| author | boehmes | 
| Wed, 07 Apr 2010 19:48:58 +0200 | |
| changeset 36081 | 70deefb6c093 | 
| parent 35945 | fcd02244e63d | 
| child 36243 | 027ae62681be | 
| permissions | -rw-r--r-- | 
| 35172 | 1 | |
| 2 | header {* Kurzweil-Henstock gauge integration in many dimensions. *}
 | |
| 3 | (* Author: John Harrison | |
| 4 | Translation from HOL light: Robert Himmelmann, TU Muenchen *) | |
| 5 | ||
| 35292 
e4a431b6d9b7
Replaced Integration by Multivariate-Analysis/Real_Integration
 hoelzl parents: 
35291diff
changeset | 6 | theory Integration | 
| 35172 | 7 | imports Derivative SMT | 
| 8 | begin | |
| 9 | ||
| 35292 
e4a431b6d9b7
Replaced Integration by Multivariate-Analysis/Real_Integration
 hoelzl parents: 
35291diff
changeset | 10 | declare [[smt_certificates="~~/src/HOL/Multivariate_Analysis/Integration.cert"]] | 
| 36081 
70deefb6c093
renamed "smt_record" to "smt_fixed" (somewhat more expressive) and inverted its semantics
 boehmes parents: 
35945diff
changeset | 11 | declare [[smt_fixed=true]] | 
| 35172 | 12 | declare [[z3_proofs=true]] | 
| 13 | ||
| 14 | lemma conjunctD2: assumes "a \<and> b" shows a b using assms by auto | |
| 15 | lemma conjunctD3: assumes "a \<and> b \<and> c" shows a b c using assms by auto | |
| 16 | lemma conjunctD4: assumes "a \<and> b \<and> c \<and> d" shows a b c d using assms by auto | |
| 17 | lemma conjunctD5: assumes "a \<and> b \<and> c \<and> d \<and> e" shows a b c d e using assms by auto | |
| 18 | ||
| 19 | declare smult_conv_scaleR[simp] | |
| 20 | ||
| 21 | subsection {* Some useful lemmas about intervals. *}
 | |
| 22 | ||
| 23 | lemma empty_as_interval: "{} = {1..0::real^'n}"
 | |
| 24 | apply(rule set_ext,rule) defer unfolding vector_le_def mem_interval | |
| 25 | using UNIV_witness[where 'a='n] apply(erule_tac exE,rule_tac x=x in allE) by auto | |
| 26 | ||
| 27 | lemma interior_subset_union_intervals: | |
| 28 |   assumes "i = {a..b::real^'n}" "j = {c..d}" "interior j \<noteq> {}" "i \<subseteq> j \<union> s" "interior(i) \<inter> interior(j) = {}"
 | |
| 29 | shows "interior i \<subseteq> interior s" proof- | |
| 30 |   have "{a<..<b} \<inter> {c..d} = {}" using inter_interval_mixed_eq_empty[of c d a b] and assms(3,5)
 | |
| 31 | unfolding assms(1,2) interior_closed_interval by auto | |
| 32 |   moreover have "{a<..<b} \<subseteq> {c..d} \<union> s" apply(rule order_trans,rule interval_open_subset_closed)
 | |
| 33 | using assms(4) unfolding assms(1,2) by auto | |
| 34 | ultimately show ?thesis apply-apply(rule interior_maximal) defer apply(rule open_interior) | |
| 35 | unfolding assms(1,2) interior_closed_interval by auto qed | |
| 36 | ||
| 37 | lemma inter_interior_unions_intervals: fixes f::"(real^'n) set set" | |
| 38 |   assumes "finite f" "open s" "\<forall>t\<in>f. \<exists>a b. t = {a..b}" "\<forall>t\<in>f. s \<inter> (interior t) = {}"
 | |
| 39 |   shows "s \<inter> interior(\<Union>f) = {}" proof(rule ccontr,unfold ex_in_conv[THEN sym]) case goal1
 | |
| 40 | have lem1:"\<And>x e s U. ball x e \<subseteq> s \<inter> interior U \<longleftrightarrow> ball x e \<subseteq> s \<inter> U" apply rule defer apply(rule_tac Int_greatest) | |
| 41 | unfolding open_subset_interior[OF open_ball] using interior_subset by auto | |
| 42 | have lem2:"\<And>x s P. \<exists>x\<in>s. P x \<Longrightarrow> \<exists>x\<in>insert x s. P x" by auto | |
| 43 |   have "\<And>f. finite f \<Longrightarrow> (\<forall>t\<in>f. \<exists>a b. t = {a..b}) \<Longrightarrow> (\<exists>x. x \<in> s \<inter> interior (\<Union>f)) \<Longrightarrow> (\<exists>t\<in>f. \<exists>x. \<exists>e>0. ball x e \<subseteq> s \<inter> t)" proof- case goal1
 | |
| 44 | thus ?case proof(induct rule:finite_induct) | |
| 45 | case empty from this(2) guess x .. hence False unfolding Union_empty interior_empty by auto thus ?case by auto next | |
| 46 | case (insert i f) guess x using insert(5) .. note x = this | |
| 47 | then guess e unfolding open_contains_ball_eq[OF open_Int[OF assms(2) open_interior],rule_format] .. note e=this | |
| 48 | guess a using insert(4)[rule_format,OF insertI1] .. then guess b .. note ab = this | |
| 49 |     show ?case proof(cases "x\<in>i") case False hence "x \<in> UNIV - {a..b}" unfolding ab by auto
 | |
| 50 | then guess d unfolding open_contains_ball_eq[OF open_Diff[OF open_UNIV closed_interval],rule_format] .. | |
| 51 | hence "0 < d" "ball x (min d e) \<subseteq> UNIV - i" using e unfolding ab by auto | |
| 52 | hence "ball x (min d e) \<subseteq> s \<inter> interior (\<Union>f)" using e unfolding lem1 by auto hence "x \<in> s \<inter> interior (\<Union>f)" using `d>0` e by auto | |
| 53 | hence "\<exists>t\<in>f. \<exists>x e. 0 < e \<and> ball x e \<subseteq> s \<inter> t" apply-apply(rule insert(3)) using insert(4) by auto thus ?thesis by auto next | |
| 54 |     case True show ?thesis proof(cases "x\<in>{a<..<b}")
 | |
| 55 | case True then guess d unfolding open_contains_ball_eq[OF open_interval,rule_format] .. | |
| 56 | thus ?thesis apply(rule_tac x=i in bexI,rule_tac x=x in exI,rule_tac x="min d e" in exI) | |
| 57 | unfolding ab using interval_open_subset_closed[of a b] and e by fastsimp+ next | |
| 58 | case False then obtain k where "x$k \<le> a$k \<or> x$k \<ge> b$k" unfolding mem_interval by(auto simp add:not_less) | |
| 59 | hence "x$k = a$k \<or> x$k = b$k" using True unfolding ab and mem_interval apply(erule_tac x=k in allE) by auto | |
| 60 | hence "\<exists>x. ball x (e/2) \<subseteq> s \<inter> (\<Union>f)" proof(erule_tac disjE) | |
| 61 |       let ?z = "x - (e/2) *\<^sub>R basis k" assume as:"x$k = a$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
 | |
| 62 | fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto | |
| 63 | hence "\<bar>(?z - y) $ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding vector_dist_norm by auto | |
| 64 | hence "y$k < a$k" unfolding vector_component_simps vector_scaleR_component as using e[THEN conjunct1] by(auto simp add:field_simps) | |
| 65 | hence "y \<notin> i" unfolding ab mem_interval not_all by(rule_tac x=k in exI,auto) thus False using yi by auto qed | |
| 66 | moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof | |
| 67 | fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y - (e / 2) *\<^sub>R basis k)" | |
| 68 | apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "(e/2) *\<^sub>R basis k"]) | |
| 69 | unfolding norm_scaleR norm_basis by auto | |
| 70 | also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball vector_dist_norm using e by(auto simp add:field_simps) | |
| 71 | finally show "y\<in>ball x e" unfolding mem_ball vector_dist_norm using e by(auto simp add:field_simps) qed | |
| 72 | ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto | |
| 73 |     next let ?z = "x + (e/2) *\<^sub>R basis k" assume as:"x$k = b$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
 | |
| 74 | fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto | |
| 75 | hence "\<bar>(?z - y) $ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding vector_dist_norm by auto | |
| 76 | hence "y$k > b$k" unfolding vector_component_simps vector_scaleR_component as using e[THEN conjunct1] by(auto simp add:field_simps) | |
| 77 | hence "y \<notin> i" unfolding ab mem_interval not_all by(rule_tac x=k in exI,auto) thus False using yi by auto qed | |
| 78 | moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof | |
| 79 | fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y + (e / 2) *\<^sub>R basis k)" | |
| 80 | apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "- (e/2) *\<^sub>R basis k"]) | |
| 81 | unfolding norm_scaleR norm_basis by auto | |
| 82 | also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball vector_dist_norm using e by(auto simp add:field_simps) | |
| 83 | finally show "y\<in>ball x e" unfolding mem_ball vector_dist_norm using e by(auto simp add:field_simps) qed | |
| 84 | ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto qed | |
| 85 | then guess x .. hence "x \<in> s \<inter> interior (\<Union>f)" unfolding lem1[where U="\<Union>f",THEN sym] using centre_in_ball e[THEN conjunct1] by auto | |
| 86 | thus ?thesis apply-apply(rule lem2,rule insert(3)) using insert(4) by auto qed qed qed qed note * = this | |
| 87 | guess t using *[OF assms(1,3) goal1] .. from this(2) guess x .. then guess e .. | |
| 88 | hence "x \<in> s" "x\<in>interior t" defer using open_subset_interior[OF open_ball, of x e t] by auto | |
| 89 | thus False using `t\<in>f` assms(4) by auto qed | |
| 90 | subsection {* Bounds on intervals where they exist. *}
 | |
| 91 | ||
| 92 | definition "interval_upperbound (s::(real^'n) set) = (\<chi> i. Sup {a. \<exists>x\<in>s. x$i = a})"
 | |
| 93 | ||
| 94 | definition "interval_lowerbound (s::(real^'n) set) = (\<chi> i. Inf {a. \<exists>x\<in>s. x$i = a})"
 | |
| 95 | ||
| 96 | lemma interval_upperbound[simp]: assumes "\<forall>i. a$i \<le> b$i" shows "interval_upperbound {a..b} = b"
 | |
| 97 | using assms unfolding interval_upperbound_def Cart_eq Cart_lambda_beta apply-apply(rule,erule_tac x=i in allE) | |
| 98 | apply(rule Sup_unique) unfolding setle_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer | |
| 99 | apply(rule,rule) apply(rule_tac x="b$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=b in bexI) | |
| 100 | unfolding mem_interval using assms by auto | |
| 101 | ||
| 102 | lemma interval_lowerbound[simp]: assumes "\<forall>i. a$i \<le> b$i" shows "interval_lowerbound {a..b} = a"
 | |
| 103 | using assms unfolding interval_lowerbound_def Cart_eq Cart_lambda_beta apply-apply(rule,erule_tac x=i in allE) | |
| 104 | apply(rule Inf_unique) unfolding setge_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer | |
| 105 | apply(rule,rule) apply(rule_tac x="a$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=a in bexI) | |
| 106 | unfolding mem_interval using assms by auto | |
| 107 | ||
| 108 | lemmas interval_bounds = interval_upperbound interval_lowerbound | |
| 109 | ||
| 110 | lemma interval_bounds'[simp]: assumes "{a..b}\<noteq>{}" shows "interval_upperbound {a..b} = b" "interval_lowerbound {a..b} = a"
 | |
| 111 | using assms unfolding interval_ne_empty by auto | |
| 112 | ||
| 113 | lemma interval_upperbound_1[simp]: "dest_vec1 a \<le> dest_vec1 b \<Longrightarrow> interval_upperbound {a..b} = (b::real^1)"
 | |
| 114 | apply(rule interval_upperbound) by auto | |
| 115 | ||
| 116 | lemma interval_lowerbound_1[simp]: "dest_vec1 a \<le> dest_vec1 b \<Longrightarrow> interval_lowerbound {a..b} = (a::real^1)"
 | |
| 117 | apply(rule interval_lowerbound) by auto | |
| 118 | ||
| 119 | lemmas interval_bound_1 = interval_upperbound_1 interval_lowerbound_1 | |
| 120 | ||
| 121 | subsection {* Content (length, area, volume...) of an interval. *}
 | |
| 122 | ||
| 123 | definition "content (s::(real^'n) set) = | |
| 124 |        (if s = {} then 0 else (\<Prod>i\<in>UNIV. (interval_upperbound s)$i - (interval_lowerbound s)$i))"
 | |
| 125 | ||
| 126 | lemma interval_not_empty:"\<forall>i. a$i \<le> b$i \<Longrightarrow> {a..b::real^'n} \<noteq> {}"
 | |
| 127 | unfolding interval_eq_empty unfolding not_ex not_less by assumption | |
| 128 | ||
| 129 | lemma content_closed_interval: assumes "\<forall>i. a$i \<le> b$i" | |
| 130 |   shows "content {a..b} = (\<Prod>i\<in>UNIV. b$i - a$i)"
 | |
| 131 | using interval_not_empty[OF assms] unfolding content_def interval_upperbound[OF assms] interval_lowerbound[OF assms] by auto | |
| 132 | ||
| 133 | lemma content_closed_interval': assumes "{a..b}\<noteq>{}" shows "content {a..b} = (\<Prod>i\<in>UNIV. b$i - a$i)"
 | |
| 134 | apply(rule content_closed_interval) using assms unfolding interval_ne_empty . | |
| 135 | ||
| 136 | lemma content_1:"dest_vec1 a \<le> dest_vec1 b \<Longrightarrow> content {a..b} = dest_vec1 b - dest_vec1 a"
 | |
| 137 | using content_closed_interval[of a b] by auto | |
| 138 | ||
| 139 | lemma content_1':"a \<le> b \<Longrightarrow> content {vec1 a..vec1 b} = b - a" using content_1[of "vec a" "vec b"] by auto
 | |
| 140 | ||
| 141 | lemma content_unit[intro]: "content{0..1::real^'n} = 1" proof-
 | |
| 142 | have *:"\<forall>i. 0$i \<le> (1::real^'n::finite)$i" by auto | |
| 143 |   have "0 \<in> {0..1::real^'n::finite}" unfolding mem_interval by auto
 | |
| 144 | thus ?thesis unfolding content_def interval_bounds[OF *] using setprod_1 by auto qed | |
| 145 | ||
| 146 | lemma content_pos_le[intro]: "0 \<le> content {a..b}" proof(cases "{a..b}={}")
 | |
| 147 | case False hence *:"\<forall>i. a $ i \<le> b $ i" unfolding interval_ne_empty by assumption | |
| 148 |   have "(\<Prod>i\<in>UNIV. interval_upperbound {a..b} $ i - interval_lowerbound {a..b} $ i) \<ge> 0"
 | |
| 149 | apply(rule setprod_nonneg) unfolding interval_bounds[OF *] using * apply(erule_tac x=x in allE) by auto | |
| 150 | thus ?thesis unfolding content_def by(auto simp del:interval_bounds') qed(unfold content_def, auto) | |
| 151 | ||
| 152 | lemma content_pos_lt: assumes "\<forall>i. a$i < b$i" shows "0 < content {a..b}"
 | |
| 153 | proof- have help_lemma1: "\<forall>i. a$i < b$i \<Longrightarrow> \<forall>i. a$i \<le> ((b$i)::real)" apply(rule,erule_tac x=i in allE) by auto | |
| 154 | show ?thesis unfolding content_closed_interval[OF help_lemma1[OF assms]] apply(rule setprod_pos) | |
| 155 | using assms apply(erule_tac x=x in allE) by auto qed | |
| 156 | ||
| 157 | lemma content_pos_lt_1: "dest_vec1 a < dest_vec1 b \<Longrightarrow> 0 < content({a..b})"
 | |
| 158 | apply(rule content_pos_lt) by auto | |
| 159 | ||
| 160 | lemma content_eq_0: "content({a..b::real^'n}) = 0 \<longleftrightarrow> (\<exists>i. b$i \<le> a$i)" proof(cases "{a..b} = {}")
 | |
| 161 | case True thus ?thesis unfolding content_def if_P[OF True] unfolding interval_eq_empty apply- | |
| 162 | apply(rule,erule exE) apply(rule_tac x=i in exI) by auto next | |
| 163 | guess a using UNIV_witness[where 'a='n] .. case False note as=this[unfolded interval_eq_empty not_ex not_less] | |
