inf_fun_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1665 | then have "eventually Q' G" using Q''P by(auto elim!: eventually_mono simp add: Q'_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1666 | moreover | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1667 | from Q' G have "\<forall>\<^sub>F y in ?Y2. \<exists>z. Q (y, z) \<and> B y z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1668 | by(auto simp add: eventually_map_filter_on elim!: eventually_mono) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1669 | from this[unfolded eq] obtain P'' where P'': "eventually P'' F" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1670 |       and P''Q: "{y. \<exists>x. P'' (x, y)} \<subseteq> {y. \<exists>z. ?Q (y, z)}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1671 | using F by(fastforce simp add: eventually_map_filter_on) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1672 | have "eventually (inf P'' ?P) F" using P'' P' by(auto intro: eventually_conj simp add: inf_fun_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1673 | then have "eventually P' F" using P''Q by(auto elim!: eventually_mono simp add: P'_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1674 | ultimately show ?thesis by blast | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1675 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1676 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1677 | show "rel_filter (A OO B) ?X ?Z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1678 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1679 | let ?Y = "\<lambda>Y. \<exists>X Z. eventually X ?X \<and> eventually Z ?Z \<and> (\<lambda>(x, z). X x \<and> Z z \<and> (A OO B) x z) \<le> Y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1680 | have Y: "is_filter ?Y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1681 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1682 | show "?Y (\<lambda>_. True)" by(auto simp add: le_fun_def intro: eventually_True) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1683 | show "?Y (\<lambda>x. P x \<and> Q x)" if "?Y P" "?Y Q" for P Q using that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1684 | apply clarify | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1685 | apply(intro exI conjI; (elim eventually_rev_mp; fold imp_conjL; intro always_eventually allI; rule imp_refl)?) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1686 | apply auto | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1687 | done | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1688 | show "?Y Q" if "?Y P" "\<forall>x. P x \<longrightarrow> Q x" for P Q using that by blast | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1689 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1690 | define Y where "Y = Abs_filter ?Y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1691 | have eventually_Y: "eventually P Y \<longleftrightarrow> ?Y P" for P | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1692 | using eventually_Abs_filter[OF Y, of P] by(simp add: Y_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1693 | show YY: "\<forall>\<^sub>F (x, y) in Y. (A OO B) x y" using F G | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1694 | by(auto simp add: eventually_Y eventually_map_filter_on eventually_conj_iff intro!: eventually_True) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1695 | have "?Y (\<lambda>(x, z). P x \<and> (A OO B) x z) \<longleftrightarrow> (\<forall>\<^sub>F (x, y) in F. P x \<and> A x y)" (is "?lhs = ?rhs") for P | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1696 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1697 | show ?lhs if ?rhs using G F that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1698 | by(auto 4 3 intro: exI[where x="\<lambda>_. True"] simp add: eventually_map_filter_on split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1699 | assume ?lhs | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1700 | then obtain X Z where "\<forall>\<^sub>F (x, y) in F. X x \<and> A x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1701 | and "\<forall>\<^sub>F (x, y) in G. Z y \<and> B x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1702 | and "(\<lambda>(x, z). X x \<and> Z z \<and> (A OO B) x z) \<le> (\<lambda>(x, z). P x \<and> (A OO B) x z)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1703 | using F G by(auto simp add: eventually_map_filter_on split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1704 | from step[OF this(1, 2)] this(3) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1705 | show ?rhs by(clarsimp elim!: eventually_rev_mp simp add: le_fun_def)(fastforce intro: always_eventually) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1706 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1707 | then show "map_filter_on ?AB fst Y = ?X" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1708 | by(simp add: filter_eq_iff YY eventually_map_filter_on)(simp add: eventually_Y eventually_map_filter_on F G; simp add: split_def) | 
