9907
|
1 |
(* Title: ZF/Update.ML
|
5157
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1998 University of Cambridge
|
|
5 |
|
|
6 |
Function updates: like theory Map, but for ordinary functions
|
|
7 |
*)
|
|
8 |
|
6068
|
9 |
Goal "f(x:=y) ` z = (if z=x then y else f`z)";
|
5157
|
10 |
by (simp_tac (simpset() addsimps [update_def]) 1);
|
|
11 |
by (case_tac "z : domain(f)" 1);
|
|
12 |
by (Asm_simp_tac 1);
|
|
13 |
by (asm_simp_tac (simpset() addsimps [apply_0]) 1);
|
|
14 |
qed "update_apply";
|
|
15 |
Addsimps [update_apply];
|
|
16 |
|
|
17 |
Goalw [update_def] "[| f`x = y; f: Pi(A,B); x: A |] ==> f(x:=y) = f";
|
|
18 |
by (asm_simp_tac (simpset() addsimps [domain_of_fun, cons_absorb]) 1);
|
|
19 |
by (rtac fun_extension 1);
|
|
20 |
by (best_tac (claset() addIs [apply_type, if_type, lam_type]) 1);
|
5168
|
21 |
by (assume_tac 1);
|
5157
|
22 |
by (Asm_simp_tac 1);
|
|
23 |
qed "update_idem";
|
|
24 |
|
|
25 |
|
|
26 |
(* [| f: Pi(A, B); x:A |] ==> f(x := f`x) = f *)
|
|
27 |
Addsimps [refl RS update_idem];
|
|
28 |
|
|
29 |
Goalw [update_def] "domain(f(x:=y)) = cons(x, domain(f))";
|
|
30 |
by (Asm_simp_tac 1);
|
|
31 |
qed "domain_update";
|
|
32 |
Addsimps [domain_update];
|
|
33 |
|
6048
|
34 |
Goalw [update_def] "[| f: A -> B; x : A; y: B |] ==> f(x:=y) : A -> B";
|
|
35 |
by (asm_simp_tac (simpset() addsimps [domain_of_fun, cons_absorb,
|
|
36 |
apply_funtype, lam_type]) 1);
|
|
37 |
qed "update_type";
|
|
38 |
|
|
39 |
|