| 164 | show ?thesis unfolding content_def if_not_P[OF False] setprod_zero_iff[OF finite_UNIV] | |
| 165 | apply(rule) apply(erule_tac[!] exE bexE) unfolding interval_bounds[OF as] apply(rule_tac x=x in exI) defer | |
| 166 | apply(rule_tac x=i in bexI) using as apply(erule_tac x=i in allE) by auto qed | |
| 167 | ||
| 168 | lemma cond_cases:"(P \<Longrightarrow> Q x) \<Longrightarrow> (\<not> P \<Longrightarrow> Q y) \<Longrightarrow> Q (if P then x else y)" by auto | |
| 169 | ||
| 170 | lemma content_closed_interval_cases: | |
| 171 |   "content {a..b} = (if \<forall>i. a$i \<le> b$i then setprod (\<lambda>i. b$i - a$i) UNIV else 0)" apply(rule cond_cases) 
 | |
| 172 | apply(rule content_closed_interval) unfolding content_eq_0 not_all not_le defer apply(erule exE,rule_tac x=x in exI) by auto | |
| 173 | ||
| 174 | lemma content_eq_0_interior: "content {a..b} = 0 \<longleftrightarrow> interior({a..b}) = {}"
 | |
| 175 | unfolding content_eq_0 interior_closed_interval interval_eq_empty by auto | |
| 176 | ||
| 177 | lemma content_eq_0_1: "content {a..b::real^1} = 0 \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a"
 | |
| 178 | unfolding content_eq_0 by auto | |
| 179 | ||
| 180 | lemma content_pos_lt_eq: "0 < content {a..b} \<longleftrightarrow> (\<forall>i. a$i < b$i)"
 | |
| 181 |   apply(rule) defer apply(rule content_pos_lt,assumption) proof- assume "0 < content {a..b}"
 | |
| 182 |   hence "content {a..b} \<noteq> 0" by auto thus "\<forall>i. a$i < b$i" unfolding content_eq_0 not_ex not_le by auto qed
 | |
| 183 | ||
| 184 | lemma content_empty[simp]: "content {} = 0" unfolding content_def by auto
 | |
| 185 | ||
| 186 | lemma content_subset: assumes "{a..b} \<subseteq> {c..d}" shows "content {a..b::real^'n} \<le> content {c..d}" proof(cases "{a..b}={}")
 | |
| 187 | case True thus ?thesis using content_pos_le[of c d] by auto next | |
| 188 | case False hence ab_ne:"\<forall>i. a $ i \<le> b $ i" unfolding interval_ne_empty by auto | |
| 189 |   hence ab_ab:"a\<in>{a..b}" "b\<in>{a..b}" unfolding mem_interval by auto
 | |
| 190 |   have "{c..d} \<noteq> {}" using assms False by auto
 | |
| 191 | hence cd_ne:"\<forall>i. c $ i \<le> d $ i" using assms unfolding interval_ne_empty by auto | |
| 192 | show ?thesis unfolding content_def unfolding interval_bounds[OF ab_ne] interval_bounds[OF cd_ne] | |
| 193 |     unfolding if_not_P[OF False] if_not_P[OF `{c..d} \<noteq> {}`] apply(rule setprod_mono,rule) proof fix i::'n
 | |
| 194 | show "0 \<le> b $ i - a $ i" using ab_ne[THEN spec[where x=i]] by auto | |
| 195 | show "b $ i - a $ i \<le> d $ i - c $ i" | |
| 196 | using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(2),of i] | |
| 197 | using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(1),of i] by auto qed qed | |
| 198 | ||
| 199 | lemma content_lt_nz: "0 < content {a..b} \<longleftrightarrow> content {a..b} \<noteq> 0"
 | |
| 200 | unfolding content_pos_lt_eq content_eq_0 unfolding not_ex not_le by auto | |
| 201 | ||
| 202 | subsection {* The notion of a gauge --- simply an open set containing the point. *}
 | |
| 203 | ||
| 204 | definition gauge where "gauge d \<longleftrightarrow> (\<forall>x. x\<in>(d x) \<and> open(d x))" | |
| 205 | ||
| 206 | lemma gaugeI:assumes "\<And>x. x\<in>g x" "\<And>x. open (g x)" shows "gauge g" | |
| 207 | using assms unfolding gauge_def by auto | |
| 208 | ||
| 209 | lemma gaugeD[dest]: assumes "gauge d" shows "x\<in>d x" "open (d x)" using assms unfolding gauge_def by auto | |
| 210 | ||
| 211 | lemma gauge_ball_dependent: "\<forall>x. 0 < e x \<Longrightarrow> gauge (\<lambda>x. ball x (e x))" | |
| 212 | unfolding gauge_def by auto | |
| 213 | ||
| 35751 | 214 | lemma gauge_ball[intro]: "0 < e \<Longrightarrow> gauge (\<lambda>x. ball x e)" unfolding gauge_def by auto | 
| 35172 | 215 | |
| 216 | lemma gauge_trivial[intro]: "gauge (\<lambda>x. ball x 1)" apply(rule gauge_ball) by auto | |
| 217 | ||
| 35751 | 218 | lemma gauge_inter[intro]: "gauge d1 \<Longrightarrow> gauge d2 \<Longrightarrow> gauge (\<lambda>x. (d1 x) \<inter> (d2 x))" | 
| 35172 | 219 | unfolding gauge_def by auto | 
| 220 | ||
| 221 | lemma gauge_inters: assumes "finite s" "\<forall>d\<in>s. gauge (f d)" shows "gauge(\<lambda>x. \<Inter> {f d x | d. d \<in> s})" proof-
 | |
| 222 |   have *:"\<And>x. {f d x |d. d \<in> s} = (\<lambda>d. f d x) ` s" by auto show ?thesis
 | |
| 223 | unfolding gauge_def unfolding * | |
| 224 | using assms unfolding Ball_def Inter_iff mem_Collect_eq gauge_def by auto qed | |
| 225 | ||
| 226 | lemma gauge_existence_lemma: "(\<forall>x. \<exists>d::real. p x \<longrightarrow> 0 < d \<and> q d x) \<longleftrightarrow> (\<forall>x. \<exists>d>0. p x \<longrightarrow> q d x)" by(meson zero_less_one) | |
| 227 | ||
| 228 | subsection {* Divisions. *}
 | |
| 229 | ||
| 230 | definition division_of (infixl "division'_of" 40) where | |
| 231 | "s division_of i \<equiv> | |
| 232 | finite s \<and> | |
| 233 |         (\<forall>k\<in>s. k \<subseteq> i \<and> k \<noteq> {} \<and> (\<exists>a b. k = {a..b})) \<and>
 | |
| 234 |         (\<forall>k1\<in>s. \<forall>k2\<in>s. k1 \<noteq> k2 \<longrightarrow> interior(k1) \<inter> interior(k2) = {}) \<and>
 | |
| 235 | (\<Union>s = i)" | |
| 236 | ||
| 237 | lemma division_ofD[dest]: assumes "s division_of i" | |
| 238 |   shows"finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow>  k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
 | |
| 239 |   "\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i" using assms unfolding division_of_def by auto
 | |
| 240 | ||
| 241 | lemma division_ofI: | |
| 242 |   assumes "finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow>  k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
 | |
| 243 |   "\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i"
 | |
| 244 | shows "s division_of i" using assms unfolding division_of_def by auto | |
| 245 | ||
| 246 | lemma division_of_finite: "s division_of i \<Longrightarrow> finite s" | |
| 247 | unfolding division_of_def by auto | |
| 248 | ||
| 249 | lemma division_of_self[intro]: "{a..b} \<noteq> {} \<Longrightarrow> {{a..b}} division_of {a..b}"
 | |
| 250 | unfolding division_of_def by auto | |
| 251 | ||
| 252 | lemma division_of_trivial[simp]: "s division_of {} \<longleftrightarrow> s = {}" unfolding division_of_def by auto 
 | |
| 253 | ||
| 254 | lemma division_of_sing[simp]: "s division_of {a..a::real^'n} \<longleftrightarrow> s = {{a..a}}" (is "?l = ?r") proof
 | |
| 255 |   assume ?r moreover { assume "s = {{a}}" moreover fix k assume "k\<in>s" 
 | |
| 256 |     ultimately have"\<exists>x y. k = {x..y}" apply(rule_tac x=a in exI)+ unfolding interval_sing[THEN conjunct1] by auto }
 | |
| 257 | ultimately show ?l unfolding division_of_def interval_sing[THEN conjunct1] by auto next | |
| 258 | assume ?l note as=conjunctD4[OF this[unfolded division_of_def interval_sing[THEN conjunct1]]] | |
| 259 |   { fix x assume x:"x\<in>s" have "x={a}" using as(2)[rule_format,OF x] by auto }
 | |
| 260 |   moreover have "s \<noteq> {}" using as(4) by auto ultimately show ?r unfolding interval_sing[THEN conjunct1] by auto qed
 | |
| 261 | ||
| 262 | lemma elementary_empty: obtains p where "p division_of {}"
 | |
| 263 | unfolding division_of_trivial by auto | |
| 264 | ||
| 265 | lemma elementary_interval: obtains p where  "p division_of {a..b}"
 | |
| 266 | by(metis division_of_trivial division_of_self) | |
| 267 | ||
| 268 | lemma division_contains: "s division_of i \<Longrightarrow> \<forall>x\<in>i. \<exists>k\<in>s. x \<in> k" | |
| 269 | unfolding division_of_def by auto | |
| 270 | ||
| 271 | lemma forall_in_division: | |
| 272 |  "d division_of i \<Longrightarrow> ((\<forall>x\<in>d. P x) \<longleftrightarrow> (\<forall>a b. {a..b} \<in> d \<longrightarrow> P {a..b}))"
 | |
| 273 | unfolding division_of_def by fastsimp | |
| 274 | ||
| 275 | lemma division_of_subset: assumes "p division_of (\<Union>p)" "q \<subseteq> p" shows "q division_of (\<Union>q)" | |
| 276 | apply(rule division_ofI) proof- note as=division_ofD[OF assms(1)] | |
| 277 | show "finite q" apply(rule finite_subset) using as(1) assms(2) by auto | |
| 278 |   { fix k assume "k \<in> q" hence kp:"k\<in>p" using assms(2) by auto show "k\<subseteq>\<Union>q" using `k \<in> q` by auto
 | |
| 279 |   show "\<exists>a b. k = {a..b}" using as(4)[OF kp] by auto show "k \<noteq> {}" using as(3)[OF kp] by auto }
 | |
| 280 | fix k1 k2 assume "k1 \<in> q" "k2 \<in> q" "k1 \<noteq> k2" hence *:"k1\<in>p" "k2\<in>p" "k1\<noteq>k2" using assms(2) by auto | |
| 281 |   show "interior k1 \<inter> interior k2 = {}" using as(5)[OF *] by auto qed auto
 | |
| 282 | ||
| 283 | lemma division_of_union_self[intro]: "p division_of s \<Longrightarrow> p division_of (\<Union>p)" unfolding division_of_def by auto | |
| 284 | ||
| 285 | lemma division_of_content_0: assumes "content {a..b} = 0" "d division_of {a..b}" shows "\<forall>k\<in>d. content k = 0"
 | |
| 286 | unfolding forall_in_division[OF assms(2)] apply(rule,rule,rule) apply(drule division_ofD(2)[OF assms(2)]) | |
| 287 | apply(drule content_subset) unfolding assms(1) proof- case goal1 thus ?case using content_pos_le[of a b] by auto qed | |
| 288 | ||
| 289 | lemma division_inter: assumes "p1 division_of s1" "p2 division_of (s2::(real^'a) set)" | |
| 290 |   shows "{k1 \<inter> k2 | k1 k2 .k1 \<in> p1 \<and> k2 \<in> p2 \<and> k1 \<inter> k2 \<noteq> {}} division_of (s1 \<inter> s2)" (is "?A' division_of _") proof-
 | |
| 291 | let ?A = "{s. s \<in>  (\<lambda>(k1,k2). k1 \<inter> k2) ` (p1 \<times> p2) \<and> s \<noteq> {}}" have *:"?A' = ?A" by auto
 | |
| 292 | show ?thesis unfolding * proof(rule division_ofI) have "?A \<subseteq> (\<lambda>(x, y). x \<inter> y) ` (p1 \<times> p2)" by auto | |
| 293 | moreover have "finite (p1 \<times> p2)" using assms unfolding division_of_def by auto ultimately show "finite ?A" by auto | |
| 294 |   have *:"\<And>s. \<Union>{x\<in>s. x \<noteq> {}} = \<Union>s" by auto show "\<Union>?A = s1 \<inter> s2" apply(rule set_ext) unfolding * and Union_image_eq UN_iff
 | |
| 295 | using division_ofD(6)[OF assms(1)] and division_ofD(6)[OF assms(2)] by auto | |
| 296 |   { fix k assume "k\<in>?A" then obtain k1 k2 where k:"k = k1 \<inter> k2" "k1\<in>p1" "k2\<in>p2" "k\<noteq>{}" by auto thus "k \<noteq> {}" by auto
 | |
| 297 | show "k \<subseteq> s1 \<inter> s2" using division_ofD(2)[OF assms(1) k(2)] and division_ofD(2)[OF assms(2) k(3)] unfolding k by auto | |
| 298 | guess a1 using division_ofD(4)[OF assms(1) k(2)] .. then guess b1 .. note ab1=this | |
| 299 | guess a2 using division_ofD(4)[OF assms(2) k(3)] .. then guess b2 .. note ab2=this | |
| 300 |   show "\<exists>a b. k = {a..b}" unfolding k ab1 ab2 unfolding inter_interval by auto } fix k1 k2
 | |
| 301 |   assume "k1\<in>?A" then obtain x1 y1 where k1:"k1 = x1 \<inter> y1" "x1\<in>p1" "y1\<in>p2" "k1\<noteq>{}" by auto
 | |
| 302 |   assume "k2\<in>?A" then obtain x2 y2 where k2:"k2 = x2 \<inter> y2" "x2\<in>p1" "y2\<in>p2" "k2\<noteq>{}" by auto
 | |
| 303 | assume "k1 \<noteq> k2" hence th:"x1\<noteq>x2 \<or> y1\<noteq>y2" unfolding k1 k2 by auto | |
| 304 |   have *:"(interior x1 \<inter> interior x2 = {} \<or> interior y1 \<inter> interior y2 = {}) \<Longrightarrow>
 | |
| 305 | interior(x1 \<inter> y1) \<subseteq> interior(x1) \<Longrightarrow> interior(x1 \<inter> y1) \<subseteq> interior(y1) \<Longrightarrow> | |
| 306 | interior(x2 \<inter> y2) \<subseteq> interior(x2) \<Longrightarrow> interior(x2 \<inter> y2) \<subseteq> interior(y2) | |
| 307 |       \<Longrightarrow> interior(x1 \<inter> y1) \<inter> interior(x2 \<inter> y2) = {}" by auto
 | |
| 308 |   show "interior k1 \<inter> interior k2 = {}" unfolding k1 k2 apply(rule *) defer apply(rule_tac[1-4] subset_interior)
 | |
| 309 | using division_ofD(5)[OF assms(1) k1(2) k2(2)] | |
| 310 | using division_ofD(5)[OF assms(2) k1(3) k2(3)] using th by auto qed qed | |
| 311 | ||
| 312 | lemma division_inter_1: assumes "d division_of i" "{a..b::real^'n} \<subseteq> i"
 | |
| 313 |   shows "{ {a..b} \<inter> k |k. k \<in> d \<and> {a..b} \<inter> k \<noteq> {} } division_of {a..b}" proof(cases "{a..b} = {}")
 | |
| 314 | case True show ?thesis unfolding True and division_of_trivial by auto next | |
| 315 |   have *:"{a..b} \<inter> i = {a..b}" using assms(2) by auto 
 | |
| 316 | case False show ?thesis using division_inter[OF division_of_self[OF False] assms(1)] unfolding * by auto qed | |
| 317 | ||
| 318 | lemma elementary_inter: assumes "p1 division_of s" "p2 division_of (t::(real^'n) set)" | |
| 319 | shows "\<exists>p. p division_of (s \<inter> t)" | |
| 320 | by(rule,rule division_inter[OF assms]) | |
| 321 | ||
| 322 | lemma elementary_inters: assumes "finite f" "f\<noteq>{}" "\<forall>s\<in>f. \<exists>p. p division_of (s::(real^'n) set)"
 | |
| 323 | shows "\<exists>p. p division_of (\<Inter> f)" using assms apply-proof(induct f rule:finite_induct) | |
| 324 | case (insert x f) show ?case proof(cases "f={}")
 | |
| 325 | case True thus ?thesis unfolding True using insert by auto next | |
| 326 | case False guess p using insert(3)[OF False insert(5)[unfolded ball_simps,THEN conjunct2]] .. | |
| 327 | moreover guess px using insert(5)[rule_format,OF insertI1] .. ultimately | |
| 328 | show ?thesis unfolding Inter_insert apply(rule_tac elementary_inter) by assumption+ qed qed auto | |
| 329 | ||
| 330 | lemma division_disjoint_union: | |
| 331 |   assumes "p1 division_of s1" "p2 division_of s2" "interior s1 \<inter> interior s2 = {}"
 | |
| 332 | shows "(p1 \<union> p2) division_of (s1 \<union> s2)" proof(rule division_ofI) | |
| 333 | note d1 = division_ofD[OF assms(1)] and d2 = division_ofD[OF assms(2)] | |
| 334 | show "finite (p1 \<union> p2)" using d1(1) d2(1) by auto | |
| 335 | show "\<Union>(p1 \<union> p2) = s1 \<union> s2" using d1(6) d2(6) by auto | |
