author | nipkow |
Fri, 28 Jul 1995 18:05:50 +0200 | |
changeset 1212 | 7059356e18e0 |
parent 1208 | bc3093616ba4 |
child 1461 | 6bcb44e4d6e5 |
permissions | -rw-r--r-- |
1196 | 1 |
(* Title: ZF/AC/WO1_AC.ML |
2 |
ID: $Id$ |
|
1208
bc3093616ba4
Ran expandshort and corrected spelling of Grabczewski
paulson
parents:
1196
diff
changeset
|
3 |
Author: Krzysztof Grabczewski |
1196 | 4 |
|
5 |
The proofs of WO1 ==> AC1 and WO1 ==> AC10(n) for n >= 1 |
|
6 |
||
7 |
The latter proof is referred to as clear by the Rubins. |
|
8 |
However it seems to be quite complicated. |
|
9 |
The formal proof presented below is a mechanisation of the proof |
|
10 |
by Lawrence C. Paulson which is the following: |
|
11 |
||
12 |
Assume WO1. Let s be a set of infinite sets. |
|
13 |
||
14 |
Suppose x:s. Then x is equipollent to |x| (by WO1), an infinite cardinal; |
|
15 |
call it K. Since K = K |+| K = |K+K| (by InfCard_cdouble_eq) there is an |
|
16 |
isomorphism h: bij(K+K, x). (Here + means disjoint sum.) |
|
17 |
||
18 |
So there is a partition of x into 2-element sets, namely |
|
19 |
||
20 |
{{h(Inl(i)), h(Inr(i))} . i:K} |
|
21 |
||
22 |
So for all x:s the desired partition exists. By AC1 (which follows from WO1) |
|
23 |
there exists a function f that chooses a partition for each x:s. Therefore we |
|
24 |
have AC10(2). |
|
25 |
||
26 |
*) |
|
27 |
||
28 |
open WO1_AC; |
|
29 |
||
30 |
(* ********************************************************************** *) |
|
31 |
(* WO1 ==> AC1 *) |
|
32 |
(* ********************************************************************** *) |
|
33 |
||
34 |
goalw thy [AC1_def, WO1_def] "!!Z. WO1 ==> AC1"; |
|
35 |
by (fast_tac (AC_cs addSEs [ex_choice_fun]) 1); |
|
36 |
qed "WO1_AC1"; |
|
37 |
||
38 |
(* ********************************************************************** *) |
|
39 |
(* WO1 ==> AC10(n) (n >= 1) *) |
|
40 |
(* ********************************************************************** *) |
|
41 |
||
42 |
goalw thy [WO1_def] "!!A. [| WO1; ALL B:A. EX C:D(B). P(C,B) |] \ |
|
43 |
\ ==> EX f. ALL B:A. P(f`B,B)"; |
|
44 |
by (eres_inst_tac [("x","Union({{C:D(B). P(C,B)}. B:A})")] allE 1); |
|
1208
bc3093616ba4
Ran expandshort and corrected spelling of Grabczewski
paulson
parents:
1196
diff
changeset
|
45 |
by (etac exE 1); |
bc3093616ba4
Ran expandshort and corrected spelling of Grabczewski
paulson
parents:
1196
diff
changeset
|
46 |
by (dtac ex_choice_fun 1); |
1196 | 47 |
by (fast_tac (AC_cs addEs [RepFunE, sym RS equals0D]) 1); |
1208
bc3093616ba4
Ran expandshort and corrected spelling of Grabczewski
paulson
parents:
1196
diff
changeset
|
48 |
by (etac exE 1); |
1196 | 49 |
by (res_inst_tac [("x","lam x:A. f`{C:D(x). P(C,x)}")] exI 1); |
50 |
by (asm_full_simp_tac AC_ss 1); |
|
51 |
by (fast_tac (AC_cs addSDs [RepFunI RSN (2, apply_type)] |
|
52 |
addSEs [CollectD2]) 1); |
|
53 |
val lemma1 = result(); |
|
54 |
||
55 |
goalw thy [WO1_def] "!!A. [| ~Finite(B); WO1 |] ==> |B| + |B| eqpoll B"; |
|
1208
bc3093616ba4
Ran expandshort and corrected spelling of Grabczewski
paulson
parents:
1196
diff
changeset
|
56 |
by (rtac eqpoll_trans 1); |
1196 | 57 |
by (fast_tac (AC_cs addSEs [well_ord_cardinal_eqpoll]) 2); |
58 |
by (resolve_tac [eqpoll_sym RS eqpoll_trans] 1); |
|
59 |
by (fast_tac (AC_cs addSEs [well_ord_cardinal_eqpoll]) 1); |
|
60 |
by (resolve_tac [cadd_def RS def_imp_eq RS subst] 1); |
