| author | wenzelm | 
| Mon, 24 Jun 2019 16:26:25 +0200 | |
| changeset 70359 | 470d4f145e4c | 
| parent 69913 | ca515cf61651 | 
| child 71404 | f2b783abfbe7 | 
| permissions | -rw-r--r-- | 
| 1475 | 1 | (* Title: HOL/Fun.thy | 
| 2 | Author: Tobias Nipkow, Cambridge University Computer Laboratory | |
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 3 | Author: Andrei Popescu, TU Muenchen | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 4 | Copyright 1994, 2012 | 
| 18154 | 5 | *) | 
| 923 | 6 | |
| 60758 | 7 | section \<open>Notions about functions\<close> | 
| 923 | 8 | |
| 15510 | 9 | theory Fun | 
| 63575 | 10 | imports Set | 
| 69913 | 11 | keywords "functor" :: thy_goal_defn | 
| 15131 | 12 | begin | 
| 2912 | 13 | |
| 63322 | 14 | lemma apply_inverse: "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u" | 
| 26147 | 15 | by auto | 
| 2912 | 16 | |
| 63322 | 17 | text \<open>Uniqueness, so NOT the axiom of choice.\<close> | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 18 | lemma uniq_choice: "\<forall>x. \<exists>!y. Q x y \<Longrightarrow> \<exists>f. \<forall>x. Q x (f x)" | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 19 | by (force intro: theI') | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 20 | |
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 21 | lemma b_uniq_choice: "\<forall>x\<in>S. \<exists>!y. Q x y \<Longrightarrow> \<exists>f. \<forall>x\<in>S. Q x (f x)" | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 22 | by (force intro: theI') | 
| 12258 | 23 | |
| 63400 | 24 | |
| 61799 | 25 | subsection \<open>The Identity Function \<open>id\<close>\<close> | 
| 6171 | 26 | |
| 63322 | 27 | definition id :: "'a \<Rightarrow> 'a" | 
| 28 | where "id = (\<lambda>x. x)" | |
| 13910 | 29 | |
| 26147 | 30 | lemma id_apply [simp]: "id x = x" | 
| 31 | by (simp add: id_def) | |
| 32 | ||
| 47579 | 33 | lemma image_id [simp]: "image id = id" | 
| 34 | by (simp add: id_def fun_eq_iff) | |
| 26147 | 35 | |
| 47579 | 36 | lemma vimage_id [simp]: "vimage id = id" | 
| 37 | by (simp add: id_def fun_eq_iff) | |
| 26147 | 38 | |
| 62843 
313d3b697c9a
Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
 paulson <lp15@cam.ac.uk> parents: 
62618diff
changeset | 39 | lemma eq_id_iff: "(\<forall>x. f x = x) \<longleftrightarrow> f = id" | 
| 
313d3b697c9a
Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
 paulson <lp15@cam.ac.uk> parents: 
62618diff
changeset | 40 | by auto | 
| 
313d3b697c9a
Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
 paulson <lp15@cam.ac.uk> parents: 
62618diff
changeset | 41 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51717diff
changeset | 42 | code_printing | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51717diff
changeset | 43 | constant id \<rightharpoonup> (Haskell) "id" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51717diff
changeset | 44 | |
| 26147 | 45 | |
| 61799 | 46 | subsection \<open>The Composition Operator \<open>f \<circ> g\<close>\<close> | 
| 26147 | 47 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 48 | definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c"  (infixl "\<circ>" 55)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 49 | where "f \<circ> g = (\<lambda>x. f (g x))" | 
| 11123 | 50 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 51 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 52 | comp (infixl "o" 55) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 53 | |
| 63322 | 54 | lemma comp_apply [simp]: "(f \<circ> g) x = f (g x)" | 
| 49739 | 55 | by (simp add: comp_def) | 
| 13585 | 56 | |
| 63322 | 57 | lemma comp_assoc: "(f \<circ> g) \<circ> h = f \<circ> (g \<circ> h)" | 
| 49739 | 58 | by (simp add: fun_eq_iff) | 
| 13585 | 59 | |
| 63322 | 60 | lemma id_comp [simp]: "id \<circ> g = g" | 
| 49739 | 61 | by (simp add: fun_eq_iff) | 
| 13585 | 62 | |
| 63322 | 63 | lemma comp_id [simp]: "f \<circ> id = f" | 
| 49739 | 64 | by (simp add: fun_eq_iff) | 
| 65 | ||
| 63575 | 66 | lemma comp_eq_dest: "a \<circ> b = c \<circ> d \<Longrightarrow> a (b v) = c (d v)" | 
| 49739 | 67 | by (simp add: fun_eq_iff) | 
| 34150 | 68 | |
| 63575 | 69 | lemma comp_eq_elim: "a \<circ> b = c \<circ> d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R" | 
| 61204 | 70 | by (simp add: fun_eq_iff) | 
| 34150 | 71 | |
| 63322 | 72 | lemma comp_eq_dest_lhs: "a \<circ> b = c \<Longrightarrow> a (b v) = c v" | 
| 55066 | 73 | by clarsimp | 
| 74 | ||
| 63322 | 75 | lemma comp_eq_id_dest: "a \<circ> b = id \<circ> c \<Longrightarrow> a (b v) = c v" | 
| 76 | by clarsimp | |
| 77 | ||
| 78 | lemma image_comp: "f ` (g ` r) = (f \<circ> g) ` r" | |
| 33044 | 79 | by auto | 
| 80 | ||
| 63322 | 81 | lemma vimage_comp: "f -` (g -` x) = (g \<circ> f) -` x" | 
| 49739 | 82 | by auto | 
| 83 | ||
| 63322 | 84 | lemma image_eq_imp_comp: "f ` A = g ` B \<Longrightarrow> (h \<circ> f) ` A = (h \<circ> g) ` B" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 85 | by (auto simp: comp_def elim!: equalityE) | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 86 | |
| 67399 | 87 | lemma image_bind: "f ` (Set.bind A g) = Set.bind A ((`) f \<circ> g)" | 
| 63322 | 88 | by (auto simp add: Set.bind_def) | 
| 59512 | 89 | |
| 90 | lemma bind_image: "Set.bind (f ` A) g = Set.bind A (g \<circ> f)" | |
| 63322 | 91 | by (auto simp add: Set.bind_def) | 
| 59512 | 92 | |
| 63322 | 93 | lemma (in group_add) minus_comp_minus [simp]: "uminus \<circ> uminus = id" | 
| 60929 | 94 | by (simp add: fun_eq_iff) | 
| 95 | ||
| 63322 | 96 | lemma (in boolean_algebra) minus_comp_minus [simp]: "uminus \<circ> uminus = id" | 
| 60929 | 97 | by (simp add: fun_eq_iff) | 
| 98 | ||
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51717diff
changeset | 99 | code_printing | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51717diff
changeset | 100 | constant comp \<rightharpoonup> (SML) infixl 5 "o" and (Haskell) infixr 9 "." | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51717diff
changeset | 101 | |
| 13585 | 102 | |
| 61799 | 103 | subsection \<open>The Forward Composition Operator \<open>fcomp\<close>\<close> | 
| 26357 | 104 | |
| 63575 | 105 | definition fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c"  (infixl "\<circ>>" 60)
 | 
| 63322 | 106 | where "f \<circ>> g = (\<lambda>x. g (f x))" | 
| 26357 | 107 | |
| 37751 | 108 | lemma fcomp_apply [simp]: "(f \<circ>> g) x = g (f x)" | 
| 26357 | 109 | by (simp add: fcomp_def) | 
| 110 | ||
| 37751 | 111 | lemma fcomp_assoc: "(f \<circ>> g) \<circ>> h = f \<circ>> (g \<circ>> h)" | 
| 26357 | 112 | by (simp add: fcomp_def) | 
| 113 | ||
| 37751 | 114 | lemma id_fcomp [simp]: "id \<circ>> g = g" | 
| 26357 | 115 | by (simp add: fcomp_def) | 
| 116 | ||
| 37751 | 117 | lemma fcomp_id [simp]: "f \<circ>> id = f" | 
| 26357 | 118 | by (simp add: fcomp_def) | 
| 119 | ||
| 63322 | 120 | lemma fcomp_comp: "fcomp f g = comp g f" | 
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 121 | by (simp add: ext) | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 122 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51717diff
changeset | 123 | code_printing | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51717diff