| 336 |   { fix k1 k2 assume as:"k1 \<in> p1 \<union> p2" "k2 \<in> p1 \<union> p2" "k1 \<noteq> k2" moreover let ?g="interior k1 \<inter> interior k2 = {}"
 | |
| 337 |   { assume as:"k1\<in>p1" "k2\<in>p2" have ?g using subset_interior[OF d1(2)[OF as(1)]] subset_interior[OF d2(2)[OF as(2)]]
 | |
| 338 | using assms(3) by blast } moreover | |
| 339 |   { assume as:"k1\<in>p2" "k2\<in>p1" have ?g using subset_interior[OF d1(2)[OF as(2)]] subset_interior[OF d2(2)[OF as(1)]]
 | |
| 340 | using assms(3) by blast} ultimately | |
| 341 | show ?g using d1(5)[OF _ _ as(3)] and d2(5)[OF _ _ as(3)] by auto } | |
| 342 | fix k assume k:"k \<in> p1 \<union> p2" show "k \<subseteq> s1 \<union> s2" using k d1(2) d2(2) by auto | |
| 343 |   show "k \<noteq> {}" using k d1(3) d2(3) by auto show "\<exists>a b. k = {a..b}" using k d1(4) d2(4) by auto qed
 | |
| 344 | ||
| 345 | lemma partial_division_extend_1: | |
| 346 |   assumes "{c..d} \<subseteq> {a..b::real^'n}" "{c..d} \<noteq> {}"
 | |
| 347 |   obtains p where "p division_of {a..b}" "{c..d} \<in> p"
 | |
| 348 | proof- def n \<equiv> "CARD('n)" have n:"1 \<le> n" "0 < n" "n \<noteq> 0" unfolding n_def by auto
 | |
| 349 | guess \<pi> using ex_bij_betw_nat_finite_1[OF finite_UNIV[where 'a='n]] .. note \<pi>=this | |
| 350 |   def \<pi>' \<equiv> "inv_into {1..n} \<pi>"
 | |
| 351 |   have \<pi>':"bij_betw \<pi>' UNIV {1..n}" using bij_betw_inv_into[OF \<pi>] unfolding \<pi>'_def n_def by auto
 | |
| 352 |   hence \<pi>'i:"\<And>i. \<pi>' i \<in> {1..n}" unfolding bij_betw_def by auto 
 | |
| 353 | have \<pi>\<pi>'[simp]:"\<And>i. \<pi> (\<pi>' i) = i" unfolding \<pi>'_def apply(rule f_inv_into_f) unfolding n_def using \<pi> unfolding bij_betw_def by auto | |
| 354 |   have \<pi>'\<pi>[simp]:"\<And>i. i\<in>{1..n} \<Longrightarrow> \<pi>' (\<pi> i) = i" unfolding \<pi>'_def apply(rule inv_into_f_eq) using \<pi> unfolding n_def bij_betw_def by auto
 | |
| 355 |   have "{c..d} \<noteq> {}" using assms by auto
 | |
| 356 |   let ?p1 = "\<lambda>l. {(\<chi> i. if \<pi>' i < l then c$i else a$i) .. (\<chi> i. if \<pi>' i < l then d$i else if \<pi>' i = l then c$\<pi> l else b$i)}"
 | |
| 357 |   let ?p2 = "\<lambda>l. {(\<chi> i. if \<pi>' i < l then c$i else if \<pi>' i = l then d$\<pi> l else a$i) .. (\<chi> i. if \<pi>' i < l then d$i else b$i)}"
 | |
| 358 |   let ?p =  "{?p1 l |l. l \<in> {1..n+1}} \<union> {?p2 l |l. l \<in> {1..n+1}}"
 | |
| 359 | have abcd:"\<And>i. a $ i \<le> c $ i \<and> c$i \<le> d$i \<and> d $ i \<le> b $ i" using assms unfolding subset_interval interval_eq_empty by(auto simp add:not_le not_less) | |
| 360 | show ?thesis apply(rule that[of ?p]) apply(rule division_ofI) | |
| 361 | proof- have "\<And>i. \<pi>' i < Suc n" | |
| 362 | proof(rule ccontr,unfold not_less) fix i assume "Suc n \<le> \<pi>' i" | |
| 363 |       hence "\<pi>' i \<notin> {1..n}" by auto thus False using \<pi>' unfolding bij_betw_def by auto
 | |
| 364 | qed hence "c = (\<chi> i. if \<pi>' i < Suc n then c $ i else a $ i)" | |
| 365 | "d = (\<chi> i. if \<pi>' i < Suc n then d $ i else if \<pi>' i = n + 1 then c $ \<pi> (n + 1) else b $ i)" | |
| 366 | unfolding Cart_eq Cart_lambda_beta using \<pi>' unfolding bij_betw_def by auto | |
| 367 |     thus cdp:"{c..d} \<in> ?p" apply-apply(rule UnI1) unfolding mem_Collect_eq apply(rule_tac x="n + 1" in exI) by auto
 | |
| 368 |     have "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p1 l \<subseteq> {a..b}"  "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p2 l \<subseteq> {a..b}"
 | |
| 369 | unfolding subset_eq apply(rule_tac[!] ballI,rule_tac[!] ccontr) | |
| 370 |     proof- fix l assume l:"l\<in>{1..n+1}" fix x assume "x\<notin>{a..b}"
 | |
| 371 | then guess i unfolding mem_interval not_all .. note i=this | |
| 372 | show "x \<in> ?p1 l \<Longrightarrow> False" "x \<in> ?p2 l \<Longrightarrow> False" unfolding mem_interval apply(erule_tac[!] x=i in allE) | |
| 373 | apply(case_tac[!] "\<pi>' i < l", case_tac[!] "\<pi>' i = l") using abcd[of i] i by auto | |
| 374 |     qed moreover have "\<And>x. x \<in> {a..b} \<Longrightarrow> x \<in> \<Union>?p"
 | |
| 375 |     proof- fix x assume x:"x\<in>{a..b}"
 | |
| 376 |       { presume "x\<notin>{c..d} \<Longrightarrow> x \<in> \<Union>?p" thus "x \<in> \<Union>?p" using cdp by blast }
 | |
| 377 |       let ?M = "{i. i\<in>{1..n+1} \<and> \<not> (c $ \<pi> i \<le> x $ \<pi> i \<and> x $ \<pi> i \<le> d $ \<pi> i)}"
 | |
| 378 |       assume "x\<notin>{c..d}" then guess i0 unfolding mem_interval not_all ..
 | |
| 379 | hence "\<pi>' i0 \<in> ?M" using \<pi>' unfolding bij_betw_def by(auto intro!:le_SucI) | |
| 380 |       hence M:"finite ?M" "?M \<noteq> {}" by auto
 | |
| 381 | def l \<equiv> "Min ?M" note l = Min_less_iff[OF M,unfolded l_def[symmetric]] Min_in[OF M,unfolded mem_Collect_eq l_def[symmetric]] | |
| 382 | Min_gr_iff[OF M,unfolded l_def[symmetric]] | |
| 383 | have "x\<in>?p1 l \<or> x\<in>?p2 l" using l(2)[THEN conjunct2] unfolding de_Morgan_conj not_le | |
| 384 | apply- apply(erule disjE) apply(rule disjI1) defer apply(rule disjI2) | |
| 385 | proof- assume as:"x $ \<pi> l < c $ \<pi> l" | |
| 386 | show "x \<in> ?p1 l" unfolding mem_interval Cart_lambda_beta | |
| 387 |         proof case goal1 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le by auto
 | |
| 388 | thus ?case using as x[unfolded mem_interval,rule_format,of i] | |
| 389 | apply auto using l(3)[of "\<pi>' i"] by(auto elim!:ballE[where x="\<pi>' i"]) | |
| 390 | qed | |
| 391 | next assume as:"x $ \<pi> l > d $ \<pi> l" | |
| 392 | show "x \<in> ?p2 l" unfolding mem_interval Cart_lambda_beta | |
| 393 |         proof case goal1 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le by auto
 | |
| 394 | thus ?case using as x[unfolded mem_interval,rule_format,of i] | |
| 395 | apply auto using l(3)[of "\<pi>' i"] by(auto elim!:ballE[where x="\<pi>' i"]) | |
| 396 | qed qed | |
| 397 | thus "x \<in> \<Union>?p" using l(2) by blast | |
| 398 |     qed ultimately show "\<Union>?p = {a..b}" apply-apply(rule) defer apply(rule) by(assumption,blast)
 | |
| 399 | ||
| 400 | show "finite ?p" by auto | |
| 401 |     fix k assume k:"k\<in>?p" then obtain l where l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}" by auto
 | |
| 402 |     show "k\<subseteq>{a..b}" apply(rule,unfold mem_interval,rule,rule) 
 | |
| 403 | proof- fix i::'n and x assume "x \<in> k" moreover have "\<pi>' i < l \<or> \<pi>' i = l \<or> \<pi>' i > l" by auto | |
| 404 | ultimately show "a$i \<le> x$i" "x$i \<le> b$i" using abcd[of i] using l by(auto elim:disjE elim!:allE[where x=i] simp add:vector_le_def) | |
| 405 |     qed have "\<And>l. ?p1 l \<noteq> {}" "\<And>l. ?p2 l \<noteq> {}" unfolding interval_eq_empty not_ex apply(rule_tac[!] allI)
 | |
| 406 | proof- case goal1 thus ?case using abcd[of x] by auto | |
| 407 | next case goal2 thus ?case using abcd[of x] by auto | |
| 408 |     qed thus "k \<noteq> {}" using k by auto
 | |
| 409 |     show "\<exists>a b. k = {a..b}" using k by auto
 | |
| 410 |     fix k' assume k':"k' \<in> ?p" "k \<noteq> k'" then obtain l' where l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}" by auto
 | |
| 411 |     { fix k k' l l'
 | |
| 412 |       assume k:"k\<in>?p" and l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}" 
 | |
| 413 |       assume k':"k' \<in> ?p" "k \<noteq> k'" and  l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}" 
 | |
| 414 | assume "l \<le> l'" fix x | |
| 415 | have "x \<notin> interior k \<inter> interior k'" | |
| 416 | proof(rule,cases "l' = n+1") assume x:"x \<in> interior k \<inter> interior k'" | |
| 417 | case True hence "\<And>i. \<pi>' i < l'" using \<pi>'i by(auto simp add:less_Suc_eq_le) | |
| 418 |         hence k':"k' = {c..d}" using l'(1) \<pi>'i by(auto simp add:Cart_nth_inverse)
 | |
| 419 | have ln:"l < n + 1" | |
| 420 | proof(rule ccontr) case goal1 hence l2:"l = n+1" using l by auto | |
| 421 | hence "\<And>i. \<pi>' i < l" using \<pi>'i by(auto simp add:less_Suc_eq_le) | |
| 422 |           hence "k = {c..d}" using l(1) \<pi>'i by(auto simp add:Cart_nth_inverse)
 | |
| 423 | thus False using `k\<noteq>k'` k' by auto | |
| 424 | qed have **:"\<pi>' (\<pi> l) = l" using \<pi>'\<pi>[of l] using l ln by auto | |
| 425 | have "x $ \<pi> l < c $ \<pi> l \<or> d $ \<pi> l < x $ \<pi> l" using l(1) apply- | |
| 426 | proof(erule disjE) | |
| 427 | assume as:"k = ?p1 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format] | |
| 428 | show ?thesis using *[of "\<pi> l"] using ln unfolding Cart_lambda_beta ** by auto | |
| 429 | next assume as:"k = ?p2 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format] | |
| 430 | show ?thesis using *[of "\<pi> l"] using ln unfolding Cart_lambda_beta ** by auto | |
| 431 | qed thus False using x unfolding k' unfolding Int_iff interior_closed_interval mem_interval | |
| 432 | by(auto elim!:allE[where x="\<pi> l"]) | |
| 433 | next case False hence "l < n + 1" using l'(2) using `l\<le>l'` by auto | |
| 434 |         hence ln:"l \<in> {1..n}" "l' \<in> {1..n}" using l l' False by auto
 | |
| 435 | note \<pi>l = \<pi>'\<pi>[OF ln(1)] \<pi>'\<pi>[OF ln(2)] | |
| 436 | assume x:"x \<in> interior k \<inter> interior k'" | |
| 437 | show False using l(1) l'(1) apply- | |
| 438 | proof(erule_tac[!] disjE)+ | |
| 439 | assume as:"k = ?p1 l" "k' = ?p1 l'" | |
| 440 | note * = x[unfolded as Int_iff interior_closed_interval mem_interval] | |
| 441 | have "l \<noteq> l'" using k'(2)[unfolded as] by auto | |
| 442 | thus False using * by(smt Cart_lambda_beta \<pi>l) | |
| 443 | next assume as:"k = ?p2 l" "k' = ?p2 l'" | |
| 444 | note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format] | |
| 445 | have "l \<noteq> l'" apply(rule) using k'(2)[unfolded as] by auto | |
| 446 | thus False using *[of "\<pi> l"] *[of "\<pi> l'"] | |
| 447 | unfolding Cart_lambda_beta \<pi>l using `l \<le> l'` by auto | |
| 448 | next assume as:"k = ?p1 l" "k' = ?p2 l'" | |
| 449 | note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format] | |
| 450 | show False using *[of "\<pi> l"] *[of "\<pi> l'"] | |
| 451 | unfolding Cart_lambda_beta \<pi>l using `l \<le> l'` using abcd[of "\<pi> l'"] by smt | |
| 452 | next assume as:"k = ?p2 l" "k' = ?p1 l'" | |
| 453 | note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format] | |
| 454 | show False using *[of "\<pi> l"] *[of "\<pi> l'"] | |
| 455 | unfolding Cart_lambda_beta \<pi>l using `l \<le> l'` using abcd[of "\<pi> l'"] by smt | |
| 456 | qed qed } | |
| 457 | from this[OF k l k' l'] this[OF k'(1) l' k _ l] have "\<And>x. x \<notin> interior k \<inter> interior k'" | |
| 458 | apply - apply(cases "l' \<le> l") using k'(2) by auto | |
| 459 |     thus "interior k \<inter> interior k' = {}" by auto        
 | |
| 460 | qed qed | |
| 461 | ||
| 462 | lemma partial_division_extend_interval: assumes "p division_of (\<Union>p)" "(\<Union>p) \<subseteq> {a..b}"
 | |
| 463 |   obtains q where "p \<subseteq> q" "q division_of {a..b::real^'n}" proof(cases "p = {}")
 | |
| 464 | case True guess q apply(rule elementary_interval[of a b]) . | |
| 465 | thus ?thesis apply- apply(rule that[of q]) unfolding True by auto next | |
| 466 | case False note p = division_ofD[OF assms(1)] | |
| 467 |   have *:"\<forall>k\<in>p. \<exists>q. q division_of {a..b} \<and> k\<in>q" proof case goal1
 | |
| 468 | guess c using p(4)[OF goal1] .. then guess d .. note cd_ = this | |
| 469 |     have *:"{c..d} \<subseteq> {a..b}" "{c..d} \<noteq> {}" using p(2,3)[OF goal1, unfolded cd_] using assms(2) by auto
 | |
| 470 | guess q apply(rule partial_division_extend_1[OF *]) . thus ?case unfolding cd_ by auto qed | |
| 471 | guess q using bchoice[OF *] .. note q = conjunctD2[OF this[rule_format]] | |
| 472 |   have "\<And>x. x\<in>p \<Longrightarrow> \<exists>d. d division_of \<Union>(q x - {x})" apply(rule,rule_tac p="q x" in division_of_subset) proof-
 | |
| 473 | fix x assume x:"x\<in>p" show "q x division_of \<Union>q x" apply-apply(rule division_ofI) | |
| 474 |       using division_ofD[OF q(1)[OF x]] by auto show "q x - {x} \<subseteq> q x" by auto qed
 | |
| 475 |   hence "\<exists>d. d division_of \<Inter> ((\<lambda>i. \<Union>(q i - {i})) ` p)" apply- apply(rule elementary_inters)
 | |
| 476 | apply(rule finite_imageI[OF p(1)]) unfolding image_is_empty apply(rule False) by auto | |
| 477 | then guess d .. note d = this | |
| 478 | show ?thesis apply(rule that[of "d \<union> p"]) proof- | |
| 479 |     have *:"\<And>s f t. s \<noteq> {} \<Longrightarrow> (\<forall>i\<in>s. f i \<union> i = t) \<Longrightarrow> t = \<Inter> (f ` s) \<union> (\<Union>s)" by auto
 | |
| 480 |     have *:"{a..b} = \<Inter> (\<lambda>i. \<Union>(q i - {i})) ` p \<union> \<Union>p" apply(rule *[OF False]) proof fix i assume i:"i\<in>p"
 | |
| 481 |       show "\<Union>(q i - {i}) \<union> i = {a..b}" using division_ofD(6)[OF q(1)[OF i]] using q(2)[OF i] by auto qed
 | |
| 482 |     show "d \<union> p division_of {a..b}" unfolding * apply(rule division_disjoint_union[OF d assms(1)])
 | |
| 483 | apply(rule inter_interior_unions_intervals) apply(rule p open_interior ballI)+ proof(assumption,rule) | |
| 484 |       fix k assume k:"k\<in>p" have *:"\<And>u t s. u \<subseteq> s \<Longrightarrow> s \<inter> t = {} \<Longrightarrow> u \<inter> t = {}" by auto
 | |
| 485 |       show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<inter> interior k = {}" apply(rule *[of _ "interior (\<Union>(q k - {k}))"])
 | |
| 486 | defer apply(subst Int_commute) apply(rule inter_interior_unions_intervals) proof- note qk=division_ofD[OF q(1)[OF k]] | |
| 487 | 	show "finite (q k - {k})" "open (interior k)"  "\<forall>t\<in>q k - {k}. \<exists>a b. t = {a..b}" using qk by auto
 | |
| 488 | 	show "\<forall>t\<in>q k - {k}. interior k \<inter> interior t = {}" using qk(5) using q(2)[OF k] by auto
 | |