| 60036 | 1709 | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1710 | have "?Y (\<lambda>(x, z). P z \<and> (A OO B) x z) \<longleftrightarrow> (\<forall>\<^sub>F (x, y) in G. P y \<and> B x y)" (is "?lhs = ?rhs") for P | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1711 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1712 | show ?lhs if ?rhs using G F that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1713 | by(auto 4 3 intro: exI[where x="\<lambda>_. True"] simp add: eventually_map_filter_on split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1714 | assume ?lhs | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1715 | then obtain X Z where "\<forall>\<^sub>F (x, y) in F. X x \<and> A x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1716 | and "\<forall>\<^sub>F (x, y) in G. Z y \<and> B x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1717 | and "(\<lambda>(x, z). X x \<and> Z z \<and> (A OO B) x z) \<le> (\<lambda>(x, z). P z \<and> (A OO B) x z)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1718 | using F G by(auto simp add: eventually_map_filter_on split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1719 | from step[OF this(1, 2)] this(3) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1720 | show ?rhs by(clarsimp elim!: eventually_rev_mp simp add: le_fun_def)(fastforce intro: always_eventually) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1721 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1722 | then show "map_filter_on ?AB snd Y = ?Z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1723 | by(simp add: filter_eq_iff YY eventually_map_filter_on)(simp add: eventually_Y eventually_map_filter_on F G; simp add: split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1724 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1725 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1726 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1727 | lemma filtermap_parametric: "((A ===> B) ===> rel_filter A ===> rel_filter B) filtermap filtermap" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1728 | proof(intro rel_funI; erule rel_filter.cases; hypsubst) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1729 | fix f g Z | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1730 | assume fg: "(A ===> B) f g" and Z: "\<forall>\<^sub>F (x, y) in Z. A x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1731 |   have "rel_filter B (map_filter_on {(x, y). A x y} (f \<circ> fst) Z) (map_filter_on {(x, y). A x y} (g \<circ> snd) Z)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1732 | (is "rel_filter _ ?F ?G") | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1733 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1734 |     let ?Z = "map_filter_on {(x, y). A x y} (map_prod f g) Z"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1735 | show "\<forall>\<^sub>F (x, y) in ?Z. B x y" using fg Z | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1736 | by(auto simp add: eventually_map_filter_on split_def elim!: eventually_mono rel_funD) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1737 |     have [simp]: "map_prod f g ` {p. A (fst p) (snd p)} \<subseteq> {p. B (fst p) (snd p)}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1738 | using fg by(auto dest: rel_funD) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1739 |     show "map_filter_on {(x, y). B x y} fst ?Z = ?F" "map_filter_on {(x, y). B x y} snd ?Z = ?G"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1740 | using Z by(auto simp add: map_filter_on_comp split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1741 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1742 |   thus "rel_filter B (filtermap f (map_filter_on {(x, y). A x y} fst Z)) (filtermap g (map_filter_on {(x, y). A x y} snd Z))"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1743 | using Z by(simp add: map_filter_on_UNIV[symmetric] map_filter_on_comp) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1744 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1745 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1746 | lemma rel_filter_Grp: "rel_filter (Grp UNIV f) = Grp UNIV (filtermap f)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1747 | proof((intro antisym predicate2I; (elim GrpE; hypsubst)?), rule GrpI[OF _ UNIV_I]) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1748 | fix F G | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1749 | assume "rel_filter (Grp UNIV f) F G" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1750 | hence "rel_filter (=) (filtermap f F) (filtermap id G)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1751 | by(rule filtermap_parametric[THEN rel_funD, THEN rel_funD, rotated])(simp add: Grp_def rel_fun_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1752 | thus "filtermap f F = G" by(simp add: rel_filter_eq) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1753 | next | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1754 | fix F :: "'a filter" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1755 | have "rel_filter (=) F F" by(simp add: rel_filter_eq) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1756 | hence "rel_filter (Grp UNIV f) (filtermap id F) (filtermap f F)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1757 | by(rule filtermap_parametric[THEN rel_funD, THEN rel_funD, rotated])(simp add: Grp_def rel_fun_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1758 | thus "rel_filter (Grp UNIV f) F (filtermap f F)" by simp | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1759 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1760 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1761 | lemma Quotient_filter [quot_map]: | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1762 | "Quotient R Abs Rep T \<Longrightarrow> Quotient (rel_filter R) (filtermap Abs) (filtermap Rep) (rel_filter T)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1763 | unfolding Quotient_alt_def5 rel_filter_eq[symmetric] rel_filter_Grp[symmetric] | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1764 | by(simp add: rel_filter_distr[symmetric] rel_filter_conversep[symmetric] rel_filter_mono) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1765 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1766 | lemma left_total_rel_filter [transfer_rule]: "left_total A \<Longrightarrow> left_total (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1767 | unfolding left_total_alt_def rel_filter_eq[symmetric] rel_filter_conversep[symmetric] rel_filter_distr | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1768 | by(rule rel_filter_mono) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1769 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1770 | lemma right_total_rel_filter [transfer_rule]: "right_total A \<Longrightarrow> right_total (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1771 | using left_total_rel_filter[of "A\<inverse>\<inverse>"] by(simp add: rel_filter_conversep) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1772 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1773 | lemma bi_total_rel_filter [transfer_rule]: "bi_total A \<Longrightarrow> bi_total (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1774 | unfolding bi_total_alt_def by(simp add: left_total_rel_filter right_total_rel_filter) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1775 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1776 | lemma left_unique_rel_filter [transfer_rule]: "left_unique A \<Longrightarrow> left_unique (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1777 | unfolding left_unique_alt_def rel_filter_eq[symmetric] rel_filter_conversep[symmetric] rel_filter_distr | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1778 | by(rule rel_filter_mono) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1779 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1780 | lemma right_unique_rel_filter [transfer_rule]: | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1781 | "right_unique A \<Longrightarrow> right_unique (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1782 | using left_unique_rel_filter[of "A\<inverse>\<inverse>"] by(simp add: rel_filter_conversep) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1783 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1784 | lemma bi_unique_rel_filter [transfer_rule]: "bi_unique A \<Longrightarrow> bi_unique (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1785 | by(simp add: bi_unique_alt_def left_unique_rel_filter right_unique_rel_filter) | 
| 60036 | 1786 | |
| 1787 | lemma eventually_parametric [transfer_rule]: | |
| 67399 | 1788 | "((A ===> (=)) ===> rel_filter A ===> (=)) eventually eventually" | 
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1789 | by(auto 4 4 intro!: rel_funI elim!: rel_filter.cases simp add: eventually_map_filter_on dest: rel_funD intro: always_eventually elim!: eventually_rev_mp) | 
| 60036 | 1790 | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1791 | lemma frequently_parametric [transfer_rule]: "((A ===> (=)) ===> rel_filter A ===> (=)) frequently frequently" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1792 | unfolding frequently_def[abs_def] by transfer_prover | 
| 60036 | 1793 | |
| 1794 | lemma is_filter_parametric [transfer_rule]: | |
| 67956 | 1795 | assumes [transfer_rule]: "bi_total A" | 
| 1796 | assumes [transfer_rule]: "bi_unique A" | |
| 1797 | shows "(((A ===> (=)) ===> (=)) ===> (=)) is_filter is_filter" | |
| 1798 | unfolding is_filter_def by transfer_prover | |