changeset | 124 | constant fcomp \<rightharpoonup> (Eval) infixl 1 "#>" | 
| 31202 
52d332f8f909
pretty printing of functional combinators for evaluation code
 haftmann parents: 
31080diff
changeset | 125 | |
| 37751 | 126 | no_notation fcomp (infixl "\<circ>>" 60) | 
| 26588 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 haftmann parents: 
26357diff
changeset | 127 | |
| 26357 | 128 | |
| 60758 | 129 | subsection \<open>Mapping functions\<close> | 
| 40602 | 130 | |
| 63322 | 131 | definition map_fun :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd"
 | 
| 132 | where "map_fun f g h = g \<circ> h \<circ> f" | |
| 40602 | 133 | |
| 63322 | 134 | lemma map_fun_apply [simp]: "map_fun f g h x = g (h (f x))" | 
| 40602 | 135 | by (simp add: map_fun_def) | 
| 136 | ||
| 137 | ||
| 60758 | 138 | subsection \<open>Injectivity and Bijectivity\<close> | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 139 | |
| 63322 | 140 | definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool"  \<comment> \<open>injective\<close>
 | 
| 141 | where "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)" | |
| 26147 | 142 | |
| 63322 | 143 | definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool"  \<comment> \<open>bijective\<close>
 | 
| 144 | where "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B" | |
| 26147 | 145 | |
| 63575 | 146 | text \<open> | 
| 147 | A common special case: functions injective, surjective or bijective over | |
| 148 | the entire domain type. | |
| 149 | \<close> | |
| 26147 | 150 | |
| 65170 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 haftmann parents: 
64966diff
changeset | 151 | abbreviation inj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 haftmann parents: 
64966diff
changeset | 152 | where "inj f \<equiv> inj_on f UNIV" | 
| 26147 | 153 | |
| 65170 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 haftmann parents: 
64966diff
changeset | 154 | abbreviation surj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 63322 | 155 | where "surj f \<equiv> range f = UNIV" | 
| 13585 | 156 | |
| 67226 | 157 | translations \<comment> \<open>The negated case:\<close> | 
| 65170 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 haftmann parents: 
64966diff
changeset | 158 | "\<not> CONST surj f" \<leftharpoondown> "CONST range f \<noteq> CONST UNIV" | 
| 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 haftmann parents: 
64966diff
changeset | 159 | |
| 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 haftmann parents: 
64966diff
changeset | 160 | abbreviation bij :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 haftmann parents: 
64966diff
changeset | 161 | where "bij f \<equiv> bij_betw f UNIV UNIV" | 
| 26147 | 162 | |
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 163 | lemma inj_def: "inj f \<longleftrightarrow> (\<forall>x y. f x = f y \<longrightarrow> x = y)" | 
| 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 164 | unfolding inj_on_def by blast | 
| 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 165 | |
| 63322 | 166 | lemma injI: "(\<And>x y. f x = f y \<Longrightarrow> x = y) \<Longrightarrow> inj f" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 167 | unfolding inj_def by blast | 
| 13585 | 168 | |
| 63322 | 169 | theorem range_ex1_eq: "inj f \<Longrightarrow> b \<in> range f \<longleftrightarrow> (\<exists>!x. b = f x)" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 170 | unfolding inj_def by blast | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 171 | |
| 63322 | 172 | lemma injD: "inj f \<Longrightarrow> f x = f y \<Longrightarrow> x = y" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 173 | by (simp add: inj_def) | 
| 63322 | 174 | |
| 175 | lemma inj_on_eq_iff: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<longleftrightarrow> x = y" | |
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 176 | by (auto simp: inj_on_def) | 
| 63322 | 177 | |
| 64965 | 178 | lemma inj_on_cong: "(\<And>a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> inj_on f A \<longleftrightarrow> inj_on g A" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 179 | by (auto simp: inj_on_def) | 
| 63322 | 180 | |
| 181 | lemma inj_on_strict_subset: "inj_on f B \<Longrightarrow> A \<subset> B \<Longrightarrow> f ` A \<subset> f ` B" | |
| 182 | unfolding inj_on_def by blast | |
| 183 | ||
| 69700 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69661diff
changeset | 184 | lemma inj_compose: "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (f \<circ> g)" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 185 | by (simp add: inj_def) | 
| 38620 | 186 | |
| 187 | lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)" | |
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 188 | by (simp add: inj_def fun_eq_iff) | 
| 38620 | 189 | |
| 63322 | 190 | lemma inj_eq: "inj f \<Longrightarrow> f x = f y \<longleftrightarrow> x = y" | 
| 191 | by (simp add: inj_on_eq_iff) | |
| 32988 | 192 | |
| 26147 | 193 | lemma inj_on_id[simp]: "inj_on id A" | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 194 | by (simp add: inj_on_def) | 
| 13585 | 195 | |
| 63322 | 196 | lemma inj_on_id2[simp]: "inj_on (\<lambda>x. x) A" | 
| 197 | by (simp add: inj_on_def) | |
| 26147 | 198 | |
| 46586 | 199 | lemma inj_on_Int: "inj_on f A \<or> inj_on f B \<Longrightarrow> inj_on f (A \<inter> B)" | 
| 63322 | 200 | unfolding inj_on_def by blast | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 201 | |
| 40702 | 202 | lemma surj_id: "surj id" | 
| 63322 | 203 | by simp | 
| 26147 | 204 | |
| 39101 
606432dd1896
Revert bij_betw changes to simp set (Problem in afp/Ordinals_and_Cardinals)
 hoelzl parents: 
39076diff
changeset | 205 | lemma bij_id[simp]: "bij id" | 
| 63322 | 206 | by (simp add: bij_betw_def) | 
| 13585 | 207 | |
| 63322 | 208 | lemma bij_uminus: "bij (uminus :: 'a \<Rightarrow> 'a::ab_group_add)" | 
| 209 | unfolding bij_betw_def inj_on_def | |
| 210 | by (force intro: minus_minus [symmetric]) | |
| 63072 | 211 | |
| 63322 | 212 | lemma inj_onI [intro?]: "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<Longrightarrow> x = y) \<Longrightarrow> inj_on f A" | 
| 213 | by (simp add: inj_on_def) | |
| 13585 | 214 | |
| 63322 | 215 | lemma inj_on_inverseI: "(\<And>x. x \<in> A \<Longrightarrow> g (f x) = x) \<Longrightarrow> inj_on f A" | 
| 64965 | 216 | by (auto dest: arg_cong [of concl: g] simp add: inj_on_def) | 
| 13585 | 217 | |
| 63322 | 218 | lemma inj_onD: "inj_on f A \<Longrightarrow> f x = f y \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x = y" | 
| 219 | unfolding inj_on_def by blast | |
| 13585 | 220 | |
| 63365 | 221 | lemma inj_on_subset: | 
| 222 | assumes "inj_on f A" | |
| 63575 | 223 | and "B \<subseteq> A" | 
| 63365 | 224 | shows "inj_on f B" | 
| 225 | proof (rule inj_onI) | |
| 226 | fix a b | |
| 227 | assume "a \<in> B" and "b \<in> B" | |
| 228 | with assms have "a \<in> A" and "b \<in> A" | |
| 229 | by auto | |
| 230 | moreover assume "f a = f b" | |
| 64965 | 231 | ultimately show "a = b" | 
| 232 | using assms by (auto dest: inj_onD) | |
| 63365 | 233 | qed | 
| 234 | ||
| 63322 | 235 | lemma comp_inj_on: "inj_on f A \<Longrightarrow> inj_on g (f ` A) \<Longrightarrow> inj_on (g \<circ> f) A" | 