| 489 | 	have *:"\<And>x s. x \<in> s \<Longrightarrow> \<Inter>s \<subseteq> x" by auto show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<subseteq> interior (\<Union>(q k - {k}))"
 | |
| 490 | apply(rule subset_interior *)+ using k by auto qed qed qed auto qed | |
| 491 | ||
| 492 | lemma elementary_bounded[dest]: "p division_of s \<Longrightarrow> bounded (s::(real^'n) set)" | |
| 493 | unfolding division_of_def by(metis bounded_Union bounded_interval) | |
| 494 | ||
| 495 | lemma elementary_subset_interval: "p division_of s \<Longrightarrow> \<exists>a b. s \<subseteq> {a..b::real^'n}"
 | |
| 496 | by(meson elementary_bounded bounded_subset_closed_interval) | |
| 497 | ||
| 498 | lemma division_union_intervals_exists: assumes "{a..b::real^'n} \<noteq> {}"
 | |
| 499 |   obtains p where "(insert {a..b} p) division_of ({a..b} \<union> {c..d})" proof(cases "{c..d} = {}")
 | |
| 500 |   case True show ?thesis apply(rule that[of "{}"]) unfolding True using assms by auto next
 | |
| 501 |   case False note false=this show ?thesis proof(cases "{a..b} \<inter> {c..d} = {}")
 | |
| 502 |   have *:"\<And>a b. {a,b} = {a} \<union> {b}" by auto
 | |
| 503 |   case True show ?thesis apply(rule that[of "{{c..d}}"]) unfolding * apply(rule division_disjoint_union)
 | |
| 504 | using false True assms using interior_subset by auto next | |
| 505 |   case False obtain u v where uv:"{a..b} \<inter> {c..d} = {u..v}" unfolding inter_interval by auto
 | |
| 506 |   have *:"{u..v} \<subseteq> {c..d}" using uv by auto
 | |
| 507 | guess p apply(rule partial_division_extend_1[OF * False[unfolded uv]]) . note p=this division_ofD[OF this(1)] | |
| 508 |   have *:"{a..b} \<union> {c..d} = {a..b} \<union> \<Union>(p - {{u..v}})" "\<And>x s. insert x s = {x} \<union> s" using p(8) unfolding uv[THEN sym] by auto
 | |
| 509 |   show thesis apply(rule that[of "p - {{u..v}}"]) unfolding *(1) apply(subst *(2)) apply(rule division_disjoint_union)
 | |
| 510 | apply(rule,rule assms) apply(rule division_of_subset[of p]) apply(rule division_of_union_self[OF p(1)]) defer | |
| 511 | unfolding interior_inter[THEN sym] proof- | |
| 512 | have *:"\<And>cd p uv ab. p \<subseteq> cd \<Longrightarrow> ab \<inter> cd = uv \<Longrightarrow> ab \<inter> p = uv \<inter> p" by auto | |
| 513 |     have "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = interior({u..v} \<inter> \<Union>(p - {{u..v}}))" 
 | |
| 514 | apply(rule arg_cong[of _ _ interior]) apply(rule *[OF _ uv]) using p(8) by auto | |
| 515 |     also have "\<dots> = {}" unfolding interior_inter apply(rule inter_interior_unions_intervals) using p(6) p(7)[OF p(2)] p(3) by auto
 | |
| 516 |     finally show "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = {}" by assumption qed auto qed qed
 | |
| 517 | ||
| 518 | lemma division_of_unions: assumes "finite f" "\<And>p. p\<in>f \<Longrightarrow> p division_of (\<Union>p)" | |
| 519 |   "\<And>k1 k2. \<lbrakk>k1 \<in> \<Union>f; k2 \<in> \<Union>f; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior k1 \<inter> interior k2 = {}"
 | |
| 520 | shows "\<Union>f division_of \<Union>\<Union>f" apply(rule division_ofI) prefer 5 apply(rule assms(3)|assumption)+ | |
| 521 | apply(rule finite_Union assms(1))+ prefer 3 apply(erule UnionE) apply(rule_tac s=X in division_ofD(3)[OF assms(2)]) | |
| 522 | using division_ofD[OF assms(2)] by auto | |
| 523 | ||
| 524 | lemma elementary_union_interval: assumes "p division_of \<Union>p" | |
| 525 |   obtains q where "q division_of ({a..b::real^'n} \<union> \<Union>p)" proof-
 | |
| 526 | note assm=division_ofD[OF assms] | |
| 527 | have lem1:"\<And>f s. \<Union>\<Union> (f ` s) = \<Union>(\<lambda>x.\<Union>(f x)) ` s" by auto | |
| 528 |   have lem2:"\<And>f s. f \<noteq> {} \<Longrightarrow> \<Union>{s \<union> t |t. t \<in> f} = s \<union> \<Union>f" by auto
 | |
| 529 | { presume "p={} \<Longrightarrow> thesis" "{a..b} = {} \<Longrightarrow> thesis" "{a..b} \<noteq> {} \<Longrightarrow> interior {a..b} = {} \<Longrightarrow> thesis"
 | |
| 530 |     "p\<noteq>{} \<Longrightarrow> interior {a..b}\<noteq>{} \<Longrightarrow> {a..b} \<noteq> {} \<Longrightarrow> thesis"
 | |
| 531 | thus thesis by auto | |
| 532 | next assume as:"p={}" guess p apply(rule elementary_interval[of a b]) .
 | |
| 533 | thus thesis apply(rule_tac that[of p]) unfolding as by auto | |
| 534 | next assume as:"{a..b}={}" show thesis apply(rule that) unfolding as using assms by auto
 | |
| 535 | next assume as:"interior {a..b} = {}" "{a..b} \<noteq> {}"
 | |
| 536 |   show thesis apply(rule that[of "insert {a..b} p"],rule division_ofI)
 | |
| 537 | unfolding finite_insert apply(rule assm(1)) unfolding Union_insert | |
| 538 | using assm(2-4) as apply- by(fastsimp dest: assm(5))+ | |
| 539 | next assume as:"p \<noteq> {}" "interior {a..b} \<noteq> {}" "{a..b}\<noteq>{}"
 | |
| 540 |   have "\<forall>k\<in>p. \<exists>q. (insert {a..b} q) division_of ({a..b} \<union> k)" proof case goal1
 | |
| 541 | from assm(4)[OF this] guess c .. then guess d .. | |
| 542 | thus ?case apply-apply(rule division_union_intervals_exists[OF as(3),of c d]) by auto | |
| 543 | qed from bchoice[OF this] guess q .. note q=division_ofD[OF this[rule_format]] | |
| 544 |   let ?D = "\<Union>{insert {a..b} (q k) | k. k \<in> p}"
 | |
| 545 | show thesis apply(rule that[of "?D"]) proof(rule division_ofI) | |
| 546 |     have *:"{insert {a..b} (q k) |k. k \<in> p} = (\<lambda>k. insert {a..b} (q k)) ` p" by auto
 | |
| 547 | show "finite ?D" apply(rule finite_Union) unfolding * apply(rule finite_imageI) using assm(1) q(1) by auto | |
| 548 |     show "\<Union>?D = {a..b} \<union> \<Union>p" unfolding * lem1 unfolding lem2[OF as(1), of "{a..b}",THEN sym]
 | |
| 549 | using q(6) by auto | |
| 550 |     fix k assume k:"k\<in>?D" thus " k \<subseteq> {a..b} \<union> \<Union>p" using q(2) by auto
 | |
| 551 |     show "k \<noteq> {}" using q(3) k by auto show "\<exists>a b. k = {a..b}" using q(4) k by auto
 | |
| 552 | fix k' assume k':"k'\<in>?D" "k\<noteq>k'" | |
| 553 |     obtain x  where x: "k \<in>insert {a..b} (q x)"  "x\<in>p"  using k  by auto
 | |
| 554 |     obtain x' where x':"k'\<in>insert {a..b} (q x')" "x'\<in>p" using k' by auto
 | |
| 555 |     show "interior k \<inter> interior k' = {}" proof(cases "x=x'")
 | |
| 556 | case True show ?thesis apply(rule q(5)) using x x' k' unfolding True by auto | |
| 557 | next case False | |
| 558 |       { presume "k = {a..b} \<Longrightarrow> ?thesis" "k' = {a..b} \<Longrightarrow> ?thesis" 
 | |
| 559 |         "k \<noteq> {a..b} \<Longrightarrow> k' \<noteq> {a..b} \<Longrightarrow> ?thesis"
 | |
| 560 | thus ?thesis by auto } | |
| 561 |       { assume as':"k  = {a..b}" show ?thesis apply(rule q(5)) using x' k'(2) unfolding as' by auto }
 | |
| 562 |       { assume as':"k' = {a..b}" show ?thesis apply(rule q(5)) using x  k'(2) unfolding as' by auto }
 | |
| 563 |       assume as':"k \<noteq> {a..b}" "k' \<noteq> {a..b}"
 | |
| 564 | guess c using q(4)[OF x(2,1)] .. then guess d .. note c_d=this | |
| 565 |       have "interior k  \<inter> interior {a..b} = {}" apply(rule q(5)) using x  k'(2) using as' by auto
 | |
| 566 | hence "interior k \<subseteq> interior x" apply- | |
| 567 | apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x(2,1)]]) by auto moreover | |
| 568 | guess c using q(4)[OF x'(2,1)] .. then guess d .. note c_d=this | |
| 569 |       have "interior k' \<inter> interior {a..b} = {}" apply(rule q(5)) using x' k'(2) using as' by auto
 | |
| 570 | hence "interior k' \<subseteq> interior x'" apply- | |
| 571 | apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x'(2,1)]]) by auto | |
| 572 | ultimately show ?thesis using assm(5)[OF x(2) x'(2) False] by auto | |
| 573 | qed qed } qed | |
| 574 | ||
| 575 | lemma elementary_unions_intervals: | |
| 576 |   assumes "finite f" "\<And>s. s \<in> f \<Longrightarrow> \<exists>a b. s = {a..b::real^'n}"
 | |
| 577 | obtains p where "p division_of (\<Union>f)" proof- | |
| 578 | have "\<exists>p. p division_of (\<Union>f)" proof(induct_tac f rule:finite_subset_induct) | |
| 579 |     show "\<exists>p. p division_of \<Union>{}" using elementary_empty by auto
 | |
| 580 | fix x F assume as:"finite F" "x \<notin> F" "\<exists>p. p division_of \<Union>F" "x\<in>f" | |
| 581 | from this(3) guess p .. note p=this | |
| 582 | from assms(2)[OF as(4)] guess a .. then guess b .. note ab=this | |
| 583 | have *:"\<Union>F = \<Union>p" using division_ofD[OF p] by auto | |
| 584 | show "\<exists>p. p division_of \<Union>insert x F" using elementary_union_interval[OF p[unfolded *], of a b] | |
| 585 | unfolding Union_insert ab * by auto | |
| 586 | qed(insert assms,auto) thus ?thesis apply-apply(erule exE,rule that) by auto qed | |
| 587 | ||
| 588 | lemma elementary_union: assumes "ps division_of s" "pt division_of (t::(real^'n) set)" | |
| 589 | obtains p where "p division_of (s \<union> t)" | |
| 590 | proof- have "s \<union> t = \<Union>ps \<union> \<Union>pt" using assms unfolding division_of_def by auto | |
| 591 | hence *:"\<Union>(ps \<union> pt) = s \<union> t" by auto | |
| 592 | show ?thesis apply-apply(rule elementary_unions_intervals[of "ps\<union>pt"]) | |
| 593 | unfolding * prefer 3 apply(rule_tac p=p in that) | |
| 594 | using assms[unfolded division_of_def] by auto qed | |
| 595 | ||
| 596 | lemma partial_division_extend: fixes t::"(real^'n) set" | |
| 597 | assumes "p division_of s" "q division_of t" "s \<subseteq> t" | |
| 598 | obtains r where "p \<subseteq> r" "r division_of t" proof- | |
| 599 | note divp = division_ofD[OF assms(1)] and divq = division_ofD[OF assms(2)] | |
| 600 |   obtain a b where ab:"t\<subseteq>{a..b}" using elementary_subset_interval[OF assms(2)] by auto
 | |
| 601 | guess r1 apply(rule partial_division_extend_interval) apply(rule assms(1)[unfolded divp(6)[THEN sym]]) | |
| 602 | apply(rule subset_trans) by(rule ab assms[unfolded divp(6)[THEN sym]])+ note r1 = this division_ofD[OF this(2)] | |
| 603 | guess p' apply(rule elementary_unions_intervals[of "r1 - p"]) using r1(3,6) by auto | |
| 604 | then obtain r2 where r2:"r2 division_of (\<Union>(r1 - p)) \<inter> (\<Union>q)" | |
| 605 | apply- apply(drule elementary_inter[OF _ assms(2)[unfolded divq(6)[THEN sym]]]) by auto | |
| 606 |   { fix x assume x:"x\<in>t" "x\<notin>s"
 | |
| 607 | hence "x\<in>\<Union>r1" unfolding r1 using ab by auto | |
| 608 | then guess r unfolding Union_iff .. note r=this moreover | |
| 609 | have "r \<notin> p" proof assume "r\<in>p" hence "x\<in>s" using divp(2) r by auto | |
| 610 | thus False using x by auto qed | |
| 611 | ultimately have "x\<in>\<Union>(r1 - p)" by auto } | |
| 612 | hence *:"t = \<Union>p \<union> (\<Union>(r1 - p) \<inter> \<Union>q)" unfolding divp divq using assms(3) by auto | |
| 613 | show ?thesis apply(rule that[of "p \<union> r2"]) unfolding * defer apply(rule division_disjoint_union) | |
| 614 | unfolding divp(6) apply(rule assms r2)+ | |
| 615 |   proof- have "interior s \<inter> interior (\<Union>(r1-p)) = {}"
 | |
| 616 | proof(rule inter_interior_unions_intervals) | |
| 617 |       show "finite (r1 - p)" "open (interior s)" "\<forall>t\<in>r1-p. \<exists>a b. t = {a..b}" using r1 by auto
 | |
| 618 |       have *:"\<And>s. (\<And>x. x \<in> s \<Longrightarrow> False) \<Longrightarrow> s = {}" by auto
 | |
| 619 |       show "\<forall>t\<in>r1-p. interior s \<inter> interior t = {}" proof(rule)
 | |
| 620 | fix m x assume as:"m\<in>r1-p" | |
| 621 |         have "interior m \<inter> interior (\<Union>p) = {}" proof(rule inter_interior_unions_intervals)
 | |
| 622 |           show "finite p" "open (interior m)" "\<forall>t\<in>p. \<exists>a b. t = {a..b}" using divp by auto
 | |
| 623 |           show "\<forall>t\<in>p. interior m \<inter> interior t = {}" apply(rule, rule r1(7)) using as using r1 by auto
 | |
| 624 |         qed thus "interior s \<inter> interior m = {}" unfolding divp by auto
 | |
| 625 | qed qed | |
| 626 |     thus "interior s \<inter> interior (\<Union>(r1-p) \<inter> (\<Union>q)) = {}" using interior_subset by auto
 | |
| 627 | qed auto qed | |
| 628 | ||
| 629 | subsection {* Tagged (partial) divisions. *}
 | |
| 630 | ||
| 631 | definition tagged_partial_division_of (infixr "tagged'_partial'_division'_of" 40) where | |
| 632 | "(s tagged_partial_division_of i) \<equiv> | |
| 633 | finite s \<and> | |
| 634 |         (\<forall>x k. (x,k) \<in> s \<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
 | |
| 635 | (\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ((x1,k1) \<noteq> (x2,k2)) | |
| 636 |                        \<longrightarrow> (interior(k1) \<inter> interior(k2) = {}))"
 | |
| 637 | ||
| 638 | lemma tagged_partial_division_ofD[dest]: assumes "s tagged_partial_division_of i" | |
| 639 | shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i" | |
| 640 |   "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
 | |
| 641 |   "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> (x1,k1) \<noteq> (x2,k2) \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}"
 | |
| 642 | using assms unfolding tagged_partial_division_of_def apply- by blast+ | |
| 643 | ||
| 644 | definition tagged_division_of (infixr "tagged'_division'_of" 40) where | |
| 645 | "(s tagged_division_of i) \<equiv> | |
| 646 |         (s tagged_partial_division_of i) \<and> (\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
 | |
| 647 | ||
| 648 | lemma tagged_division_of_finite[dest]: "s tagged_division_of i \<Longrightarrow> finite s" | |
| 649 | unfolding tagged_division_of_def tagged_partial_division_of_def by auto | |
| 650 | ||
| 651 | lemma tagged_division_of: | |
| 652 | "(s tagged_division_of i) \<longleftrightarrow> | |
| 653 | finite s \<and> | |
| 654 | (\<forall>x k. (x,k) \<in> s | |
| 655 |                \<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
 | |
| 656 | (\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ~((x1,k1) = (x2,k2)) | |