| 60036 | 1799 | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1800 | lemma top_filter_parametric [transfer_rule]: "rel_filter A top top" if "bi_total A" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1801 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1802 |   let ?Z = "principal {(x, y). A x y}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1803 | show "\<forall>\<^sub>F (x, y) in ?Z. A x y" by(simp add: eventually_principal) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1804 |   show "map_filter_on {(x, y). A x y} fst ?Z = top" "map_filter_on {(x, y). A x y} snd ?Z = top"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1805 | using that by(auto simp add: filter_eq_iff eventually_map_filter_on eventually_principal bi_total_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1806 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1807 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1808 | lemma bot_filter_parametric [transfer_rule]: "rel_filter A bot bot" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1809 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1810 | show "\<forall>\<^sub>F (x, y) in bot. A x y" by simp | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1811 |   show "map_filter_on {(x, y). A x y} fst bot = bot" "map_filter_on {(x, y). A x y} snd bot = bot"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1812 | by(simp_all add: filter_eq_iff eventually_map_filter_on) | 
| 60036 | 1813 | qed | 
| 1814 | ||
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1815 | lemma principal_parametric [transfer_rule]: "(rel_set A ===> rel_filter A) principal principal" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1816 | proof(rule rel_funI rel_filter.intros)+ | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1817 | fix S S' | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1818 | assume *: "rel_set A S S'" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1819 |   define SS' where "SS' = S \<times> S' \<inter> {(x, y). A x y}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1820 |   have SS': "SS' \<subseteq> {(x, y). A x y}" and [simp]: "S = fst ` SS'" "S' = snd ` SS'"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1821 | using * by(auto 4 3 dest: rel_setD1 rel_setD2 intro: rev_image_eqI simp add: SS'_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1822 | let ?Z = "principal SS'" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1823 | show "\<forall>\<^sub>F (x, y) in ?Z. A x y" using SS' by(auto simp add: eventually_principal) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1824 |   then show "map_filter_on {(x, y). A x y} fst ?Z = principal S"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1825 |     and "map_filter_on {(x, y). A x y} snd ?Z = principal S'"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1826 | by(auto simp add: filter_eq_iff eventually_map_filter_on eventually_principal) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1827 | qed | 
| 60036 | 1828 | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1829 | lemma sup_filter_parametric [transfer_rule]: | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1830 | "(rel_filter A ===> rel_filter A ===> rel_filter A) sup sup" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1831 | proof(intro rel_funI; elim rel_filter.cases; hypsubst) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1832 | show "rel_filter A | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1833 |     (map_filter_on {(x, y). A x y} fst FG \<squnion> map_filter_on {(x, y). A x y} fst FG')
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1834 |     (map_filter_on {(x, y). A x y} snd FG \<squnion> map_filter_on {(x, y). A x y} snd FG')"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1835 | (is "rel_filter _ (sup ?F ?G) (sup ?F' ?G')") | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1836 | if "\<forall>\<^sub>F (x, y) in FG. A x y" "\<forall>\<^sub>F (x, y) in FG'. A x y" for FG FG' | 
| 60036 | 1837 | proof | 
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1838 | let ?Z = "sup FG FG'" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1839 | show "\<forall>\<^sub>F (x, y) in ?Z. A x y" by(simp add: eventually_sup that) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1840 |     then show "map_filter_on {(x, y). A x y} fst ?Z = sup ?F ?G" 
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1841 |       and "map_filter_on {(x, y). A x y} snd ?Z = sup ?F' ?G'"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1842 | by(simp_all add: filter_eq_iff eventually_map_filter_on eventually_sup) | 
| 60036 | 1843 | qed | 
| 1844 | qed | |
| 1845 | ||
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1846 | lemma Sup_filter_parametric [transfer_rule]: "(rel_set (rel_filter A) ===> rel_filter A) Sup Sup" | 
| 60036 | 1847 | proof(rule rel_funI) | 
| 1848 | fix S S' | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1849 |   define SS' where "SS' = S \<times> S' \<inter> {(F, G). rel_filter A F G}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1850 | assume "rel_set (rel_filter A) S S'" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1851 |   then have SS': "SS' \<subseteq> {(F, G). rel_filter A F G}" and [simp]: "S = fst ` SS'" "S' = snd ` SS'"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1852 | by(auto 4 3 dest: rel_setD1 rel_setD2 intro: rev_image_eqI simp add: SS'_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1853 | from SS' obtain Z where Z: "\<And>F G. (F, G) \<in> SS' \<Longrightarrow> | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1854 | (\<forall>\<^sub>F (x, y) in Z F G. A x y) \<and> | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1855 |     id F = map_filter_on {(x, y). A x y} fst (Z F G) \<and>