| 236 | by (simp add: comp_def inj_on_def) | |
| 237 | ||
| 238 | lemma inj_on_imageI: "inj_on (g \<circ> f) A \<Longrightarrow> inj_on g (f ` A)" | |
| 63072 | 239 | by (auto simp add: inj_on_def) | 
| 15303 | 240 | |
| 63322 | 241 | lemma inj_on_image_iff: | 
| 64965 | 242 | "\<forall>x\<in>A. \<forall>y\<in>A. g (f x) = g (f y) \<longleftrightarrow> g x = g y \<Longrightarrow> inj_on f A \<Longrightarrow> inj_on g (f ` A) \<longleftrightarrow> inj_on g A" | 
| 63322 | 243 | unfolding inj_on_def by blast | 
| 15439 | 244 | |
| 63322 | 245 | lemma inj_on_contraD: "inj_on f A \<Longrightarrow> x \<noteq> y \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x \<noteq> f y" | 
| 246 | unfolding inj_on_def by blast | |
| 12258 | 247 | |
| 63072 | 248 | lemma inj_singleton [simp]: "inj_on (\<lambda>x. {x}) A"
 | 
| 249 | by (simp add: inj_on_def) | |
| 13585 | 250 | |
| 15111 | 251 | lemma inj_on_empty[iff]: "inj_on f {}"
 | 
| 63322 | 252 | by (simp add: inj_on_def) | 
| 13585 | 253 | |
| 63322 | 254 | lemma subset_inj_on: "inj_on f B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> inj_on f A" | 
| 255 | unfolding inj_on_def by blast | |
| 256 | ||
| 257 | lemma inj_on_Un: "inj_on f (A \<union> B) \<longleftrightarrow> inj_on f A \<and> inj_on f B \<and> f ` (A - B) \<inter> f ` (B - A) = {}"
 | |
| 258 | unfolding inj_on_def by (blast intro: sym) | |
| 15111 | 259 | |
| 63322 | 260 | lemma inj_on_insert [iff]: "inj_on f (insert a A) \<longleftrightarrow> inj_on f A \<and> f a \<notin> f ` (A - {a})"
 | 
| 261 | unfolding inj_on_def by (blast intro: sym) | |
| 262 | ||
| 263 | lemma inj_on_diff: "inj_on f A \<Longrightarrow> inj_on f (A - B)" | |
| 264 | unfolding inj_on_def by blast | |
| 15111 | 265 | |
| 63322 | 266 | lemma comp_inj_on_iff: "inj_on f A \<Longrightarrow> inj_on f' (f ` A) \<longleftrightarrow> inj_on (f' \<circ> f) A" | 
| 64965 | 267 | by (auto simp: comp_inj_on inj_on_def) | 
| 15111 | 268 | |
| 63322 | 269 | lemma inj_on_imageI2: "inj_on (f' \<circ> f) A \<Longrightarrow> inj_on f A" | 
| 64965 | 270 | by (auto simp: comp_inj_on inj_on_def) | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 271 | |
| 51598 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 haftmann parents: 
49905diff
changeset | 272 | lemma inj_img_insertE: | 
| 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 haftmann parents: 
49905diff
changeset | 273 | assumes "inj_on f A" | 
| 63322 | 274 | assumes "x \<notin> B" | 
| 275 | and "insert x B = f ` A" | |
| 276 | obtains x' A' where "x' \<notin> A'" and "A = insert x' A'" and "x = f x'" and "B = f ` A'" | |
| 51598 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 haftmann parents: 
49905diff
changeset | 277 | proof - | 
| 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 haftmann parents: 
49905diff
changeset | 278 | from assms have "x \<in> f ` A" by auto | 
| 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 haftmann parents: 
49905diff
changeset | 279 | then obtain x' where *: "x' \<in> A" "x = f x'" by auto | 
| 63322 | 280 |   then have A: "A = insert x' (A - {x'})" by auto
 | 
| 281 |   with assms * have B: "B = f ` (A - {x'})" by (auto dest: inj_on_contraD)
 | |
| 51598 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 haftmann parents: 
49905diff
changeset | 282 |   have "x' \<notin> A - {x'}" by simp
 | 
| 63322 | 283 | from this A \<open>x = f x'\<close> B show ?thesis .. | 
| 51598 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 haftmann parents: 
49905diff
changeset | 284 | qed | 
| 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 haftmann parents: 
49905diff
changeset | 285 | |
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54147diff
changeset | 286 | lemma linorder_injI: | 
| 64965 | 287 | assumes "\<And>x y::'a::linorder. x < y \<Longrightarrow> f x \<noteq> f y" | 
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54147diff
changeset | 288 | shows "inj f" | 
| 61799 | 289 | \<comment> \<open>Courtesy of Stephan Merz\<close> | 
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54147diff
changeset | 290 | proof (rule inj_onI) | 
| 63400 | 291 | show "x = y" if "f x = f y" for x y | 
| 64965 | 292 | by (rule linorder_cases) (auto dest: assms simp: that) | 
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54147diff
changeset | 293 | qed | 
| 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54147diff
changeset | 294 | |
| 69735 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 295 | |
| 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 296 | lemma inj_on_image_Pow: "inj_on f A \<Longrightarrow>inj_on (image f) (Pow A)" | 
| 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 297 | unfolding Pow_def inj_on_def by blast | 
| 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 298 | |
| 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 299 | lemma bij_betw_image_Pow: "bij_betw f A B \<Longrightarrow> bij_betw (image f) (Pow A) (Pow B)" | 
| 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 300 | by (auto simp add: bij_betw_def inj_on_image_Pow image_Pow_surj) | 
| 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 301 | |
| 40702 | 302 | lemma surj_def: "surj f \<longleftrightarrow> (\<forall>y. \<exists>x. y = f x)" | 
| 303 | by auto | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 304 | |
| 63322 | 305 | lemma surjI: | 
| 64965 | 306 | assumes "\<And>x. g (f x) = x" | 
| 63322 | 307 | shows "surj g" | 
| 64965 | 308 | using assms [symmetric] by auto | 
| 13585 | 309 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 310 | lemma surjD: "surj f \<Longrightarrow> \<exists>x. y = f x" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 311 | by (simp add: surj_def) | 
| 13585 | 312 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 313 | lemma surjE: "surj f \<Longrightarrow> (\<And>x. y = f x \<Longrightarrow> C) \<Longrightarrow> C" | 
| 63575 | 314 | by (simp add: surj_def) blast | 
| 13585 | 315 | |
| 63322 | 316 | lemma comp_surj: "surj f \<Longrightarrow> surj g \<Longrightarrow> surj (g \<circ> f)" | 
| 69768 | 317 | using image_comp [of g f UNIV] by simp | 
| 13585 | 318 | |
| 63322 | 319 | lemma bij_betw_imageI: "inj_on f A \<Longrightarrow> f ` A = B \<Longrightarrow> bij_betw f A B" | 
| 320 | unfolding bij_betw_def by clarify | |
| 57282 | 321 | |
| 322 | lemma bij_betw_imp_surj_on: "bij_betw f A B \<Longrightarrow> f ` A = B" | |
| 323 | unfolding bij_betw_def by clarify | |
| 324 | ||
| 39074 | 325 | lemma bij_betw_imp_surj: "bij_betw f A UNIV \<Longrightarrow> surj f" | 
| 40702 | 326 | unfolding bij_betw_def by auto | 
| 39074 | 327 | |
| 63322 | 328 | lemma bij_betw_empty1: "bij_betw f {} A \<Longrightarrow> A = {}"
 | 
| 329 | unfolding bij_betw_def by blast | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 330 | |
| 63322 | 331 | lemma bij_betw_empty2: "bij_betw f A {} \<Longrightarrow> A = {}"
 | 
| 332 | unfolding bij_betw_def by blast | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 333 | |
| 63322 | 334 | lemma inj_on_imp_bij_betw: "inj_on f A \<Longrightarrow> bij_betw f A (f ` A)" | 
| 335 | unfolding bij_betw_def by simp | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 336 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 337 | lemma bij_def: "bij f \<longleftrightarrow> inj f \<and> surj f" | 