| 657 |                        \<longrightarrow> (interior(k1) \<inter> interior(k2) = {})) \<and>
 | |
| 658 |         (\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
 | |
| 659 | unfolding tagged_division_of_def tagged_partial_division_of_def by auto | |
| 660 | ||
| 661 | lemma tagged_division_ofI: assumes | |
| 662 |   "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
 | |
| 663 |   "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
 | |
| 664 |   "(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
 | |
| 665 | shows "s tagged_division_of i" | |
| 666 | unfolding tagged_division_of apply(rule) defer apply rule | |
| 667 | apply(rule allI impI conjI assms)+ apply assumption | |
| 668 | apply(rule, rule assms, assumption) apply(rule assms, assumption) | |
| 669 | using assms(1,5-) apply- by blast+ | |
| 670 | ||
| 671 | lemma tagged_division_ofD[dest]: assumes "s tagged_division_of i" | |
| 672 |   shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
 | |
| 673 |   "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
 | |
| 674 |   "(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)" using assms unfolding tagged_division_of apply- by blast+
 | |
| 675 | ||
| 676 | lemma division_of_tagged_division: assumes"s tagged_division_of i" shows "(snd ` s) division_of i" | |
| 677 | proof(rule division_ofI) note assm=tagged_division_ofD[OF assms] | |
| 678 | show "\<Union>snd ` s = i" "finite (snd ` s)" using assm by auto | |
| 679 | fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto | |
| 680 |   thus  "k \<subseteq> i" "k \<noteq> {}" "\<exists>a b. k = {a..b}" using assm apply- by fastsimp+
 | |
| 681 | fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto | |
| 682 |   thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
 | |
| 683 | qed | |
| 684 | ||
| 685 | lemma partial_division_of_tagged_division: assumes "s tagged_partial_division_of i" | |
| 686 | shows "(snd ` s) division_of \<Union>(snd ` s)" | |
| 687 | proof(rule division_ofI) note assm=tagged_partial_division_ofD[OF assms] | |
| 688 | show "finite (snd ` s)" "\<Union>snd ` s = \<Union>snd ` s" using assm by auto | |
| 689 | fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto | |
| 690 |   thus "k\<noteq>{}" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>snd ` s" using assm by auto
 | |
| 691 | fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto | |
| 692 |   thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
 | |
| 693 | qed | |
| 694 | ||
| 695 | lemma tagged_partial_division_subset: assumes "s tagged_partial_division_of i" "t \<subseteq> s" | |
| 696 | shows "t tagged_partial_division_of i" | |
| 697 | using assms unfolding tagged_partial_division_of_def using finite_subset[OF assms(2)] by blast | |
| 698 | ||
| 699 | lemma setsum_over_tagged_division_lemma: fixes d::"(real^'m) set \<Rightarrow> 'a::real_normed_vector" | |
| 700 |   assumes "p tagged_division_of i" "\<And>u v. {u..v} \<noteq> {} \<Longrightarrow> content {u..v} = 0 \<Longrightarrow> d {u..v} = 0"
 | |
| 701 | shows "setsum (\<lambda>(x,k). d k) p = setsum d (snd ` p)" | |
| 702 | proof- note assm=tagged_division_ofD[OF assms(1)] | |
| 703 | have *:"(\<lambda>(x,k). d k) = d \<circ> snd" unfolding o_def apply(rule ext) by auto | |
| 704 | show ?thesis unfolding * apply(subst eq_commute) proof(rule setsum_reindex_nonzero) | |
| 705 | show "finite p" using assm by auto | |
| 706 | fix x y assume as:"x\<in>p" "y\<in>p" "x\<noteq>y" "snd x = snd y" | |
| 707 |     obtain a b where ab:"snd x = {a..b}" using assm(4)[of "fst x" "snd x"] as(1) by auto
 | |
| 708 | have "(fst x, snd y) \<in> p" "(fst x, snd y) \<noteq> y" unfolding as(4)[THEN sym] using as(1-3) by auto | |
| 709 |     hence "interior (snd x) \<inter> interior (snd y) = {}" apply-apply(rule assm(5)[of "fst x" _ "fst y"]) using as by auto 
 | |
| 710 |     hence "content {a..b} = 0" unfolding as(4)[THEN sym] ab content_eq_0_interior by auto
 | |
| 711 |     hence "d {a..b} = 0" apply-apply(rule assms(2)) using assm(2)[of "fst x" "snd x"] as(1) unfolding ab[THEN sym] by auto
 | |
| 712 | thus "d (snd x) = 0" unfolding ab by auto qed qed | |
| 713 | ||
| 714 | lemma tag_in_interval: "p tagged_division_of i \<Longrightarrow> (x,k) \<in> p \<Longrightarrow> x \<in> i" by auto | |
| 715 | ||
| 716 | lemma tagged_division_of_empty: "{} tagged_division_of {}"
 | |
| 717 | unfolding tagged_division_of by auto | |
| 718 | ||
| 719 | lemma tagged_partial_division_of_trivial[simp]: | |
| 720 |  "p tagged_partial_division_of {} \<longleftrightarrow> p = {}"
 | |
| 721 | unfolding tagged_partial_division_of_def by auto | |
| 722 | ||
| 723 | lemma tagged_division_of_trivial[simp]: | |
| 724 |  "p tagged_division_of {} \<longleftrightarrow> p = {}"
 | |
| 725 | unfolding tagged_division_of by auto | |
| 726 | ||
| 727 | lemma tagged_division_of_self: | |
| 728 |  "x \<in> {a..b} \<Longrightarrow> {(x,{a..b})} tagged_division_of {a..b}"
 | |
| 729 | apply(rule tagged_division_ofI) by auto | |
| 730 | ||
| 731 | lemma tagged_division_union: | |
| 732 |   assumes "p1 tagged_division_of s1"  "p2 tagged_division_of s2" "interior s1 \<inter> interior s2 = {}"
 | |
| 733 | shows "(p1 \<union> p2) tagged_division_of (s1 \<union> s2)" | |
| 734 | proof(rule tagged_division_ofI) note p1=tagged_division_ofD[OF assms(1)] and p2=tagged_division_ofD[OF assms(2)] | |
| 735 | show "finite (p1 \<union> p2)" using p1(1) p2(1) by auto | |
| 736 |   show "\<Union>{k. \<exists>x. (x, k) \<in> p1 \<union> p2} = s1 \<union> s2" using p1(6) p2(6) by blast
 | |
| 737 |   fix x k assume xk:"(x,k)\<in>p1\<union>p2" show "x\<in>k" "\<exists>a b. k = {a..b}" using xk p1(2,4) p2(2,4) by auto
 | |
| 738 | show "k\<subseteq>s1\<union>s2" using xk p1(3) p2(3) by blast | |
| 739 | fix x' k' assume xk':"(x',k')\<in>p1\<union>p2" "(x,k) \<noteq> (x',k')" | |
| 740 |   have *:"\<And>a b. a\<subseteq> s1 \<Longrightarrow> b\<subseteq> s2 \<Longrightarrow> interior a \<inter> interior b = {}" using assms(3) subset_interior by blast
 | |
| 741 |   show "interior k \<inter> interior k' = {}" apply(cases "(x,k)\<in>p1", case_tac[!] "(x',k')\<in>p1")
 | |
| 742 | apply(rule p1(5)) prefer 4 apply(rule *) prefer 6 apply(subst Int_commute,rule *) prefer 8 apply(rule p2(5)) | |
| 743 | using p1(3) p2(3) using xk xk' by auto qed | |
| 744 | ||
| 745 | lemma tagged_division_unions: | |
| 746 | assumes "finite iset" "\<forall>i\<in>iset. (pfn(i) tagged_division_of i)" | |
| 747 |   "\<forall>i1 \<in> iset. \<forall>i2 \<in> iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})"
 | |
| 748 | shows "\<Union>(pfn ` iset) tagged_division_of (\<Union>iset)" | |
| 749 | proof(rule tagged_division_ofI) | |
| 750 | note assm = tagged_division_ofD[OF assms(2)[rule_format]] | |
| 751 | show "finite (\<Union>pfn ` iset)" apply(rule finite_Union) using assms by auto | |
| 752 |   have "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>(\<lambda>i. \<Union>{k. \<exists>x. (x, k) \<in> pfn i}) ` iset" by blast 
 | |
| 753 | also have "\<dots> = \<Union>iset" using assm(6) by auto | |
| 754 |   finally show "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>iset" . 
 | |
| 755 | fix x k assume xk:"(x,k)\<in>\<Union>pfn ` iset" then obtain i where i:"i \<in> iset" "(x, k) \<in> pfn i" by auto | |
| 756 |   show "x\<in>k" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>iset" using assm(2-4)[OF i] using i(1) by auto
 | |
| 757 | fix x' k' assume xk':"(x',k')\<in>\<Union>pfn ` iset" "(x, k) \<noteq> (x', k')" then obtain i' where i':"i' \<in> iset" "(x', k') \<in> pfn i'" by auto | |
| 758 |   have *:"\<And>a b. i\<noteq>i' \<Longrightarrow> a\<subseteq> i \<Longrightarrow> b\<subseteq> i' \<Longrightarrow> interior a \<inter> interior b = {}" using i(1) i'(1)
 | |
| 759 | using assms(3)[rule_format] subset_interior by blast | |
| 760 |   show "interior k \<inter> interior k' = {}" apply(cases "i=i'")
 | |
| 761 | using assm(5)[OF i _ xk'(2)] i'(2) using assm(3)[OF i] assm(3)[OF i'] defer apply-apply(rule *) by auto | |
| 762 | qed | |
| 763 | ||
| 764 | lemma tagged_partial_division_of_union_self: | |
| 765 | assumes "p tagged_partial_division_of s" shows "p tagged_division_of (\<Union>(snd ` p))" | |
| 766 | apply(rule tagged_division_ofI) using tagged_partial_division_ofD[OF assms] by auto | |
| 767 | ||
| 768 | lemma tagged_division_of_union_self: assumes "p tagged_division_of s" | |
| 769 | shows "p tagged_division_of (\<Union>(snd ` p))" | |
| 770 | apply(rule tagged_division_ofI) using tagged_division_ofD[OF assms] by auto | |
| 771 | ||
| 772 | subsection {* Fine-ness of a partition w.r.t. a gauge. *}
 | |
| 773 | ||
| 774 | definition fine (infixr "fine" 46) where | |
| 775 | "d fine s \<longleftrightarrow> (\<forall>(x,k) \<in> s. k \<subseteq> d(x))" | |
| 776 | ||
| 777 | lemma fineI: assumes "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x" | |
| 778 | shows "d fine s" using assms unfolding fine_def by auto | |
| 779 | ||
| 780 | lemma fineD[dest]: assumes "d fine s" | |
| 781 | shows "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x" using assms unfolding fine_def by auto | |
| 782 | ||
| 783 | lemma fine_inter: "(\<lambda>x. d1 x \<inter> d2 x) fine p \<longleftrightarrow> d1 fine p \<and> d2 fine p" | |
| 784 | unfolding fine_def by auto | |
| 785 | ||
| 786 | lemma fine_inters: | |
| 787 |  "(\<lambda>x. \<Inter> {f d x | d.  d \<in> s}) fine p \<longleftrightarrow> (\<forall>d\<in>s. (f d) fine p)"
 | |
| 788 | unfolding fine_def by blast | |
| 789 | ||
| 790 | lemma fine_union: | |
| 791 | "d fine p1 \<Longrightarrow> d fine p2 \<Longrightarrow> d fine (p1 \<union> p2)" | |
| 792 | unfolding fine_def by blast | |
| 793 | ||
| 794 | lemma fine_unions:"(\<And>p. p \<in> ps \<Longrightarrow> d fine p) \<Longrightarrow> d fine (\<Union>ps)" | |
| 795 | unfolding fine_def by auto | |
| 796 | ||
| 797 | lemma fine_subset: "p \<subseteq> q \<Longrightarrow> d fine q \<Longrightarrow> d fine p" | |
| 798 | unfolding fine_def by blast | |
| 799 | ||
| 800 | subsection {* Gauge integral. Define on compact intervals first, then use a limit. *}
 | |
| 801 | ||
| 802 | definition has_integral_compact_interval (infixr "has'_integral'_compact'_interval" 46) where | |
| 803 | "(f has_integral_compact_interval y) i \<equiv> | |
| 804 | (\<forall>e>0. \<exists>d. gauge d \<and> | |
| 805 | (\<forall>p. p tagged_division_of i \<and> d fine p | |
| 806 | \<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - y) < e))" | |
| 807 | ||
| 808 | definition has_integral (infixr "has'_integral" 46) where | |
| 809 | "((f::(real^'n \<Rightarrow> 'b::real_normed_vector)) has_integral y) i \<equiv> | |
| 810 |         if (\<exists>a b. i = {a..b}) then (f has_integral_compact_interval y) i
 | |
| 811 |         else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
 | |
| 812 |               \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f x else 0) has_integral_compact_interval z) {a..b} \<and>
 | |
| 813 | norm(z - y) < e))" | |
| 814 | ||
| 815 | lemma has_integral: | |
| 816 |  "(f has_integral y) ({a..b}) \<longleftrightarrow>
 | |
| 817 |         (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p
 | |
| 818 | \<longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f x) p - y) < e))" | |
| 819 | unfolding has_integral_def has_integral_compact_interval_def by auto | |
| 820 | ||
| 821 | lemma has_integralD[dest]: assumes | |
| 822 |  "(f has_integral y) ({a..b})" "e>0"
 | |
| 823 |   obtains d where "gauge d" "\<And>p. p tagged_division_of {a..b} \<Longrightarrow> d fine p
 | |
| 824 | \<Longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f(x)) p - y) < e" | |
| 825 | using assms unfolding has_integral by auto | |
| 826 | ||
| 827 | lemma has_integral_alt: | |
| 828 | "(f has_integral y) i \<longleftrightarrow> | |
| 829 |       (if (\<exists>a b. i = {a..b}) then (f has_integral y) i
 | |
| 830 |        else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
 | |
| 831 | \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0) | |
| 832 |                                         has_integral z) ({a..b}) \<and>
 | |
| 833 | norm(z - y) < e)))" | |
| 834 | unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto | |
| 835 | ||
| 836 | lemma has_integral_altD: | |
| 837 |   assumes "(f has_integral y) i" "\<not> (\<exists>a b. i = {a..b})" "e>0"
 | |
| 838 |   obtains B where "B>0" "\<forall>a b. ball 0 B \<subseteq> {a..b}\<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0) has_integral z) ({a..b}) \<and> norm(z - y) < e)"
 | |
| 839 | using assms unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto | |
| 840 | ||
| 841 | definition integrable_on (infixr "integrable'_on" 46) where | |
| 842 | "(f integrable_on i) \<equiv> \<exists>y. (f has_integral y) i" | |
| 843 | ||
| 844 | definition "integral i f \<equiv> SOME y. (f has_integral y) i" | |
| 845 | ||
| 846 | lemma integrable_integral[dest]: | |
| 847 | "f integrable_on i \<Longrightarrow> (f has_integral (integral i f)) i" | |
| 848 | unfolding integrable_on_def integral_def by(rule someI_ex) | |
| 849 | ||
| 850 | lemma has_integral_integrable[intro]: "(f has_integral i) s \<Longrightarrow> f integrable_on s" | |
| 851 | unfolding integrable_on_def by auto | |
| 852 | ||
| 853 | lemma has_integral_integral:"f integrable_on s \<longleftrightarrow> (f has_integral (integral s f)) s" | |
| 854 | by auto | |
| 855 | ||
| 35291 
ead7bfc30b26
Support for one-dimensional integration in Multivariate-Analysis
 himmelma parents: 
35173diff
changeset | 856 | lemma has_integral_vec1: assumes "(f has_integral k) {a..b}"
 | 
| 
ead7bfc30b26
Support for one-dimensional integration in Multivariate-Analysis
 himmelma parents: 
35173diff
changeset | 857 |   shows "((\<lambda>x. vec1 (f x)) has_integral (vec1 k)) {a..b}"
 | 
| 
ead7bfc30b26
Support for one-dimensional integration in Multivariate-Analysis
 himmelma parents: 