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1856 |     id G = map_filter_on {(x, y). A x y} snd (Z F G)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1857 | unfolding rel_filter.simps by atomize_elim((rule choice allI)+; auto) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1858 | have id: "eventually P F = eventually P (id F)" "eventually Q G = eventually Q (id G)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1859 | if "(F, G) \<in> SS'" for P Q F G by simp_all | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1860 | show "rel_filter A (Sup S) (Sup S')" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1861 | proof | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
68860diff
changeset | 1862 | let ?Z = "\<Squnion>(F, G)\<in>SS'. Z F G" | 
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1863 | show *: "\<forall>\<^sub>F (x, y) in ?Z. A x y" using Z by(auto simp add: eventually_Sup) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1864 |     show "map_filter_on {(x, y). A x y} fst ?Z = Sup S" "map_filter_on {(x, y). A x y} snd ?Z = Sup S'"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1865 | unfolding filter_eq_iff | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1866 | by(auto 4 4 simp add: id eventually_Sup eventually_map_filter_on *[simplified eventually_Sup] simp del: id_apply dest: Z) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1867 | qed | 
| 66162 | 1868 | qed | 
| 1869 | ||
| 60036 | 1870 | context | 
| 1871 | fixes A :: "'a \<Rightarrow> 'b \<Rightarrow> bool" | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1872 | assumes [transfer_rule]: "bi_unique A" | 
| 60036 | 1873 | begin | 
| 1874 | ||
| 1875 | lemma le_filter_parametric [transfer_rule]: | |
| 67399 | 1876 | "(rel_filter A ===> rel_filter A ===> (=)) (\<le>) (\<le>)" | 
| 60036 | 1877 | unfolding le_filter_def[abs_def] by transfer_prover | 
| 1878 | ||
| 1879 | lemma less_filter_parametric [transfer_rule]: | |
| 67399 | 1880 | "(rel_filter A ===> rel_filter A ===> (=)) (<) (<)" | 
| 60036 | 1881 | unfolding less_filter_def[abs_def] by transfer_prover | 
| 1882 | ||
| 1883 | context | |
| 1884 | assumes [transfer_rule]: "bi_total A" | |
| 1885 | begin | |
| 1886 | ||
| 1887 | lemma Inf_filter_parametric [transfer_rule]: | |
| 1888 | "(rel_set (rel_filter A) ===> rel_filter A) Inf Inf" | |
| 1889 | unfolding Inf_filter_def[abs_def] by transfer_prover | |
| 1890 | ||
| 1891 | lemma inf_filter_parametric [transfer_rule]: | |
| 1892 | "(rel_filter A ===> rel_filter A ===> rel_filter A) inf inf" | |
| 1893 | proof(intro rel_funI)+ | |
| 1894 | fix F F' G G' | |
| 1895 | assume [transfer_rule]: "rel_filter A F F'" "rel_filter A G G'" | |
| 1896 |   have "rel_filter A (Inf {F, G}) (Inf {F', G'})" by transfer_prover
 | |
| 1897 | thus "rel_filter A (inf F G) (inf F' G')" by simp | |
| 1898 | qed | |
| 1899 | ||
| 1900 | end | |
| 1901 | ||
| 1902 | end | |
| 1903 | ||
| 1904 | end | |
| 1905 | ||
| 68667 | 1906 | lemma prod_filter_parametric [transfer_rule]: includes lifting_syntax shows | 
| 1907 | "(rel_filter R ===> rel_filter S ===> rel_filter (rel_prod R S)) prod_filter prod_filter" | |
| 1908 | proof(intro rel_funI; elim rel_filter.cases; hypsubst) | |
| 1909 | fix F G | |
| 1910 | assume F: "\<forall>\<^sub>F (x, y) in F. R x y" and G: "\<forall>\<^sub>F (x, y) in G. S x y" | |
| 1911 | show "rel_filter (rel_prod R S) | |
| 1912 |     (map_filter_on {(x, y). R x y} fst F \<times>\<^sub>F map_filter_on {(x, y). S x y} fst G)
 | |
| 1913 |     (map_filter_on {(x, y). R x y} snd F \<times>\<^sub>F map_filter_on {(x, y). S x y} snd G)"
 | |
| 1914 | (is "rel_filter ?RS ?F ?G") | |
| 1915 | proof | |
| 1916 | let ?Z = "filtermap (\<lambda>((a, b), (a', b')). ((a, a'), (b, b'))) (prod_filter F G)" | |
| 1917 | show *: "\<forall>\<^sub>F (x, y) in ?Z. rel_prod R S x y" using F G | |
| 1918 | by(auto simp add: eventually_filtermap split_beta eventually_prod_filter) | |
| 1919 |     show "map_filter_on {(x, y). ?RS x y} fst ?Z = ?F"
 | |
| 1920 | using F G | |
| 1921 | apply(clarsimp simp add: filter_eq_iff eventually_map_filter_on *) | |
| 1922 | apply(simp add: eventually_filtermap split_beta eventually_prod_filter) | |
| 1923 | apply(subst eventually_map_filter_on; simp)+ | |
| 1924 | apply(rule iffI; clarsimp) | |
| 1925 | subgoal for P P' P'' | |
| 1926 | apply(rule exI[where x="\<lambda>a. \<exists>b. P' (a, b) \<and> R a b"]; rule conjI) | |
| 1927 | subgoal by(fastforce elim: eventually_rev_mp eventually_mono) | |
| 1928 | subgoal | |
| 1929 | by(rule exI[where x="\<lambda>a. \<exists>b. P'' (a, b) \<and> S a b"])(fastforce elim: eventually_rev_mp eventually_mono) | |
| 1930 | done | |
| 1931 | subgoal by fastforce | |