| 64965 | 338 | by (rule bij_betw_def) | 
| 39074 | 339 | |
| 63322 | 340 | lemma bijI: "inj f \<Longrightarrow> surj f \<Longrightarrow> bij f" | 
| 64965 | 341 | by (rule bij_betw_imageI) | 
| 13585 | 342 | |
| 63322 | 343 | lemma bij_is_inj: "bij f \<Longrightarrow> inj f" | 
| 344 | by (simp add: bij_def) | |
| 13585 | 345 | |
| 63322 | 346 | lemma bij_is_surj: "bij f \<Longrightarrow> surj f" | 
| 347 | by (simp add: bij_def) | |
| 13585 | 348 | |
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 349 | lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A" | 
| 63322 | 350 | by (simp add: bij_betw_def) | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 351 | |
| 63322 | 352 | lemma bij_betw_trans: "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g \<circ> f) A C" | 
| 353 | by (auto simp add:bij_betw_def comp_inj_on) | |
| 31438 | 354 | |
| 63322 | 355 | lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g \<circ> f)" | 
| 40702 | 356 | by (rule bij_betw_trans) | 
| 357 | ||
| 63322 | 358 | lemma bij_betw_comp_iff: "bij_betw f A A' \<Longrightarrow> bij_betw f' A' A'' \<longleftrightarrow> bij_betw (f' \<circ> f) A A''" | 
| 359 | by (auto simp add: bij_betw_def inj_on_def) | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 360 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 361 | lemma bij_betw_comp_iff2: | 
| 63322 | 362 | assumes bij: "bij_betw f' A' A''" | 
| 363 | and img: "f ` A \<le> A'" | |
| 364 | shows "bij_betw f A A' \<longleftrightarrow> bij_betw (f' \<circ> f) A A''" | |
| 365 | using assms | |
| 366 | proof (auto simp add: bij_betw_comp_iff) | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 367 | assume *: "bij_betw (f' \<circ> f) A A''" | 
| 63322 | 368 | then show "bij_betw f A A'" | 
| 369 | using img | |
| 370 | proof (auto simp add: bij_betw_def) | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 371 | assume "inj_on (f' \<circ> f) A" | 
| 63575 | 372 | then show "inj_on f A" | 
| 373 | using inj_on_imageI2 by blast | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 374 | next | 
| 63322 | 375 | fix a' | 
| 376 | assume **: "a' \<in> A'" | |
| 63575 | 377 | with bij have "f' a' \<in> A''" | 
| 378 | unfolding bij_betw_def by auto | |
| 379 | with * obtain a where 1: "a \<in> A \<and> f' (f a) = f' a'" | |
| 380 | unfolding bij_betw_def by force | |
| 381 | with img have "f a \<in> A'" by auto | |
| 382 | with bij ** 1 have "f a = a'" | |
| 383 | unfolding bij_betw_def inj_on_def by auto | |
| 384 | with 1 show "a' \<in> f ` A" by auto | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 385 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 386 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 387 | |
| 63322 | 388 | lemma bij_betw_inv: | 
| 389 | assumes "bij_betw f A B" | |
| 390 | shows "\<exists>g. bij_betw g B A" | |
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 391 | proof - | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 392 | have i: "inj_on f A" and s: "f ` A = B" | 
| 63322 | 393 | using assms by (auto simp: bij_betw_def) | 
| 394 | let ?P = "\<lambda>b a. a \<in> A \<and> f a = b" | |
| 395 | let ?g = "\<lambda>b. The (?P b)" | |
| 396 | have g: "?g b = a" if P: "?P b a" for a b | |
| 397 | proof - | |
| 63575 | 398 | from that s have ex1: "\<exists>a. ?P b a" by blast | 
| 63322 | 399 | then have uex1: "\<exists>!a. ?P b a" by (blast dest:inj_onD[OF i]) | 
| 63575 | 400 | then show ?thesis | 
| 401 | using the1_equality[OF uex1, OF P] P by simp | |
| 63322 | 402 | qed | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 403 | have "inj_on ?g B" | 
| 63322 | 404 | proof (rule inj_onI) | 
| 405 | fix x y | |
| 406 | assume "x \<in> B" "y \<in> B" "?g x = ?g y" | |
| 407 | from s \<open>x \<in> B\<close> obtain a1 where a1: "?P x a1" by blast | |
| 408 | from s \<open>y \<in> B\<close> obtain a2 where a2: "?P y a2" by blast | |
| 409 | from g [OF a1] a1 g [OF a2] a2 \<open>?g x = ?g y\<close> show "x = y" by simp | |
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 410 | qed | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 411 | moreover have "?g ` B = A" | 
| 63322 | 412 | proof (auto simp: image_def) | 
| 413 | fix b | |
| 414 | assume "b \<in> B" | |
| 56077 | 415 | with s obtain a where P: "?P b a" by blast | 
| 63575 | 416 | with g[OF P] show "?g b \<in> A" by auto | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 417 | next | 
| 63322 | 418 | fix a | 
| 419 | assume "a \<in> A" | |
| 63575 | 420 | with s obtain b where P: "?P b a" by blast | 
| 421 | with s have "b \<in> B" by blast | |
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 422 | with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 423 | qed | 
| 63575 | 424 | ultimately show ?thesis | 
| 425 | by (auto simp: bij_betw_def) | |
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 426 | qed | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 427 | |
| 63588 | 428 | lemma bij_betw_cong: "(\<And>a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> bij_betw f A A' = bij_betw g A A'" | 
| 63591 | 429 | unfolding bij_betw_def inj_on_def by safe force+ (* somewhat slow *) | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 430 | |
| 63322 | 431 | lemma bij_betw_id[intro, simp]: "bij_betw id A A" | 
| 432 | unfolding bij_betw_def id_def by auto | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 433 | |
| 63322 | 434 | lemma bij_betw_id_iff: "bij_betw id A B \<longleftrightarrow> A = B" | 
| 435 | by (auto simp add: bij_betw_def) | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 436 | |
| 39075 | 437 | lemma bij_betw_combine: | 
| 63400 | 438 |   "bij_betw f A B \<Longrightarrow> bij_betw f C D \<Longrightarrow> B \<inter> D = {} \<Longrightarrow> bij_betw f (A \<union> C) (B \<union> D)"
 | 
| 439 | unfolding bij_betw_def inj_on_Un image_Un by auto | |
| 39075 | 440 | |
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 441 | lemma bij_betw_subset: "bij_betw f A A' \<Longrightarrow> B \<subseteq> A \<Longrightarrow> f ` B = B' \<Longrightarrow> bij_betw f B B'" | 
| 63322 | 442 | by (auto simp add: bij_betw_def inj_on_def) | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 443 | |
| 58195 | 444 | lemma bij_pointE: | 
| 445 | assumes "bij f" | |
| 446 | obtains x where "y = f x" and "\<And>x'. y = f x' \<Longrightarrow> x' = x" | |
| 447 | proof - | |
| 448 | from assms have "inj f" by (rule bij_is_inj) | |
| 449 | moreover from assms have "surj f" by (rule bij_is_surj) | |
| 450 | then have "y \<in> range f" by simp | |
| 451 | ultimately have "\<exists>!x. y = f x" by (simp add: range_ex1_eq) | |
| 452 | with that show thesis by blast | |
| 453 | qed | |
| 454 | ||
| 63322 | 455 | lemma surj_image_vimage_eq: "surj f \<Longrightarrow> f ` (f -` A) = A" | 
| 456 | by simp | |
| 13585 | 457 | |
| 42903 | 458 | lemma surj_vimage_empty: | 
| 63322 | 459 | assumes "surj f" | 
| 460 |   shows "f -` A = {} \<longleftrightarrow> A = {}"
 | |
| 461 | using surj_image_vimage_eq [OF \<open>surj f\<close>, of A] | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44860diff
changeset | 462 | by (intro iffI) fastforce+ | 
| 42903 | 463 | |