35173diff
changeset | 858 | proof- have *:"\<And>p. (\<Sum>(x, k)\<in>p. content k *\<^sub>R vec1 (f x)) - vec1 k = vec1 ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - k)" | 
| 
ead7bfc30b26
Support for one-dimensional integration in Multivariate-Analysis
 himmelma parents: 
35173diff
changeset | 859 | unfolding vec_sub Cart_eq by(auto simp add:vec1_dest_vec1_simps split_beta) | 
| 
ead7bfc30b26
Support for one-dimensional integration in Multivariate-Analysis
 himmelma parents: 
35173diff
changeset | 860 | show ?thesis using assms unfolding has_integral apply safe | 
| 
ead7bfc30b26
Support for one-dimensional integration in Multivariate-Analysis
 himmelma parents: 
35173diff
changeset | 861 | apply(erule_tac x=e in allE,safe) apply(rule_tac x=d in exI,safe) | 
| 
ead7bfc30b26
Support for one-dimensional integration in Multivariate-Analysis
 himmelma parents: 
35173diff
changeset | 862 | apply(erule_tac x=p in allE,safe) unfolding * norm_vector_1 by auto qed | 
| 
ead7bfc30b26
Support for one-dimensional integration in Multivariate-Analysis
 himmelma parents: 
35173diff
changeset | 863 | |
| 35172 | 864 | lemma setsum_content_null: | 
| 865 |   assumes "content({a..b}) = 0" "p tagged_division_of {a..b}"
 | |
| 866 | shows "setsum (\<lambda>(x,k). content k *\<^sub>R f x) p = (0::'a::real_normed_vector)" | |
| 867 | proof(rule setsum_0',rule) fix y assume y:"y\<in>p" | |
| 868 | obtain x k where xk:"y = (x,k)" using surj_pair[of y] by blast | |
| 869 | note assm = tagged_division_ofD(3-4)[OF assms(2) y[unfolded xk]] | |
| 870 | from this(2) guess c .. then guess d .. note c_d=this | |
| 871 | have "(\<lambda>(x, k). content k *\<^sub>R f x) y = content k *\<^sub>R f x" unfolding xk by auto | |
| 872 | also have "\<dots> = 0" using content_subset[OF assm(1)[unfolded c_d]] content_pos_le[of c d] | |
| 873 | unfolding assms(1) c_d by auto | |
| 874 | finally show "(\<lambda>(x, k). content k *\<^sub>R f x) y = 0" . | |
| 875 | qed | |
| 876 | ||
| 877 | subsection {* Some basic combining lemmas. *}
 | |
| 878 | ||
| 879 | lemma tagged_division_unions_exists: | |
| 880 | assumes "finite iset" "\<forall>i \<in> iset. \<exists>p. p tagged_division_of i \<and> d fine p" | |
| 881 |   "\<forall>i1\<in>iset. \<forall>i2\<in>iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})" "(\<Union>iset = i)"
 | |
| 882 | obtains p where "p tagged_division_of i" "d fine p" | |
| 883 | proof- guess pfn using bchoice[OF assms(2)] .. note pfn = conjunctD2[OF this[rule_format]] | |
| 884 | show thesis apply(rule_tac p="\<Union>(pfn ` iset)" in that) unfolding assms(4)[THEN sym] | |
| 885 | apply(rule tagged_division_unions[OF assms(1) _ assms(3)]) defer | |
| 886 | apply(rule fine_unions) using pfn by auto | |
| 887 | qed | |
| 888 | ||
| 889 | subsection {* The set we're concerned with must be closed. *}
 | |
| 890 | ||
| 891 | lemma division_of_closed: "s division_of i \<Longrightarrow> closed (i::(real^'n) set)" | |
| 892 | unfolding division_of_def by(fastsimp intro!: closed_Union closed_interval) | |
| 893 | ||
| 894 | subsection {* General bisection principle for intervals; might be useful elsewhere. *}
 | |
| 895 | ||
| 896 | lemma interval_bisection_step: | |
| 897 |   assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "~(P {a..b::real^'n})"
 | |
| 898 |   obtains c d where "~(P{c..d})"
 | |
| 899 | "\<forall>i. a$i \<le> c$i \<and> c$i \<le> d$i \<and> d$i \<le> b$i \<and> 2 * (d$i - c$i) \<le> b$i - a$i" | |
| 900 | proof- have "{a..b} \<noteq> {}" using assms(1,3) by auto
 | |
| 901 | note ab=this[unfolded interval_eq_empty not_ex not_less] | |
| 902 |   { fix f have "finite f \<Longrightarrow>
 | |
| 903 | (\<forall>s\<in>f. P s) \<Longrightarrow> | |
| 904 |         (\<forall>s\<in>f. \<exists>a b. s = {a..b}) \<Longrightarrow>
 | |
| 905 |         (\<forall>s\<in>f.\<forall>t\<in>f. ~(s = t) \<longrightarrow> interior(s) \<inter> interior(t) = {}) \<Longrightarrow> P(\<Union>f)"
 | |
| 906 | proof(induct f rule:finite_induct) | |
| 907 | case empty show ?case using assms(1) by auto | |
| 908 | next case (insert x f) show ?case unfolding Union_insert apply(rule assms(2)[rule_format]) | |
| 909 | apply rule defer apply rule defer apply(rule inter_interior_unions_intervals) | |
| 910 | using insert by auto | |
| 911 | qed } note * = this | |
| 912 |   let ?A = "{{c..d} | c d. \<forall>i. (c$i = a$i) \<and> (d$i = (a$i + b$i) / 2) \<or> (c$i = (a$i + b$i) / 2) \<and> (d$i = b$i)}"
 | |
| 913 | let ?PP = "\<lambda>c d. \<forall>i. a$i \<le> c$i \<and> c$i \<le> d$i \<and> d$i \<le> b$i \<and> 2 * (d$i - c$i) \<le> b$i - a$i" | |
| 914 |   { presume "\<forall>c d. ?PP c d \<longrightarrow> P {c..d} \<Longrightarrow> False"
 | |
| 915 | thus thesis unfolding atomize_not not_all apply-apply(erule exE)+ apply(rule_tac c=x and d=xa in that) by auto } | |
| 916 |   assume as:"\<forall>c d. ?PP c d \<longrightarrow> P {c..d}"
 | |
| 917 | have "P (\<Union> ?A)" proof(rule *, rule_tac[2-] ballI, rule_tac[4] ballI, rule_tac[4] impI) | |
| 918 |     let ?B = "(\<lambda>s.{(\<chi> i. if i \<in> s then a$i else (a$i + b$i) / 2) ..
 | |
| 919 |       (\<chi> i. if i \<in> s then (a$i + b$i) / 2 else b$i)}) ` {s. s \<subseteq> UNIV}"
 | |
| 920 | have "?A \<subseteq> ?B" proof case goal1 | |
| 921 | then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+) note c_d=this[rule_format] | |
| 922 |       have *:"\<And>a b c d. a = c \<Longrightarrow> b = d \<Longrightarrow> {a..b} = {c..d}" by auto
 | |
| 923 |       show "x\<in>?B" unfolding image_iff apply(rule_tac x="{i. c$i = a$i}" in bexI)
 | |
| 924 | unfolding c_d apply(rule * ) unfolding Cart_eq cond_component Cart_lambda_beta | |
| 925 |       proof(rule_tac[1-2] allI) fix i show "c $ i = (if i \<in> {i. c $ i = a $ i} then a $ i else (a $ i + b $ i) / 2)"
 | |
| 926 |           "d $ i = (if i \<in> {i. c $ i = a $ i} then (a $ i + b $ i) / 2 else b $ i)"
 | |
| 927 | using c_d(2)[of i] ab[THEN spec[where x=i]] by(auto simp add:field_simps) | |
| 928 | qed auto qed | |
| 929 | thus "finite ?A" apply(rule finite_subset[of _ ?B]) by auto | |
| 930 | fix s assume "s\<in>?A" then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+) | |
| 931 | note c_d=this[rule_format] | |
| 932 | show "P s" unfolding c_d apply(rule as[rule_format]) proof- case goal1 show ?case | |
| 933 | using c_d(2)[of i] using ab[THEN spec[where x=i]] by auto qed | |
| 934 |     show "\<exists>a b. s = {a..b}" unfolding c_d by auto
 | |
| 935 | fix t assume "t\<in>?A" then guess e unfolding mem_Collect_eq .. then guess f apply- by(erule exE,(erule conjE)+) | |
| 936 | note e_f=this[rule_format] | |
| 937 | assume "s \<noteq> t" hence "\<not> (c = e \<and> d = f)" unfolding c_d e_f by auto | |
| 938 | then obtain i where "c$i \<noteq> e$i \<or> d$i \<noteq> f$i" unfolding de_Morgan_conj Cart_eq by auto | |
| 939 | hence i:"c$i \<noteq> e$i" "d$i \<noteq> f$i" apply- apply(erule_tac[!] disjE) | |
| 940 | proof- assume "c$i \<noteq> e$i" thus "d$i \<noteq> f$i" using c_d(2)[of i] e_f(2)[of i] by fastsimp | |
| 941 | next assume "d$i \<noteq> f$i" thus "c$i \<noteq> e$i" using c_d(2)[of i] e_f(2)[of i] by fastsimp | |
| 942 |     qed have *:"\<And>s t. (\<And>a. a\<in>s \<Longrightarrow> a\<in>t \<Longrightarrow> False) \<Longrightarrow> s \<inter> t = {}" by auto
 | |
| 943 |     show "interior s \<inter> interior t = {}" unfolding e_f c_d interior_closed_interval proof(rule *)
 | |
| 944 |       fix x assume "x\<in>{c<..<d}" "x\<in>{e<..<f}"
 | |
| 945 | hence x:"c$i < d$i" "e$i < f$i" "c$i < f$i" "e$i < d$i" unfolding mem_interval apply-apply(erule_tac[!] x=i in allE)+ by auto | |
| 946 | show False using c_d(2)[of i] apply- apply(erule_tac disjE) | |
| 947 | proof(erule_tac[!] conjE) assume as:"c $ i = a $ i" "d $ i = (a $ i + b $ i) / 2" | |
| 948 | show False using e_f(2)[of i] and i x unfolding as by(fastsimp simp add:field_simps) | |
| 949 | next assume as:"c $ i = (a $ i + b $ i) / 2" "d $ i = b $ i" | |
| 950 | show False using e_f(2)[of i] and i x unfolding as by(fastsimp simp add:field_simps) | |
| 951 | qed qed qed | |
| 952 |   also have "\<Union> ?A = {a..b}" proof(rule set_ext,rule)
 | |
| 953 | fix x assume "x\<in>\<Union>?A" then guess Y unfolding Union_iff .. | |
| 954 | from this(1) guess c unfolding mem_Collect_eq .. then guess d .. | |
| 955 | note c_d = this[THEN conjunct2,rule_format] `x\<in>Y`[unfolded this[THEN conjunct1]] | |
| 956 |     show "x\<in>{a..b}" unfolding mem_interval proof 
 | |
| 957 | fix i show "a $ i \<le> x $ i \<and> x $ i \<le> b $ i" | |
| 958 | using c_d(1)[of i] c_d(2)[unfolded mem_interval,THEN spec[where x=i]] by auto qed | |
| 959 |   next fix x assume x:"x\<in>{a..b}"
 | |
| 960 | have "\<forall>i. \<exists>c d. (c = a$i \<and> d = (a$i + b$i) / 2 \<or> c = (a$i + b$i) / 2 \<and> d = b$i) \<and> c\<le>x$i \<and> x$i \<le> d" | |
| 961 | (is "\<forall>i. \<exists>c d. ?P i c d") unfolding mem_interval proof fix i | |
| 962 | have "?P i (a$i) ((a $ i + b $ i) / 2) \<or> ?P i ((a $ i + b $ i) / 2) (b$i)" | |
| 963 | using x[unfolded mem_interval,THEN spec[where x=i]] by auto thus "\<exists>c d. ?P i c d" by blast | |
| 964 | qed thus "x\<in>\<Union>?A" unfolding Union_iff lambda_skolem unfolding Bex_def mem_Collect_eq | |
| 965 |       apply-apply(erule exE)+ apply(rule_tac x="{xa..xaa}" in exI) unfolding mem_interval by auto
 | |
| 966 | qed finally show False using assms by auto qed | |
| 967 | ||
| 968 | lemma interval_bisection: | |
| 969 |   assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "\<not> P {a..b::real^'n}"
 | |
| 970 |   obtains x where "x \<in> {a..b}" "\<forall>e>0. \<exists>c d. x \<in> {c..d} \<and> {c..d} \<subseteq> ball x e \<and> {c..d} \<subseteq> {a..b} \<and> ~P({c..d})"
 | |
| 971 | proof- | |
| 972 |   have "\<forall>x. \<exists>y. \<not> P {fst x..snd x} \<longrightarrow> (\<not> P {fst y..snd y} \<and> (\<forall>i. fst x$i \<le> fst y$i \<and> fst y$i \<le> snd y$i \<and> snd y$i \<le> snd x$i \<and>
 | |
| 973 | 2 * (snd y$i - fst y$i) \<le> snd x$i - fst x$i))" proof case goal1 thus ?case proof- | |
| 974 |       presume "\<not> P {fst x..snd x} \<Longrightarrow> ?thesis"
 | |
| 975 |       thus ?thesis apply(cases "P {fst x..snd x}") by auto
 | |
| 976 |     next assume as:"\<not> P {fst x..snd x}" from interval_bisection_step[of P, OF assms(1-2) as] guess c d . 
 | |
| 977 | thus ?thesis apply- apply(rule_tac x="(c,d)" in exI) by auto | |
| 978 | qed qed then guess f apply-apply(drule choice) by(erule exE) note f=this | |
| 979 | def AB \<equiv> "\<lambda>n. (f ^^ n) (a,b)" def A \<equiv> "\<lambda>n. fst(AB n)" and B \<equiv> "\<lambda>n. snd(AB n)" note ab_def = this AB_def | |
| 980 |   have "A 0 = a" "B 0 = b" "\<And>n. \<not> P {A(Suc n)..B(Suc n)} \<and>
 | |
| 981 | (\<forall>i. A(n)$i \<le> A(Suc n)$i \<and> A(Suc n)$i \<le> B(Suc n)$i \<and> B(Suc n)$i \<le> B(n)$i \<and> | |
| 982 | 2 * (B(Suc n)$i - A(Suc n)$i) \<le> B(n)$i - A(n)$i)" (is "\<And>n. ?P n") | |
| 983 | proof- show "A 0 = a" "B 0 = b" unfolding ab_def by auto | |
| 984 | case goal3 note S = ab_def funpow.simps o_def id_apply show ?case | |
| 985 | proof(induct n) case 0 thus ?case unfolding S apply(rule f[rule_format]) using assms(3) by auto | |
| 986 | next case (Suc n) show ?case unfolding S apply(rule f[rule_format]) using Suc unfolding S by auto | |
| 987 | qed qed note AB = this(1-2) conjunctD2[OF this(3),rule_format] | |
| 988 | ||
| 989 |   have interv:"\<And>e. 0 < e \<Longrightarrow> \<exists>n. \<forall>x\<in>{A n..B n}. \<forall>y\<in>{A n..B n}. dist x y < e"
 | |
| 990 | proof- case goal1 guess n using real_arch_pow2[of "(setsum (\<lambda>i. b$i - a$i) UNIV) / e"] .. note n=this | |
| 991 | show ?case apply(rule_tac x=n in exI) proof(rule,rule) | |
| 992 |       fix x y assume xy:"x\<in>{A n..B n}" "y\<in>{A n..B n}"
 | |
| 993 | have "dist x y \<le> setsum (\<lambda>i. abs((x - y)$i)) UNIV" unfolding vector_dist_norm by(rule norm_le_l1) | |
| 994 | also have "\<dots> \<le> setsum (\<lambda>i. B n$i - A n$i) UNIV" | |
| 995 | proof(rule setsum_mono) fix i show "\<bar>(x - y) $ i\<bar> \<le> B n $ i - A n $ i" | |
| 996 | using xy[unfolded mem_interval,THEN spec[where x=i]] | |
| 997 | unfolding vector_minus_component by auto qed | |
| 998 | also have "\<dots> \<le> setsum (\<lambda>i. b$i - a$i) UNIV / 2^n" unfolding setsum_divide_distrib | |
| 999 | proof(rule setsum_mono) case goal1 thus ?case | |
| 1000 | proof(induct n) case 0 thus ?case unfolding AB by auto | |
| 1001 | next case (Suc n) have "B (Suc n) $ i - A (Suc n) $ i \<le> (B n $ i - A n $ i) / 2" using AB(4)[of n i] by auto | |
| 1002 | also have "\<dots> \<le> (b $ i - a $ i) / 2 ^ Suc n" using Suc by(auto simp add:field_simps) finally show ?case . | |
| 1003 | qed qed | |
| 1004 | also have "\<dots> < e" using n using goal1 by(auto simp add:field_simps) finally show "dist x y < e" . | |
| 1005 | qed qed | |
| 1006 |   { fix n m ::nat assume "m \<le> n" then guess d unfolding le_Suc_ex_iff .. note d=this
 | |
| 1007 |     have "{A n..B n} \<subseteq> {A m..B m}" unfolding d 
 | |
| 1008 | proof(induct d) case 0 thus ?case by auto | |
| 1009 | next case (Suc d) show ?case apply(rule subset_trans[OF _ Suc]) | |
| 1010 | apply(rule) unfolding mem_interval apply(rule,erule_tac x=i in allE) | |
| 1011 | proof- case goal1 thus ?case using AB(4)[of "m + d" i] by(auto simp add:field_simps) | |
| 1012 | qed qed } note ABsubset = this | |
| 1013 |   have "\<exists>a. \<forall>n. a\<in>{A n..B n}" apply(rule decreasing_closed_nest[rule_format,OF closed_interval _ ABsubset interv])
 | |
| 1014 |   proof- fix n show "{A n..B n} \<noteq> {}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(1,3) AB(1-2) by auto qed auto
 | |
| 1015 | then guess x0 .. note x0=this[rule_format] | |
| 1016 | show thesis proof(rule that[rule_format,of x0]) | |
| 1017 |     show "x0\<in>{a..b}" using x0[of 0] unfolding AB .