| 1932 | done | |
| 1933 |     show "map_filter_on {(x, y). ?RS x y} snd ?Z = ?G"
 | |
| 1934 | using F G | |
| 1935 | apply(clarsimp simp add: filter_eq_iff eventually_map_filter_on *) | |
| 1936 | apply(simp add: eventually_filtermap split_beta eventually_prod_filter) | |
| 1937 | apply(subst eventually_map_filter_on; simp)+ | |
| 1938 | apply(rule iffI; clarsimp) | |
| 1939 | subgoal for P P' P'' | |
| 1940 | apply(rule exI[where x="\<lambda>b. \<exists>a. P' (a, b) \<and> R a b"]; rule conjI) | |
| 1941 | subgoal by(fastforce elim: eventually_rev_mp eventually_mono) | |
| 1942 | subgoal | |
| 1943 | by(rule exI[where x="\<lambda>b. \<exists>a. P'' (a, b) \<and> S a b"])(fastforce elim: eventually_rev_mp eventually_mono) | |
| 1944 | done | |
| 1945 | subgoal by fastforce | |
| 1946 | done | |
| 1947 | qed | |
| 1948 | qed | |
| 1949 | ||
| 62123 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1950 | text \<open>Code generation for filters\<close> | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1951 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1952 | definition abstract_filter :: "(unit \<Rightarrow> 'a filter) \<Rightarrow> 'a filter" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1953 | where [simp]: "abstract_filter f = f ()" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1954 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1955 | code_datatype principal abstract_filter | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1956 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1957 | hide_const (open) abstract_filter | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1958 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1959 | declare [[code drop: filterlim prod_filter filtermap eventually | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1960 | "inf :: _ filter \<Rightarrow> _" "sup :: _ filter \<Rightarrow> _" "less_eq :: _ filter \<Rightarrow> _" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1961 | Abs_filter]] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1962 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1963 | declare filterlim_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1964 | declare principal_prod_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1965 | declare filtermap_principal [code] | 
| 66162 | 1966 | declare filtercomap_principal [code] | 
| 62123 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1967 | declare eventually_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1968 | declare inf_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1969 | declare sup_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1970 | declare principal_le_iff [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1971 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1972 | lemma Rep_filter_iff_eventually [simp, code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1973 | "Rep_filter F P \<longleftrightarrow> eventually P F" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1974 | by (simp add: eventually_def) | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1975 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1976 | lemma bot_eq_principal_empty [code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1977 |   "bot = principal {}"
 | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1978 | by simp | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1979 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1980 | lemma top_eq_principal_UNIV [code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1981 | "top = principal UNIV" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1982 | by simp | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1983 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1984 | instantiation filter :: (equal) equal | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1985 | begin | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1986 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1987 | definition equal_filter :: "'a filter \<Rightarrow> 'a filter \<Rightarrow> bool" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1988 | where "equal_filter F F' \<longleftrightarrow> F = F'" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1989 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1990 | lemma equal_filter [code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1991 | "HOL.equal (principal A) (principal B) \<longleftrightarrow> A = B" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1992 | by (simp add: equal_filter_def) | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1993 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1994 | instance | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1995 | by standard (simp add: equal_filter_def) | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1996 | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1997 | end | 
| 62123 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1998 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1999 | end |