| 63322 | 464 | lemma inj_vimage_image_eq: "inj f \<Longrightarrow> f -` (f ` A) = A" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 465 | unfolding inj_def by blast | 
| 13585 | 466 | |
| 63322 | 467 | lemma vimage_subsetD: "surj f \<Longrightarrow> f -` B \<subseteq> A \<Longrightarrow> B \<subseteq> f ` A" | 
| 468 | by (blast intro: sym) | |
| 13585 | 469 | |
| 63322 | 470 | lemma vimage_subsetI: "inj f \<Longrightarrow> B \<subseteq> f ` A \<Longrightarrow> f -` B \<subseteq> A" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 471 | unfolding inj_def by blast | 
| 13585 | 472 | |
| 63322 | 473 | lemma vimage_subset_eq: "bij f \<Longrightarrow> f -` B \<subseteq> A \<longleftrightarrow> B \<subseteq> f ` A" | 
| 474 | unfolding bij_def by (blast del: subsetI intro: vimage_subsetI vimage_subsetD) | |
| 13585 | 475 | |
| 63322 | 476 | lemma inj_on_image_eq_iff: "inj_on f C \<Longrightarrow> A \<subseteq> C \<Longrightarrow> B \<subseteq> C \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B" | 
| 64965 | 477 | by (fastforce simp: inj_on_def) | 
| 53927 | 478 | |
| 31438 | 479 | lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B" | 
| 63322 | 480 | by (erule inj_on_image_eq_iff) simp_all | 
| 31438 | 481 | |
| 63322 | 482 | lemma inj_on_image_Int: "inj_on f C \<Longrightarrow> A \<subseteq> C \<Longrightarrow> B \<subseteq> C \<Longrightarrow> f ` (A \<inter> B) = f ` A \<inter> f ` B" | 
| 483 | unfolding inj_on_def by blast | |
| 484 | ||
| 485 | lemma inj_on_image_set_diff: "inj_on f C \<Longrightarrow> A - B \<subseteq> C \<Longrightarrow> B \<subseteq> C \<Longrightarrow> f ` (A - B) = f ` A - f ` B" | |
| 486 | unfolding inj_on_def by blast | |
| 13585 | 487 | |
| 63322 | 488 | lemma image_Int: "inj f \<Longrightarrow> f ` (A \<inter> B) = f ` A \<inter> f ` B" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 489 | unfolding inj_def by blast | 
| 13585 | 490 | |
| 63322 | 491 | lemma image_set_diff: "inj f \<Longrightarrow> f ` (A - B) = f ` A - f ` B" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 492 | unfolding inj_def by blast | 
| 13585 | 493 | |
| 63322 | 494 | lemma inj_on_image_mem_iff: "inj_on f B \<Longrightarrow> a \<in> B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f a \<in> f ` A \<longleftrightarrow> a \<in> A" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 495 | by (auto simp: inj_on_def) | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 496 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61378diff
changeset | 497 | (*FIXME DELETE*) | 
| 63322 | 498 | lemma inj_on_image_mem_iff_alt: "inj_on f B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f a \<in> f ` A \<Longrightarrow> a \<in> B \<Longrightarrow> a \<in> A" | 
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61378diff
changeset | 499 | by (blast dest: inj_onD) | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61378diff
changeset | 500 | |
| 63322 | 501 | lemma inj_image_mem_iff: "inj f \<Longrightarrow> f a \<in> f ` A \<longleftrightarrow> a \<in> A" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 502 | by (blast dest: injD) | 
| 13585 | 503 | |
| 63322 | 504 | lemma inj_image_subset_iff: "inj f \<Longrightarrow> f ` A \<subseteq> f ` B \<longleftrightarrow> A \<subseteq> B" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 505 | by (blast dest: injD) | 
| 13585 | 506 | |
| 63322 | 507 | lemma inj_image_eq_iff: "inj f \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 508 | by (blast dest: injD) | 
| 13585 | 509 | |
| 63322 | 510 | lemma surj_Compl_image_subset: "surj f \<Longrightarrow> - (f ` A) \<subseteq> f ` (- A)" | 
| 511 | by auto | |
| 5852 | 512 | |
| 63322 | 513 | lemma inj_image_Compl_subset: "inj f \<Longrightarrow> f ` (- A) \<subseteq> - (f ` A)" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 514 | by (auto simp: inj_def) | 
| 63322 | 515 | |
| 516 | lemma bij_image_Compl_eq: "bij f \<Longrightarrow> f ` (- A) = - (f ` A)" | |
| 517 | by (simp add: bij_def inj_image_Compl_subset surj_Compl_image_subset equalityI) | |
| 13585 | 518 | |
| 41657 | 519 | lemma inj_vimage_singleton: "inj f \<Longrightarrow> f -` {a} \<subseteq> {THE x. f x = a}"
 | 
| 63322 | 520 | \<comment> \<open>The inverse image of a singleton under an injective function is included in a singleton.\<close> | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 521 | by (simp add: inj_def) (blast intro: the_equality [symmetric]) | 
| 41657 | 522 | |
| 63322 | 523 | lemma inj_on_vimage_singleton: "inj_on f A \<Longrightarrow> f -` {a} \<inter> A \<subseteq> {THE x. x \<in> A \<and> f x = a}"
 | 
| 43991 | 524 | by (auto simp add: inj_on_def intro: the_equality [symmetric]) | 
| 525 | ||
| 35584 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 526 | lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A" | 
| 35580 | 527 | by (auto intro!: inj_onI) | 
| 13585 | 528 | |
| 35584 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 529 | lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A" | 
| 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 530 | by (auto intro!: inj_onI dest: strict_mono_eq) | 
| 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 531 | |
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 532 | lemma bij_betw_byWitness: | 
| 63322 | 533 | assumes left: "\<forall>a \<in> A. f' (f a) = a" | 
| 534 | and right: "\<forall>a' \<in> A'. f (f' a') = a'" | |
| 63575 | 535 | and "f ` A \<subseteq> A'" | 
| 536 | and img2: "f' ` A' \<subseteq> A" | |
| 63322 | 537 | shows "bij_betw f A A'" | 
| 538 | using assms | |
| 63400 | 539 | unfolding bij_betw_def inj_on_def | 
| 540 | proof safe | |
| 63322 | 541 | fix a b | 
| 63575 | 542 | assume "a \<in> A" "b \<in> A" | 
| 543 | with left have "a = f' (f a) \<and> b = f' (f b)" by simp | |
| 544 | moreover assume "f a = f b" | |
| 545 | ultimately show "a = b" by simp | |
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 546 | next | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 547 | fix a' assume *: "a' \<in> A'" | 
| 63575 | 548 | with img2 have "f' a' \<in> A" by blast | 
| 549 | moreover from * right have "a' = f (f' a')" by simp | |
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 550 | ultimately show "a' \<in> f ` A" by blast | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 551 | qed | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 552 | |
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 553 | corollary notIn_Un_bij_betw: | 
| 63322 | 554 | assumes "b \<notin> A" | 
| 555 | and "f b \<notin> A'" | |
| 556 | and "bij_betw f A A'" | |
| 557 |   shows "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
 | |
| 558 | proof - | |
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 559 |   have "bij_betw f {b} {f b}"
 | 
| 63322 | 560 | unfolding bij_betw_def inj_on_def by simp | 
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 561 | with assms show ?thesis | 
| 63322 | 562 |     using bij_betw_combine[of f A A' "{b}" "{f b}"] by blast
 | 
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 563 | qed | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 564 | |
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 565 | lemma notIn_Un_bij_betw3: | 
| 63322 | 566 | assumes "b \<notin> A" | 