|
61 |
by (resolve_tac [Card_cardinal RSN (2, Inf_Card_is_InfCard) RS |
|
62 |
InfCard_cdouble_eq RS ssubst] 1); |
|
1208
bc3093616ba4
Ran expandshort and corrected spelling of Grabczewski
paulson
parents:
1196
diff
changeset
|
63 |
by (rtac eqpoll_refl 2); |
bc3093616ba4
Ran expandshort and corrected spelling of Grabczewski
paulson
parents:
1196
diff
changeset
|
64 |
by (rtac notI 1); |
bc3093616ba4
Ran expandshort and corrected spelling of Grabczewski
paulson
parents:
1196
diff
changeset
|
65 |
by (etac notE 1); |
1196 | 66 |
by (resolve_tac [eqpoll_sym RS eqpoll_imp_lepoll RS lepoll_Finite] 1 |
67 |
THEN (assume_tac 2)); |
|
68 |
by (fast_tac (AC_cs addSEs [well_ord_cardinal_eqpoll]) 1); |
|
69 |
val lemma2_1 = result(); |
|
70 |
||
71 |
goal thy "!!f. f : bij(D+D, B) ==> {{f`Inl(i), f`Inr(i)}. i:D} : Pow(Pow(B))"; |
|
72 |
by (fast_tac (AC_cs addSIs [InlI, InrI] |
|
73 |
addSEs [RepFunE, bij_is_fun RS apply_type]) 1); |
|
74 |
val lemma2_2 = result(); |
|
75 |
||
76 |
goal thy "!!f. [| f:inj(A,B); f`a = f`b; a:A; b:A |] ==> a=b"; |
|
1208
bc3093616ba4
Ran expandshort and corrected spelling of Grabczewski
paulson
parents:
1196
diff
changeset
|
77 |
by (rtac inj_equality 1); |
1196 | 78 |
by (TRYALL (fast_tac (AC_cs addSEs [inj_is_fun RS apply_Pair] addEs [subst]))); |
79 |
val lemma = result(); |
|
80 |
||
81 |
goalw thy AC_aux_defs |
|
82 |
"!!f. f : bij(D+D, B) ==> \ |
|
83 |
\ pairwise_disjoint({{f`Inl(i), f`Inr(i)}. i:D})"; |
|
84 |
by (fast_tac (AC_cs addSEs [RepFunE, not_emptyE] |
|
85 |
addDs [bij_is_inj RS lemma, Inl_iff RS iffD1, |
|
86 |
Inr_iff RS iffD1, Inl_Inr_iff RS iffD1 RS FalseE, |
|
87 |
Inr_Inl_iff RS iffD1 RS FalseE] |
|
88 |
addSIs [InlI, InrI]) 1); |
|
89 |
val lemma2_3 = result(); |
|
90 |
||
91 |
val [major, minor] = goalw thy AC_aux_defs |
|
92 |
"[| f : bij(D+D, B); 1 le n |] ==> \ |
|
93 |
\ sets_of_size_between({{f`Inl(i), f`Inr(i)}. i:D}, 2, succ(n))"; |
|
1208
bc3093616ba4
Ran expandshort and corrected spelling of Grabczewski
paulson
parents:
1196
diff
changeset
|
94 |
by (rewtac succ_def); |
1196 | 95 |
by (fast_tac (AC_cs addSIs [cons_lepoll_cong, minor, lepoll_refl, InlI, InrI] |
96 |
addIs [singleton_eqpoll_1 RS eqpoll_imp_lepoll RS lepoll_trans, |
|
97 |
le_imp_subset RS subset_imp_lepoll] |
|
98 |
addDs [major RS bij_is_inj RS lemma, Inl_Inr_iff RS iffD1 RS FalseE] |
|
99 |
addSEs [RepFunE, not_emptyE, mem_irrefl]) 1); |
|
100 |
val lemma2_4 = result(); |
|
101 |
||
102 |
goalw thy [bij_def, surj_def] |
|
103 |
"!!f. f : bij(D+D, B) ==> Union({{f`Inl(i), f`Inr(i)}. i:D})=B"; |
|
104 |
by (fast_tac (AC_cs addSEs [inj_is_fun RS apply_type, CollectE, sumE] |
|
105 |
addSIs [InlI, InrI, equalityI]) 1); |
|
106 |
val lemma2_5 = result(); |
|
107 |
||
108 |
goal thy "!!A. [| WO1; ~Finite(B); 1 le n |] \ |
|
109 |
\ ==> EX C:Pow(Pow(B)). pairwise_disjoint(C) & \ |
|
110 |
\ sets_of_size_between(C, 2, succ(n)) & \ |
|
111 |
\ Union(C)=B"; |
|
112 |
by (eresolve_tac [lemma2_1 RS (eqpoll_def RS def_imp_iff RS iffD1 RS exE)] 1 |
|
113 |
THEN (assume_tac 1)); |
|
114 |
by (fast_tac (FOL_cs addSIs [bexI] |
|
115 |
addSEs [lemma2_2, lemma2_3, lemma2_4, lemma2_5]) 1); |
|
116 |
val lemma2 = result(); |
|
117 |
||
118 |
goalw thy AC_defs "!!n. [| WO1; 1 le n |] ==> AC10(n)"; |
|
119 |
by (fast_tac (AC_cs addSIs [lemma1] addSEs [lemma2]) 1); |
|
120 |
qed "WO1_AC10"; |