 | |
| 1018 | fix e assume "0 < (e::real)" from interv[OF this] guess n .. note n=this | |
| 1019 |     show "\<exists>c d. x0 \<in> {c..d} \<and> {c..d} \<subseteq> ball x0 e \<and> {c..d} \<subseteq> {a..b} \<and> \<not> P {c..d}"
 | |
| 1020 | apply(rule_tac x="A n" in exI,rule_tac x="B n" in exI) apply(rule,rule x0) apply rule defer | |
| 1021 |     proof show "\<not> P {A n..B n}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(3) AB(1-2) by auto
 | |
| 1022 |       show "{A n..B n} \<subseteq> ball x0 e" using n using x0[of n] by auto
 | |
| 1023 |       show "{A n..B n} \<subseteq> {a..b}" unfolding AB(1-2)[symmetric] apply(rule ABsubset) by auto
 | |
| 1024 | qed qed qed | |
| 1025 | ||
| 1026 | subsection {* Cousin's lemma. *}
 | |
| 1027 | ||
| 1028 | lemma fine_division_exists: assumes "gauge g" | |
| 1029 |   obtains p where "p tagged_division_of {a..b::real^'n}" "g fine p"
 | |
| 1030 | proof- presume "\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p) \<Longrightarrow> False"
 | |
| 1031 | then guess p unfolding atomize_not not_not .. thus thesis apply-apply(rule that[of p]) by auto | |
| 1032 | next assume as:"\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p)"
 | |
| 1033 | guess x apply(rule interval_bisection[of "\<lambda>s. \<exists>p. p tagged_division_of s \<and> g fine p",rule_format,OF _ _ as]) | |
| 1034 |     apply(rule_tac x="{}" in exI) defer apply(erule conjE exE)+
 | |
| 1035 |   proof- show "{} tagged_division_of {} \<and> g fine {}" unfolding fine_def by auto
 | |
| 1036 |     fix s t p p' assume "p tagged_division_of s" "g fine p" "p' tagged_division_of t" "g fine p'" "interior s \<inter> interior t = {}"
 | |
| 1037 | thus "\<exists>p. p tagged_division_of s \<union> t \<and> g fine p" apply-apply(rule_tac x="p \<union> p'" in exI) apply rule | |
| 1038 | apply(rule tagged_division_union) prefer 4 apply(rule fine_union) by auto | |
| 1039 | qed note x=this | |
| 1040 | obtain e where e:"e>0" "ball x e \<subseteq> g x" using gaugeD[OF assms, of x] unfolding open_contains_ball by auto | |
| 1041 | from x(2)[OF e(1)] guess c d apply-apply(erule exE conjE)+ . note c_d = this | |
| 1042 |   have "g fine {(x, {c..d})}" unfolding fine_def using e using c_d(2) by auto
 | |
| 1043 | thus False using tagged_division_of_self[OF c_d(1)] using c_d by auto qed | |
| 1044 | ||
| 1045 | subsection {* Basic theorems about integrals. *}
 | |
| 1046 | ||
| 1047 | lemma has_integral_unique: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector" | |
| 1048 | assumes "(f has_integral k1) i" "(f has_integral k2) i" shows "k1 = k2" | |
| 1049 | proof(rule ccontr) let ?e = "norm(k1 - k2) / 2" assume as:"k1 \<noteq> k2" hence e:"?e > 0" by auto | |
| 1050 | have lem:"\<And>f::real^'n \<Rightarrow> 'a. \<And> a b k1 k2. | |
| 1051 |     (f has_integral k1) ({a..b}) \<Longrightarrow> (f has_integral k2) ({a..b}) \<Longrightarrow> k1 \<noteq> k2 \<Longrightarrow> False"
 | |
| 1052 | proof- case goal1 let ?e = "norm(k1 - k2) / 2" from goal1(3) have e:"?e > 0" by auto | |
| 1053 | guess d1 by(rule has_integralD[OF goal1(1) e]) note d1=this | |
| 1054 | guess d2 by(rule has_integralD[OF goal1(2) e]) note d2=this | |
| 1055 | guess p by(rule fine_division_exists[OF gauge_inter[OF d1(1) d2(1)],of a b]) note p=this | |
| 1056 | let ?c = "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" have "norm (k1 - k2) \<le> norm (?c - k2) + norm (?c - k1)" | |
| 1057 | using norm_triangle_ineq4[of "k1 - ?c" "k2 - ?c"] by(auto simp add:group_simps norm_minus_commute) | |
| 1058 | also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2" | |
| 1059 | apply(rule add_strict_mono) apply(rule_tac[!] d2(2) d1(2)) using p unfolding fine_def by auto | |
| 1060 | finally show False by auto | |
| 1061 |   qed { presume "\<not> (\<exists>a b. i = {a..b}) \<Longrightarrow> False"
 | |
| 1062 |     thus False apply-apply(cases "\<exists>a b. i = {a..b}")
 | |
| 1063 | using assms by(auto simp add:has_integral intro:lem[OF _ _ as]) } | |
| 1064 |   assume as:"\<not> (\<exists>a b. i = {a..b})"
 | |
| 1065 | guess B1 by(rule has_integral_altD[OF assms(1) as,OF e]) note B1=this[rule_format] | |
| 1066 | guess B2 by(rule has_integral_altD[OF assms(2) as,OF e]) note B2=this[rule_format] | |
| 1067 |   have "\<exists>a b::real^'n. ball 0 B1 \<union> ball 0 B2 \<subseteq> {a..b}" apply(rule bounded_subset_closed_interval)
 | |
| 1068 | using bounded_Un bounded_ball by auto then guess a b apply-by(erule exE)+ | |
| 1069 | note ab=conjunctD2[OF this[unfolded Un_subset_iff]] | |
| 1070 | guess w using B1(2)[OF ab(1)] .. note w=conjunctD2[OF this] | |
| 1071 | guess z using B2(2)[OF ab(2)] .. note z=conjunctD2[OF this] | |
| 1072 | have "z = w" using lem[OF w(1) z(1)] by auto | |
| 1073 | hence "norm (k1 - k2) \<le> norm (z - k2) + norm (w - k1)" | |
| 1074 | using norm_triangle_ineq4[of "k1 - w" "k2 - z"] by(auto simp add: norm_minus_commute) | |
| 1075 | also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2" apply(rule add_strict_mono) by(rule_tac[!] z(2) w(2)) | |
| 1076 | finally show False by auto qed | |
| 1077 | ||
| 1078 | lemma integral_unique[intro]: | |
| 1079 | "(f has_integral y) k \<Longrightarrow> integral k f = y" | |
| 1080 | unfolding integral_def apply(rule some_equality) by(auto intro: has_integral_unique) | |
| 1081 | ||
| 1082 | lemma has_integral_is_0: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector" | |
| 1083 | assumes "\<forall>x\<in>s. f x = 0" shows "(f has_integral 0) s" | |
| 1084 | proof- have lem:"\<And>a b. \<And>f::real^'n \<Rightarrow> 'a. | |
| 1085 |     (\<forall>x\<in>{a..b}. f(x) = 0) \<Longrightarrow> (f has_integral 0) ({a..b})" unfolding has_integral
 | |
| 1086 | proof(rule,rule) fix a b e and f::"real^'n \<Rightarrow> 'a" | |
| 1087 |     assume as:"\<forall>x\<in>{a..b}. f x = 0" "0 < (e::real)"
 | |
| 1088 |     show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e)"
 | |
| 1089 | apply(rule_tac x="\<lambda>x. ball x 1" in exI) apply(rule,rule gaugeI) unfolding centre_in_ball defer apply(rule open_ball) | |
| 1090 | proof(rule,rule,erule conjE) case goal1 | |
| 1091 | have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) = 0" proof(rule setsum_0',rule) | |
| 1092 | fix x assume x:"x\<in>p" have "f (fst x) = 0" using tagged_division_ofD(2-3)[OF goal1(1), of "fst x" "snd x"] using as x by auto | |
| 1093 | thus "(\<lambda>(x, k). content k *\<^sub>R f x) x = 0" apply(subst surjective_pairing[of x]) unfolding split_conv by auto | |
| 1094 | qed thus ?case using as by auto | |
| 1095 |     qed auto qed  { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
 | |
| 1096 |     thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}")
 | |
| 1097 | using assms by(auto simp add:has_integral intro:lem) } | |
| 1098 | have *:"(\<lambda>x. if x \<in> s then f x else 0) = (\<lambda>x. 0)" apply(rule ext) using assms by auto | |
| 1099 |   assume "\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P *
 | |
| 1100 | apply(rule,rule,rule_tac x=1 in exI,rule) defer apply(rule,rule,rule) | |
| 1101 | proof- fix e::real and a b assume "e>0" | |
| 1102 |     thus "\<exists>z. ((\<lambda>x::real^'n. 0::'a) has_integral z) {a..b} \<and> norm (z - 0) < e"
 | |
| 1103 | apply(rule_tac x=0 in exI) apply(rule,rule lem) by auto | |
| 1104 | qed auto qed | |
| 1105 | ||
| 1106 | lemma has_integral_0[simp]: "((\<lambda>x::real^'n. 0) has_integral 0) s" | |
| 1107 | apply(rule has_integral_is_0) by auto | |
| 1108 | ||
| 1109 | lemma has_integral_0_eq[simp]: "((\<lambda>x. 0) has_integral i) s \<longleftrightarrow> i = 0" | |
| 1110 | using has_integral_unique[OF has_integral_0] by auto | |
| 1111 | ||
| 1112 | lemma has_integral_linear: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector" | |
| 1113 | assumes "(f has_integral y) s" "bounded_linear h" shows "((h o f) has_integral ((h y))) s" | |
| 1114 | proof- interpret bounded_linear h using assms(2) . from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format] | |
| 1115 | have lem:"\<And>f::real^'n \<Rightarrow> 'a. \<And> y a b. | |
| 1116 |     (f has_integral y) ({a..b}) \<Longrightarrow> ((h o f) has_integral h(y)) ({a..b})"
 | |
| 1117 | proof(subst has_integral,rule,rule) case goal1 | |
| 1118 | from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format] | |
| 1119 | have *:"e / B > 0" apply(rule divide_pos_pos) using goal1(2) B by auto | |
| 1120 | guess g using has_integralD[OF goal1(1) *] . note g=this | |
| 1121 | show ?case apply(rule_tac x=g in exI) apply(rule,rule g(1)) | |
| 1122 |     proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "g fine p" 
 | |
| 1123 | have *:"\<And>x k. h ((\<lambda>(x, k). content k *\<^sub>R f x) x) = (\<lambda>(x, k). h (content k *\<^sub>R f x)) x" by auto | |
| 1124 | have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = setsum (h \<circ> (\<lambda>(x, k). content k *\<^sub>R f x)) p" | |
| 1125 | unfolding o_def unfolding scaleR[THEN sym] * by simp | |
| 1126 | also have "\<dots> = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" using setsum[of "\<lambda>(x,k). content k *\<^sub>R f x" p] using as by auto | |
| 1127 | finally have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" . | |
| 1128 | show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) - h y) < e" unfolding * diff[THEN sym] | |
| 1129 | apply(rule le_less_trans[OF B(2)]) using g(2)[OF as] B(1) by(auto simp add:field_simps) | |
| 1130 |     qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
 | |
| 1131 |     thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
 | |
| 1132 |   assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
 | |
| 1133 | proof(rule,rule) fix e::real assume e:"0<e" | |
| 1134 | have *:"0 < e/B" by(rule divide_pos_pos,rule e,rule B(1)) | |
| 1135 | guess M using has_integral_altD[OF assms(1) as *,rule_format] . note M=this | |
| 1136 |     show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) has_integral z) {a..b} \<and> norm (z - h y) < e)"
 | |
| 1137 | apply(rule_tac x=M in exI) apply(rule,rule M(1)) | |
| 1138 | proof(rule,rule,rule) case goal1 guess z using M(2)[OF goal1(1)] .. note z=conjunctD2[OF this] | |
| 1139 | have *:"(\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) = h \<circ> (\<lambda>x. if x \<in> s then f x else 0)" | |
| 1140 | unfolding o_def apply(rule ext) using zero by auto | |
| 1141 | show ?case apply(rule_tac x="h z" in exI,rule) unfolding * apply(rule lem[OF z(1)]) unfolding diff[THEN sym] | |
| 1142 | apply(rule le_less_trans[OF B(2)]) using B(1) z(2) by(auto simp add:field_simps) | |
| 1143 | qed qed qed | |
| 1144 | ||
| 1145 | lemma has_integral_cmul: | |
| 1146 | shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_integral (c *\<^sub>R k)) s" | |
| 1147 | unfolding o_def[THEN sym] apply(rule has_integral_linear,assumption) | |
| 1148 | by(rule scaleR.bounded_linear_right) | |
| 1149 | ||
| 1150 | lemma has_integral_neg: | |
| 1151 | shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. -(f x)) has_integral (-k)) s" | |
| 1152 | apply(drule_tac c="-1" in has_integral_cmul) by auto | |
| 1153 | ||
| 1154 | lemma has_integral_add: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector" | |
| 1155 | assumes "(f has_integral k) s" "(g has_integral l) s" | |
| 1156 | shows "((\<lambda>x. f x + g x) has_integral (k + l)) s" | |
| 1157 | proof- have lem:"\<And>f g::real^'n \<Rightarrow> 'a. \<And>a b k l. | |
| 1158 |     (f has_integral k) ({a..b}) \<Longrightarrow> (g has_integral l) ({a..b}) \<Longrightarrow>
 | |
| 1159 |      ((\<lambda>x. f(x) + g(x)) has_integral (k + l)) ({a..b})" proof- case goal1
 | |
| 1160 | show ?case unfolding has_integral proof(rule,rule) fix e::real assume e:"e>0" hence *:"e/2>0" by auto | |
| 1161 | guess d1 using has_integralD[OF goal1(1) *] . note d1=this | |
| 1162 | guess d2 using has_integralD[OF goal1(2) *] . note d2=this | |
| 1163 |       show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e)"
 | |
| 1164 | apply(rule_tac x="\<lambda>x. (d1 x) \<inter> (d2 x)" in exI) apply(rule,rule gauge_inter[OF d1(1) d2(1)]) | |
| 1165 |       proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. d1 x \<inter> d2 x) fine p"
 | |
| 1166 | have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) = (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p. content k *\<^sub>R g x)" | |
| 1167 | unfolding scaleR_right_distrib setsum_addf[of "\<lambda>(x,k). content k *\<^sub>R f x" "\<lambda>(x,k). content k *\<^sub>R g x" p,THEN sym] | |
| 1168 | by(rule setsum_cong2,auto) | |
| 1169 | have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) = norm (((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - k) + ((\<Sum>(x, k)\<in>p. content k *\<^sub>R g x) - l))" | |
| 1170 | unfolding * by(auto simp add:group_simps) also let ?res = "\<dots>" | |
| 1171 | from as have *:"d1 fine p" "d2 fine p" unfolding fine_inter by auto | |
| 1172 | have "?res < e/2 + e/2" apply(rule le_less_trans[OF norm_triangle_ineq]) | |
| 1173 | apply(rule add_strict_mono) using d1(2)[OF as(1) *(1)] and d2(2)[OF as(1) *(2)] by auto | |
| 1174 | finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e" by auto | |
| 1175 |       qed qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
 | |
| 1176 |     thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
 | |
| 1177 |   assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
 | |
| 1178 | proof(rule,rule) case goal1 hence *:"e/2 > 0" by auto | |
| 1179 | from has_integral_altD[OF assms(1) as *] guess B1 . note B1=this[rule_format] | |
| 1180 | from has_integral_altD[OF assms(2) as *] guess B2 . note B2=this[rule_format] | |
| 1181 | show ?case apply(rule_tac x="max B1 B2" in exI) apply(rule,rule min_max.less_supI1,rule B1) | |
| 1182 |     proof(rule,rule,rule) fix a b assume "ball 0 (max B1 B2) \<subseteq> {a..b::real^'n}"
 | |
| 1183 |       hence *:"ball 0 B1 \<subseteq> {a..b::real^'n}" "ball 0 B2 \<subseteq> {a..b::real^'n}" by auto
 | |
| 1184 | guess w using B1(2)[OF *(1)] .. note w=conjunctD2[OF this] | |