| 567 | and "f b \<notin> A'" | |
| 568 |   shows "bij_betw f A A' = bij_betw f (A \<union> {b}) (A' \<union> {f b})"
 | |
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 569 | proof | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 570 | assume "bij_betw f A A'" | 
| 63322 | 571 |   then show "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
 | 
| 572 | using assms notIn_Un_bij_betw [of b A f A'] by blast | |
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 573 | next | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 574 |   assume *: "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
 | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 575 | have "f ` A = A'" | 
| 63322 | 576 | proof auto | 
| 577 | fix a | |
| 578 | assume **: "a \<in> A" | |
| 579 |     then have "f a \<in> A' \<union> {f b}"
 | |
| 580 | using * unfolding bij_betw_def by blast | |
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 581 | moreover | 
| 63322 | 582 | have False if "f a = f b" | 
| 583 | proof - | |
| 63575 | 584 | have "a = b" | 
| 585 | using * ** that unfolding bij_betw_def inj_on_def by blast | |
| 63322 | 586 | with \<open>b \<notin> A\<close> ** show ?thesis by blast | 
| 587 | qed | |
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 588 | ultimately show "f a \<in> A'" by blast | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 589 | next | 
| 63322 | 590 | fix a' | 
| 591 | assume **: "a' \<in> A'" | |
| 592 |     then have "a' \<in> f ` (A \<union> {b})"
 | |
| 593 | using * by (auto simp add: bij_betw_def) | |
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 594 |     then obtain a where 1: "a \<in> A \<union> {b} \<and> f a = a'" by blast
 | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 595 | moreover | 
| 63322 | 596 | have False if "a = b" using 1 ** \<open>f b \<notin> A'\<close> that by blast | 
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 597 | ultimately have "a \<in> A" by blast | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 598 | with 1 show "a' \<in> f ` A" by blast | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 599 | qed | 
| 63322 | 600 | then show "bij_betw f A A'" | 
| 601 |     using * bij_betw_subset[of f "A \<union> {b}" _ A] by blast
 | |
| 55019 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 602 | qed | 
| 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 blanchet parents: 
54578diff
changeset | 603 | |
| 69502 | 604 | text \<open>Important examples\<close> | 
| 605 | ||
| 606 | context cancel_semigroup_add | |
| 607 | begin | |
| 608 | ||
| 69661 | 609 | lemma inj_on_add [simp]: | 
| 610 | "inj_on ((+) a) A" | |
| 611 | by (rule inj_onI) simp | |
| 612 | ||
| 613 | lemma inj_add_left: | |
| 614 | \<open>inj ((+) a)\<close> | |
| 615 | by simp | |
| 616 | ||
| 617 | lemma inj_on_add' [simp]: | |
| 618 | "inj_on (\<lambda>b. b + a) A" | |
| 619 | by (rule inj_onI) simp | |
| 620 | ||
| 621 | lemma bij_betw_add [simp]: | |
| 622 | "bij_betw ((+) a) A B \<longleftrightarrow> (+) a ` A = B" | |
| 623 | by (simp add: bij_betw_def) | |
| 69502 | 624 | |
| 625 | end | |
| 626 | ||
| 627 | context ab_group_add | |
| 628 | begin | |
| 629 | ||
| 69661 | 630 | lemma surj_plus [simp]: | 
| 631 | "surj ((+) a)" | |
| 69768 | 632 | by (auto intro!: range_eqI [of b "(+) a" "b - a" for b]) (simp add: algebra_simps) | 
| 69661 | 633 | |
| 634 | lemma inj_diff_right [simp]: | |
| 635 | \<open>inj (\<lambda>b. b - a)\<close> | |
| 69502 | 636 | proof - | 
| 637 | have \<open>inj ((+) (- a))\<close> | |
| 638 | by (fact inj_add_left) | |
| 639 | also have \<open>(+) (- a) = (\<lambda>b. b - a)\<close> | |
| 640 | by (simp add: fun_eq_iff) | |
| 641 | finally show ?thesis . | |
| 642 | qed | |
| 643 | ||
| 69661 | 644 | lemma surj_diff_right [simp]: | 
| 645 | "surj (\<lambda>x. x - a)" | |
| 646 | using surj_plus [of "- a"] by (simp cong: image_cong_simp) | |
| 647 | ||
| 648 | lemma translation_Compl: | |
| 649 | "(+) a ` (- t) = - ((+) a ` t)" | |
| 650 | proof (rule set_eqI) | |
| 651 | fix b | |
| 652 | show "b \<in> (+) a ` (- t) \<longleftrightarrow> b \<in> - (+) a ` t" | |
| 653 | by (auto simp: image_iff algebra_simps intro!: bexI [of _ "b - a"]) | |
| 654 | qed | |
| 655 | ||
| 656 | lemma translation_subtract_Compl: | |
| 657 | "(\<lambda>x. x - a) ` (- t) = - ((\<lambda>x. x - a) ` t)" | |
| 658 | using translation_Compl [of "- a" t] by (simp cong: image_cong_simp) | |
| 659 | ||
| 660 | lemma translation_diff: | |
| 661 | "(+) a ` (s - t) = ((+) a ` s) - ((+) a ` t)" | |
| 662 | by auto | |
| 663 | ||
| 664 | lemma translation_subtract_diff: | |
| 665 | "(\<lambda>x. x - a) ` (s - t) = ((\<lambda>x. x - a) ` s) - ((\<lambda>x. x - a) ` t)" | |
| 666 | using translation_diff [of "- a"] by (simp cong: image_cong_simp) | |
| 667 | ||
| 668 | lemma translation_Int: | |
| 669 | "(+) a ` (s \<inter> t) = ((+) a ` s) \<inter> ((+) a ` t)" | |
| 670 | by auto | |
| 671 | ||
| 672 | lemma translation_subtract_Int: | |
| 673 | "(\<lambda>x. x - a) ` (s \<inter> t) = ((\<lambda>x. x - a) ` s) \<inter> ((\<lambda>x. x - a) ` t)" | |
| 674 | using translation_Int [of " -a"] by (simp cong: image_cong_simp) | |
| 675 | ||
| 69502 | 676 | end | 
| 677 | ||
| 41657 | 678 | |
| 63322 | 679 | subsection \<open>Function Updating\<close> | 
| 13585 | 680 | |
| 63322 | 681 | definition fun_upd :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b)"
 | 
| 63324 | 682 | where "fun_upd f a b = (\<lambda>x. if x = a then b else f x)" | 
| 26147 | 683 | |
| 41229 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 wenzelm parents: 
40969diff
changeset | 684 | nonterminal updbinds and updbind | 
| 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 wenzelm parents: 
40969diff
changeset | 685 | |
| 26147 | 686 | syntax | 
| 63322 | 687 |   "_updbind" :: "'a \<Rightarrow> 'a \<Rightarrow> updbind"             ("(2_ :=/ _)")
 | 
| 688 |   ""         :: "updbind \<Rightarrow> updbinds"             ("_")
 | |
| 689 |   "_updbinds":: "updbind \<Rightarrow> updbinds \<Rightarrow> updbinds" ("_,/ _")
 | |
| 690 |   "_Update"  :: "'a \<Rightarrow> updbinds \<Rightarrow> 'a"            ("_/'((_)')" [1000, 0] 900)
 | |
| 26147 | 691 | |
| 692 | translations | |
| 63322 | 693 | "_Update f (_updbinds b bs)" \<rightleftharpoons> "_Update (_Update f b) bs" | 
| 694 | "f(x:=y)" \<rightleftharpoons> "CONST fun_upd f x y" | |
| 26147 | 695 | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
55066diff
changeset | 696 | (* Hint: to define the sum of two functions (or maps), use case_sum. | 
| 58111 | 697 | A nice infix syntax could be defined by | 
| 35115 | 698 | notation | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
55066diff
changeset | 699 | case_sum (infixr "'(+')"80) | 
| 26147 | 700 | *) | 
| 701 | ||
| 63322 | 702 | lemma fun_upd_idem_iff: "f(x:=y) = f \<longleftrightarrow> f x = y" | 
| 703 | unfolding fun_upd_def | |
| 704 | apply safe | |
| 63575 | 705 | apply (erule subst) | 
| 706 | apply (rule_tac [2] ext) | |
| 707 | apply auto | |
| 63322 | 708 | done | 
| 13585 | 709 | |
| 63322 | 710 | lemma fun_upd_idem: "f x = y \<Longrightarrow> f(x := y) = f" | 
| 45603 | 711 | by (simp only: fun_upd_idem_iff) | 
| 13585 | 712 | |
| 45603 | 713 | lemma fun_upd_triv [iff]: "f(x := f x) = f" | 
| 714 | by (simp only: fun_upd_idem) | |
| 13585 | 715 | |
| 63322 | 716 | lemma fun_upd_apply [simp]: "(f(x := y)) z = (if z = x then y else f z)" | 
| 717 | by (simp add: fun_upd_def) | |
| 13585 | 718 | |
| 63322 | 719 | (* fun_upd_apply supersedes these two, but they are useful | 
| 13585 | 720 | if fun_upd_apply is intentionally removed from the simpset *) | 
| 63322 | 721 | lemma fun_upd_same: "(f(x := y)) x = y" | 
| 722 | by simp | |
| 13585 | 723 | |
| 63322 | 724 | lemma fun_upd_other: "z \<noteq> x \<Longrightarrow> (f(x := y)) z = f z" | 
| 725 | by simp | |
| 13585 | 726 | |
| 63322 | 727 | lemma fun_upd_upd [simp]: "f(x := y, x := z) = f(x := z)" | 
| 728 | by (simp add: fun_eq_iff) | |
| 13585 | 729 | |
| 63322 | 730 | lemma fun_upd_twist: "a \<noteq> c \<Longrightarrow> (m(a := b))(c := d) = (m(c := d))(a := b)" | 
| 731 | by (rule ext) auto | |
| 732 | ||
| 733 | lemma inj_on_fun_updI: "inj_on f A \<Longrightarrow> y \<notin> f ` A \<Longrightarrow> inj_on (f(x := y)) A" | |
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
64965diff
changeset | 734 | by (auto simp: inj_on_def) | 
| 15303 | 735 | |
| 63322 | 736 | lemma fun_upd_image: "f(x := y) ` A = (if x \<in> A then insert y (f ` (A - {x})) else f ` A)"
 | 
| 737 | by auto | |
| 15510 | 738 | |
| 31080 | 739 | lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)" | 
| 44921 | 740 | by auto | 
| 31080 | 741 | |
| 61630 | 742 | lemma fun_upd_eqD: "f(x := y) = g(x := z) \<Longrightarrow> y = z" | 
| 63322 | 743 | by (simp add: fun_eq_iff split: if_split_asm) | 
| 744 | ||
| 26147 | 745 | |
| 61799 | 746 | subsection \<open>\<open>override_on\<close>\<close> | 
| 26147 | 747 | |
| 63322 | 748 | definition override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
 | 
| 749 | where "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)" | |
| 13910 | 750 | |
| 15691 | 751 | lemma override_on_emptyset[simp]: "override_on f g {} = f"
 | 
| 64965 | 752 | by (simp add: override_on_def) | 
| 13910 | 753 | |
| 63322 | 754 | lemma override_on_apply_notin[simp]: "a \<notin> A \<Longrightarrow> (override_on f g A) a = f a" | 
| 64965 | 755 | by (simp add: override_on_def) | 
| 13910 | 756 | |
| 63322 | 757 | lemma override_on_apply_in[simp]: "a \<in> A \<Longrightarrow> (override_on f g A) a = g a" | 
| 64965 | 758 | by (simp add: override_on_def) | 
| 13910 | 759 | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63416diff
changeset | 760 | lemma override_on_insert: "override_on f g (insert x X) = (override_on f g X)(x:=g x)" | 
| 64965 | 761 | by (simp add: override_on_def fun_eq_iff) | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63416diff
changeset | 762 | |
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63416diff
changeset | 763 | lemma override_on_insert': "override_on f g (insert x X) = (override_on (f(x:=g x)) g X)" | 
| 64965 | 764 | by (simp add: override_on_def fun_eq_iff) | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63416diff
changeset | 765 | |
| 26147 | 766 | |
| 61799 | 767 | subsection \<open>\<open>swap\<close>\<close> | 
| 15510 | 768 | |
| 56608 | 769 | definition swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
 | 
| 63322 | 770 | where "swap a b f = f (a := f b, b:= f a)" | 
| 15510 | 771 | |
| 56608 | 772 | lemma swap_apply [simp]: | 
| 773 | "swap a b f a = f b" | |
| 774 | "swap a b f b = f a" | |
| 775 | "c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> swap a b f c = f c" | |
| 776 | by (simp_all add: swap_def) | |
| 777 | ||
| 63322 | 778 | lemma swap_self [simp]: "swap a a f = f" | 
| 56608 | 779 | by (simp add: swap_def) | 
| 15510 | 780 | |
| 63322 | 781 | lemma swap_commute: "swap a b f = swap b a f" | 
| 56608 | 782 | by (simp add: fun_upd_def swap_def fun_eq_iff) | 
| 15510 | 783 | |
| 63322 | 784 | lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f" | 
| 63575 | 785 | by (rule ext) (simp add: fun_upd_def swap_def) | 
| 56608 | 786 | |
| 63322 | 787 | lemma swap_comp_involutory [simp]: "swap a b \<circ> swap a b = id" | 
| 56608 | 788 | by (rule ext) simp | 
| 15510 | 789 | |
| 34145 | 790 | lemma swap_triple: | 
| 791 | assumes "a \<noteq> c" and "b \<noteq> c" | |
| 792 | shows "swap a b (swap b c (swap a b f)) = swap a c f" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39213diff
changeset | 793 | using assms by (simp add: fun_eq_iff swap_def) | 
| 34145 | 794 | |
| 34101 | 795 | lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)" | 
| 63322 | 796 | by (rule ext) (simp add: fun_upd_def swap_def) | 
| 34101 | 797 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 798 | lemma swap_image_eq [simp]: | 
| 63322 | 799 | assumes "a \<in> A" "b \<in> A" | 
| 800 | shows "swap a b f ` A = f ` A" | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 801 | proof - | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 802 | have subset: "\<And>f. swap a b f ` A \<subseteq> f ` A" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 803 | using assms by (auto simp: image_iff swap_def) | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 804 | then have "swap a b (swap a b f) ` A \<subseteq> (swap a b f) ` A" . | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 805 | with subset[of f] show ?thesis by auto | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 806 | qed | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 807 | |
| 63322 | 808 | lemma inj_on_imp_inj_on_swap: "inj_on f A \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> inj_on (swap a b f) A" | 
| 809 | by (auto simp add: inj_on_def swap_def) | |
| 15510 | 810 | |
| 811 | lemma inj_on_swap_iff [simp]: | |
| 63322 | 812 | assumes A: "a \<in> A" "b \<in> A" | 
| 813 | shows "inj_on (swap a b f) A \<longleftrightarrow> inj_on f A" | |
| 39075 | 814 | proof | 
| 15510 | 815 | assume "inj_on (swap a b f) A" | 
| 39075 | 816 | with A have "inj_on (swap a b (swap a b f)) A" | 
| 817 | by (iprover intro: inj_on_imp_inj_on_swap) | |
| 63322 | 818 | then show "inj_on f A" by simp | 
| 15510 | 819 | next | 
| 820 | assume "inj_on f A" | |
| 63322 | 821 | with A show "inj_on (swap a b f) A" | 
| 822 | by (iprover intro: inj_on_imp_inj_on_swap) | |
| 15510 | 823 | qed | 
| 824 | ||
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 825 | lemma surj_imp_surj_swap: "surj f \<Longrightarrow> surj (swap a b f)" | 
| 40702 | 826 | by simp | 
| 15510 | 827 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 828 | lemma surj_swap_iff [simp]: "surj (swap a b f) \<longleftrightarrow> surj f" | 
| 40702 | 829 | by simp | 
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21327diff
changeset | 830 | |
| 63322 | 831 | lemma bij_betw_swap_iff [simp]: "x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> bij_betw (swap x y f) A B \<longleftrightarrow> bij_betw f A B" | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 832 | by (auto simp: bij_betw_def) | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 833 | |
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 834 | lemma bij_swap_iff [simp]: "bij (swap a b f) \<longleftrightarrow> bij f" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 835 | by simp | 
| 39075 | 836 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35584diff
changeset | 837 | hide_const (open) swap | 
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21327diff
changeset | 838 | |
| 56608 | 839 | |
| 60758 | 840 | subsection \<open>Inversion of injective functions\<close> | 
| 31949 | 841 | |
| 63322 | 842 | definition the_inv_into :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"
 | 
| 63324 | 843 | where "the_inv_into A f = (\<lambda>x. THE y. y \<in> A \<and> f y = x)" | 
| 63322 | 844 | |
| 845 | lemma the_inv_into_f_f: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> the_inv_into A f (f x) = x" | |
| 846 | unfolding the_inv_into_def inj_on_def by blast | |
| 32961 | 847 | |
| 63322 | 848 | lemma f_the_inv_into_f: "inj_on f A \<Longrightarrow> y \<in> f ` A \<Longrightarrow> f (the_inv_into A f y) = y" | 
| 849 | apply (simp add: the_inv_into_def) | |
| 850 | apply (rule the1I2) | |
| 63575 | 851 | apply (blast dest: inj_onD) | 
| 63322 | 852 | apply blast | 
| 853 | done | |
| 32961 | 854 | |
| 63322 | 855 | lemma the_inv_into_into: "inj_on f A \<Longrightarrow> x \<in> f ` A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> the_inv_into A f x \<in> B" | 
| 856 | apply (simp add: the_inv_into_def) | |
| 857 | apply (rule the1I2) | |
| 63575 | 858 | apply (blast dest: inj_onD) | 
| 63322 | 859 | apply blast | 
| 860 | done | |
| 32961 | 861 | |
| 63322 | 862 | lemma the_inv_into_onto [simp]: "inj_on f A \<Longrightarrow> the_inv_into A f ` (f ` A) = A" | 
| 863 | by (fast intro: the_inv_into_into the_inv_into_f_f [symmetric]) | |
| 32961 | 864 | |
| 63322 | 865 | lemma the_inv_into_f_eq: "inj_on f A \<Longrightarrow> f x = y \<Longrightarrow> x \<in> A \<Longrightarrow> the_inv_into A f y = x" | 
| 32961 | 866 | apply (erule subst) | 
| 63322 | 867 | apply (erule the_inv_into_f_f) | 
| 868 | apply assumption | |
| 32961 | 869 | done | 
| 870 | ||
| 33057 | 871 | lemma the_inv_into_comp: | 
| 63322 | 872 | "inj_on f (g ` A) \<Longrightarrow> inj_on g A \<Longrightarrow> x \<in> f ` g ` A \<Longrightarrow> | 
| 873 | the_inv_into A (f \<circ> g) x = (the_inv_into A g \<circ> the_inv_into (g ` A) f) x" | |
| 874 | apply (rule the_inv_into_f_eq) | |
| 875 | apply (fast intro: comp_inj_on) | |
| 876 | apply (simp add: f_the_inv_into_f the_inv_into_into) | |
| 877 | apply (simp add: the_inv_into_into) | |
| 878 | done | |
| 32961 | 879 | |
| 63322 | 880 | lemma inj_on_the_inv_into: "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)" | 
| 881 | by (auto intro: inj_onI simp: the_inv_into_f_f) | |
| 32961 | 882 | |
| 63322 | 883 | lemma bij_betw_the_inv_into: "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A" | 
| 884 | by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into) | |
| 32961 | 885 | |
| 63322 | 886 | abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"
 | 
| 887 | where "the_inv f \<equiv> the_inv_into UNIV f" | |
| 32998 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 888 | |
| 64965 | 889 | lemma the_inv_f_f: "the_inv f (f x) = x" if "inj f" | 
| 890 | using that UNIV_I by (rule the_inv_into_f_f) | |
| 32998 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 891 | |
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 892 | |
| 60758 | 893 | subsection \<open>Cantor's Paradox\<close> | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 894 | |
| 63323 | 895 | theorem Cantors_paradox: "\<nexists>f. f ` A = Pow A" | 
| 896 | proof | |
| 897 | assume "\<exists>f. f ` A = Pow A" | |
| 898 | then obtain f where f: "f ` A = Pow A" .. | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 899 |   let ?X = "{a \<in> A. a \<notin> f a}"
 | 
| 63323 | 900 | have "?X \<in> Pow A" by blast | 
| 901 | then have "?X \<in> f ` A" by (simp only: f) | |
| 902 | then obtain x where "x \<in> A" and "f x = ?X" by blast | |
| 903 | then show False by blast | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 904 | qed | 
| 31949 | 905 | |
| 63322 | 906 | |
| 61204 | 907 | subsection \<open>Setup\<close> | 
| 40969 | 908 | |
| 60758 | 909 | subsubsection \<open>Proof tools\<close> | 
| 22845 | 910 | |
| 63400 | 911 | text \<open>Simplify terms of the form \<open>f(\<dots>,x:=y,\<dots>,x:=z,\<dots>)\<close> to \<open>f(\<dots>,x:=z,\<dots>)\<close>\<close> | 
| 22845 | 912 | |
| 60758 | 913 | simproc_setup fun_upd2 ("f(v := w, x := y)") = \<open>fn _ =>
 | 
| 63322 | 914 | let | 
| 915 | fun gen_fun_upd NONE T _ _ = NONE | |
| 69593 | 916 | | gen_fun_upd (SOME f) T x y = SOME (Const (\<^const_name>\<open>fun_upd\<close>, T) $ f $ x $ y) | 
| 63322 | 917 | fun dest_fun_T1 (Type (_, T :: Ts)) = T | 
| 69593 | 918 | fun find_double (t as Const (\<^const_name>\<open>fun_upd\<close>,T) $ f $ x $ y) = | 
| 63322 | 919 | let | 
| 69593 | 920 | fun find (Const (\<^const_name>\<open>fun_upd\<close>,T) $ g $ v $ w) = | 
| 63322 | 921 | if v aconv x then SOME g else gen_fun_upd (find g) T v w | 
| 922 | | find t = NONE | |
| 923 | in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end | |
| 24017 | 924 | |
| 69593 | 925 | val ss = simpset_of \<^context> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51598diff
changeset | 926 | |
| 63322 | 927 | fun proc ctxt ct = | 
| 928 | let | |
| 929 | val t = Thm.term_of ct | |
| 930 | in | |
| 63400 | 931 | (case find_double t of | 
| 63322 | 932 | (T, NONE) => NONE | 
| 933 | | (T, SOME rhs) => | |
| 934 | SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs)) | |
| 935 | (fn _ => | |
| 936 | resolve_tac ctxt [eq_reflection] 1 THEN | |
| 937 |                 resolve_tac ctxt @{thms ext} 1 THEN
 | |
| 63400 | 938 | simp_tac (put_simpset ss ctxt) 1))) | 
| 63322 | 939 | end | 
| 940 | in proc end | |
| 60758 | 941 | \<close> | 
| 22845 | 942 | |
| 943 | ||
| 60758 | 944 | subsubsection \<open>Functorial structure of types\<close> | 
| 40969 | 945 | |
| 69605 | 946 | ML_file \<open>Tools/functor.ML\<close> | 
| 40969 | 947 | |
| 55467 
a5c9002bc54d
renamed 'enriched_type' to more informative 'functor' (following the renaming of enriched type constructors to bounded natural functors)
 blanchet parents: 
55414diff
changeset | 948 | functor map_fun: map_fun | 
| 47488 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 haftmann parents: 
46950diff
changeset | 949 | by (simp_all add: fun_eq_iff) | 
| 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 haftmann parents: 
46950diff
changeset | 950 | |
| 55467 
a5c9002bc54d
renamed 'enriched_type' to more informative 'functor' (following the renaming of enriched type constructors to bounded natural functors)
 blanchet parents: 
55414diff
changeset | 951 | functor vimage | 
| 49739 | 952 | by (simp_all add: fun_eq_iff vimage_comp) | 
| 953 | ||
| 63322 | 954 | |
| 60758 | 955 | text \<open>Legacy theorem names\<close> | 
| 49739 | 956 | |
| 957 | lemmas o_def = comp_def | |
| 958 | lemmas o_apply = comp_apply | |
| 959 | lemmas o_assoc = comp_assoc [symmetric] | |
| 960 | lemmas id_o = id_comp | |
| 961 | lemmas o_id = comp_id | |
| 962 | lemmas o_eq_dest = comp_eq_dest | |
| 963 | lemmas o_eq_elim = comp_eq_elim | |
| 55066 | 964 | lemmas o_eq_dest_lhs = comp_eq_dest_lhs | 
| 965 | lemmas o_eq_id_dest = comp_eq_id_dest | |
| 47488 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 haftmann parents: 
46950diff
changeset | 966 | |
| 2912 | 967 | end |