| 1185 | guess z using B2(2)[OF *(2)] .. note z=conjunctD2[OF this] | |
| 1186 | have *:"\<And>x. (if x \<in> s then f x + g x else 0) = (if x \<in> s then f x else 0) + (if x \<in> s then g x else 0)" by auto | |
| 1187 |       show "\<exists>z. ((\<lambda>x. if x \<in> s then f x + g x else 0) has_integral z) {a..b} \<and> norm (z - (k + l)) < e"
 | |
| 1188 | apply(rule_tac x="w + z" in exI) apply(rule,rule lem[OF w(1) z(1), unfolded *[THEN sym]]) | |
| 1189 | using norm_triangle_ineq[of "w - k" "z - l"] w(2) z(2) by(auto simp add:field_simps) | |
| 1190 | qed qed qed | |
| 1191 | ||
| 1192 | lemma has_integral_sub: | |
| 1193 | shows "(f has_integral k) s \<Longrightarrow> (g has_integral l) s \<Longrightarrow> ((\<lambda>x. f(x) - g(x)) has_integral (k - l)) s" | |
| 1194 | using has_integral_add[OF _ has_integral_neg,of f k s g l] unfolding group_simps by auto | |
| 1195 | ||
| 1196 | lemma integral_0: "integral s (\<lambda>x::real^'n. 0::real^'m) = 0" | |
| 1197 | by(rule integral_unique has_integral_0)+ | |
| 1198 | ||
| 1199 | lemma integral_add: | |
| 1200 | shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> | |
| 1201 | integral s (\<lambda>x. f x + g x) = integral s f + integral s g" | |
| 1202 | apply(rule integral_unique) apply(drule integrable_integral)+ | |
| 1203 | apply(rule has_integral_add) by assumption+ | |
| 1204 | ||
| 1205 | lemma integral_cmul: | |
| 1206 | shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. c *\<^sub>R f x) = c *\<^sub>R integral s f" | |
| 1207 | apply(rule integral_unique) apply(drule integrable_integral)+ | |
| 1208 | apply(rule has_integral_cmul) by assumption+ | |
| 1209 | ||
| 1210 | lemma integral_neg: | |
| 1211 | shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. - f x) = - integral s f" | |
| 1212 | apply(rule integral_unique) apply(drule integrable_integral)+ | |
| 1213 | apply(rule has_integral_neg) by assumption+ | |
| 1214 | ||
| 1215 | lemma integral_sub: | |
| 1216 | shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> integral s (\<lambda>x. f x - g x) = integral s f - integral s g" | |
| 1217 | apply(rule integral_unique) apply(drule integrable_integral)+ | |
| 1218 | apply(rule has_integral_sub) by assumption+ | |
| 1219 | ||
| 1220 | lemma integrable_0: "(\<lambda>x. 0) integrable_on s" | |
| 1221 | unfolding integrable_on_def using has_integral_0 by auto | |
| 1222 | ||
| 1223 | lemma integrable_add: | |
| 1224 | shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x + g x) integrable_on s" | |
| 1225 | unfolding integrable_on_def by(auto intro: has_integral_add) | |
| 1226 | ||
| 1227 | lemma integrable_cmul: | |
| 1228 | shows "f integrable_on s \<Longrightarrow> (\<lambda>x. c *\<^sub>R f(x)) integrable_on s" | |
| 1229 | unfolding integrable_on_def by(auto intro: has_integral_cmul) | |
| 1230 | ||
| 1231 | lemma integrable_neg: | |
| 1232 | shows "f integrable_on s \<Longrightarrow> (\<lambda>x. -f(x)) integrable_on s" | |
| 1233 | unfolding integrable_on_def by(auto intro: has_integral_neg) | |
| 1234 | ||
| 1235 | lemma integrable_sub: | |
| 1236 | shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x - g x) integrable_on s" | |
| 1237 | unfolding integrable_on_def by(auto intro: has_integral_sub) | |
| 1238 | ||
| 1239 | lemma integrable_linear: | |
| 1240 | shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> (h o f) integrable_on s" | |
| 1241 | unfolding integrable_on_def by(auto intro: has_integral_linear) | |
| 1242 | ||
| 1243 | lemma integral_linear: | |
| 1244 | shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> integral s (h o f) = h(integral s f)" | |
| 1245 | apply(rule has_integral_unique) defer unfolding has_integral_integral | |
| 1246 | apply(drule has_integral_linear,assumption,assumption) unfolding has_integral_integral[THEN sym] | |
| 1247 | apply(rule integrable_linear) by assumption+ | |
| 1248 | ||
| 1249 | lemma has_integral_setsum: | |
| 1250 | assumes "finite t" "\<forall>a\<in>t. ((f a) has_integral (i a)) s" | |
| 1251 | shows "((\<lambda>x. setsum (\<lambda>a. f a x) t) has_integral (setsum i t)) s" | |
| 1252 | proof(insert assms(1) subset_refl[of t],induct rule:finite_subset_induct) | |
| 1253 | case (insert x F) show ?case unfolding setsum_insert[OF insert(1,3)] | |
| 1254 | apply(rule has_integral_add) using insert assms by auto | |
| 1255 | qed auto | |
| 1256 | ||
| 1257 | lemma integral_setsum: | |
| 1258 | shows "finite t \<Longrightarrow> \<forall>a\<in>t. (f a) integrable_on s \<Longrightarrow> | |
| 1259 | integral s (\<lambda>x. setsum (\<lambda>a. f a x) t) = setsum (\<lambda>a. integral s (f a)) t" | |
| 1260 | apply(rule integral_unique) apply(rule has_integral_setsum) | |
| 1261 | using integrable_integral by auto | |
| 1262 | ||
| 1263 | lemma integrable_setsum: | |
| 1264 | shows "finite t \<Longrightarrow> \<forall>a \<in> t.(f a) integrable_on s \<Longrightarrow> (\<lambda>x. setsum (\<lambda>a. f a x) t) integrable_on s" | |
| 1265 | unfolding integrable_on_def apply(drule bchoice) using has_integral_setsum[of t] by auto | |
| 1266 | ||
| 1267 | lemma has_integral_eq: | |
| 1268 | assumes "\<forall>x\<in>s. f x = g x" "(f has_integral k) s" shows "(g has_integral k) s" | |
| 1269 | using has_integral_sub[OF assms(2), of "\<lambda>x. f x - g x" 0] | |
| 1270 | using has_integral_is_0[of s "\<lambda>x. f x - g x"] using assms(1) by auto | |
| 1271 | ||
| 1272 | lemma integrable_eq: | |
| 1273 | shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> f integrable_on s \<Longrightarrow> g integrable_on s" | |
| 1274 | unfolding integrable_on_def using has_integral_eq[of s f g] by auto | |
| 1275 | ||
| 1276 | lemma has_integral_eq_eq: | |
| 1277 | shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> ((f has_integral k) s \<longleftrightarrow> (g has_integral k) s)" | |
| 1278 | using has_integral_eq[of s f g] has_integral_eq[of s g f] by auto | |
| 1279 | ||
| 1280 | lemma has_integral_null[dest]: | |
| 1281 |   assumes "content({a..b}) = 0" shows  "(f has_integral 0) ({a..b})"
 | |
| 1282 | unfolding has_integral apply(rule,rule,rule_tac x="\<lambda>x. ball x 1" in exI,rule) defer | |
| 1283 | proof(rule,rule,erule conjE) fix e::real assume e:"e>0" thus "gauge (\<lambda>x. ball x 1)" by auto | |
| 1284 |   fix p assume p:"p tagged_division_of {a..b}" (*"(\<lambda>x. ball x 1) fine p"*)
 | |
| 1285 | have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) = 0" unfolding norm_eq_zero diff_0_right | |
| 1286 | using setsum_content_null[OF assms(1) p, of f] . | |
| 1287 | thus "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e" using e by auto qed | |
| 1288 | ||
| 1289 | lemma has_integral_null_eq[simp]: | |
| 1290 |   shows "content({a..b}) = 0 \<Longrightarrow> ((f has_integral i) ({a..b}) \<longleftrightarrow> i = 0)"
 | |
| 1291 | apply rule apply(rule has_integral_unique,assumption) | |
| 1292 | apply(drule has_integral_null,assumption) | |
| 1293 | apply(drule has_integral_null) by auto | |
| 1294 | ||
| 1295 | lemma integral_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> integral({a..b}) f = 0"
 | |
| 1296 | by(rule integral_unique,drule has_integral_null) | |
| 1297 | ||
| 1298 | lemma integrable_on_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> f integrable_on {a..b}"
 | |
| 1299 | unfolding integrable_on_def apply(drule has_integral_null) by auto | |
| 1300 | ||
| 1301 | lemma has_integral_empty[intro]: shows "(f has_integral 0) {}"
 | |
| 1302 | unfolding empty_as_interval apply(rule has_integral_null) | |
| 1303 | using content_empty unfolding empty_as_interval . | |
| 1304 | ||
| 1305 | lemma has_integral_empty_eq[simp]: shows "(f has_integral i) {} \<longleftrightarrow> i = 0"
 | |
| 1306 | apply(rule,rule has_integral_unique,assumption) by auto | |
| 1307 | ||
| 1308 | lemma integrable_on_empty[intro]: shows "f integrable_on {}" unfolding integrable_on_def by auto
 | |
| 1309 | ||
| 1310 | lemma integral_empty[simp]: shows "integral {} f = 0"
 | |
| 1311 | apply(rule integral_unique) using has_integral_empty . | |
| 1312 | ||
| 35540 | 1313 | lemma has_integral_refl[intro]: shows "(f has_integral 0) {a..a}" "(f has_integral 0) {a}"
 | 
| 1314 | proof- have *:"{a} = {a..a}" apply(rule set_ext) unfolding mem_interval singleton_iff Cart_eq
 | |
| 1315 | apply safe prefer 3 apply(erule_tac x=i in allE) by(auto simp add: field_simps) | |
| 1316 |   show "(f has_integral 0) {a..a}" "(f has_integral 0) {a}" unfolding *
 | |
| 1317 | apply(rule_tac[!] has_integral_null) unfolding content_eq_0_interior | |
| 1318 | unfolding interior_closed_interval using interval_sing by auto qed | |
| 35172 | 1319 | |
| 1320 | lemma integrable_on_refl[intro]: shows "f integrable_on {a..a}" unfolding integrable_on_def by auto
 | |
| 1321 | ||
| 1322 | lemma integral_refl: shows "integral {a..a} f = 0" apply(rule integral_unique) by auto
 | |
| 1323 | ||
| 1324 | subsection {* Cauchy-type criterion for integrability. *}
 | |
| 1325 | ||
| 1326 | lemma integrable_cauchy: fixes f::"real^'n \<Rightarrow> 'a::{real_normed_vector,complete_space}" 
 | |
| 1327 |   shows "f integrable_on {a..b} \<longleftrightarrow>
 | |
| 1328 |   (\<forall>e>0.\<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<and> d fine p1 \<and>
 | |
| 1329 |                             p2 tagged_division_of {a..b} \<and> d fine p2
 | |
| 1330 | \<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 - | |
| 1331 | setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) < e))" (is "?l = (\<forall>e>0. \<exists>d. ?P e d)") | |
| 1332 | proof assume ?l | |
| 1333 | then guess y unfolding integrable_on_def has_integral .. note y=this | |
| 1334 | show "\<forall>e>0. \<exists>d. ?P e d" proof(rule,rule) case goal1 hence "e/2 > 0" by auto | |
| 1335 | then guess d apply- apply(drule y[rule_format]) by(erule exE,erule conjE) note d=this[rule_format] | |
| 1336 | show ?case apply(rule_tac x=d in exI,rule,rule d) apply(rule,rule,rule,(erule conjE)+) | |
| 1337 |     proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b}" "d fine p1" "p2 tagged_division_of {a..b}" "d fine p2"
 | |
| 1338 | show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e" | |
| 1339 | apply(rule dist_triangle_half_l[where y=y,unfolded vector_dist_norm]) | |
| 1340 | using d(2)[OF conjI[OF as(1-2)]] d(2)[OF conjI[OF as(3-4)]] . | |
| 1341 | qed qed | |
| 1342 | next assume "\<forall>e>0. \<exists>d. ?P e d" hence "\<forall>n::nat. \<exists>d. ?P (inverse(real (n + 1))) d" by auto | |
| 1343 | from choice[OF this] guess d .. note d=conjunctD2[OF this[rule_format],rule_format] | |
| 1344 |   have "\<And>n. gauge (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}})" apply(rule gauge_inters) using d(1) by auto
 | |
| 1345 |   hence "\<forall>n. \<exists>p. p tagged_division_of {a..b} \<and> (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}}) fine p" apply-
 | |
| 1346 | proof case goal1 from this[of n] show ?case apply(drule_tac fine_division_exists) by auto qed | |
| 1347 | from choice[OF this] guess p .. note p = conjunctD2[OF this[rule_format]] | |
| 1348 | have dp:"\<And>i n. i\<le>n \<Longrightarrow> d i fine p n" using p(2) unfolding fine_inters by auto | |
| 1349 | have "Cauchy (\<lambda>n. setsum (\<lambda>(x,k). content k *\<^sub>R (f x)) (p n))" | |
| 1350 | proof(rule CauchyI) case goal1 then guess N unfolding real_arch_inv[of e] .. note N=this | |
| 1351 | show ?case apply(rule_tac x=N in exI) | |
| 1352 | proof(rule,rule,rule,rule) fix m n assume mn:"N \<le> m" "N \<le> n" have *:"N = (N - 1) + 1" using N by auto | |
| 1353 | show "norm ((\<Sum>(x, k)\<in>p m. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p n. content k *\<^sub>R f x)) < e" | |
| 1354 | apply(rule less_trans[OF _ N[THEN conjunct2,THEN conjunct2]]) apply(subst *) apply(rule d(2)) | |
| 1355 | using dp p(1) using mn by auto | |
| 1356 | qed qed | |
| 1357 | then guess y unfolding convergent_eq_cauchy[THEN sym] .. note y=this[unfolded Lim_sequentially,rule_format] | |
| 1358 | show ?l unfolding integrable_on_def has_integral apply(rule_tac x=y in exI) | |
| 1359 | proof(rule,rule) fix e::real assume "e>0" hence *:"e/2 > 0" by auto | |
| 1360 | then guess N1 unfolding real_arch_inv[of "e/2"] .. note N1=this hence N1':"N1 = N1 - 1 + 1" by auto | |
| 1361 | guess N2 using y[OF *] .. note N2=this | |
| 1362 |     show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - y) < e)"
 | |
| 1363 | apply(rule_tac x="d (N1 + N2)" in exI) apply rule defer | |
| 1364 | proof(rule,rule,erule conjE) show "gauge (d (N1 + N2))" using d by auto | |
| 1365 |       fix q assume as:"q tagged_division_of {a..b}" "d (N1 + N2) fine q"
 | |
| 1366 | have *:"inverse (real (N1 + N2 + 1)) < e / 2" apply(rule less_trans) using N1 by auto | |
| 1367 | show "norm ((\<Sum>(x, k)\<in>q. content k *\<^sub>R f x) - y) < e" apply(rule norm_triangle_half_r) | |
| 1368 | apply(rule less_trans[OF _ *]) apply(subst N1', rule d(2)[of "p (N1+N2)"]) defer | |
| 1369 | using N2[rule_format,unfolded vector_dist_norm,of "N1+N2"] | |
| 1370 | using as dp[of "N1 - 1 + 1 + N2" "N1 + N2"] using p(1)[of "N1 + N2"] using N1 by auto qed qed qed | |
| 1371 | ||
| 1372 | subsection {* Additivity of integral on abutting intervals. *}
 | |
| 1373 | ||
| 1374 | lemma interval_split: | |
| 1375 |   "{a..b::real^'n} \<inter> {x. x$k \<le> c} = {a .. (\<chi> i. if i = k then min (b$k) c else b$i)}"
 | |
| 1376 |   "{a..b} \<inter> {x. x$k \<ge> c} = {(\<chi> i. if i = k then max (a$k) c else a$i) .. b}"
 | |
| 1377 | apply(rule_tac[!] set_ext) unfolding Int_iff mem_interval mem_Collect_eq | |
| 1378 | unfolding Cart_lambda_beta by auto | |
| 1379 | ||
| 1380 | lemma content_split: | |
| 1381 |   "content {a..b::real^'n} = content({a..b} \<inter> {x. x$k \<le> c}) + content({a..b} \<inter> {x. x$k >= c})"
 | |
| 1382 | proof- note simps = interval_split content_closed_interval_cases Cart_lambda_beta vector_le_def | |
| 1383 |   { presume "a\<le>b \<Longrightarrow> ?thesis" thus ?thesis apply(cases "a\<le>b") unfolding simps by auto }
 | |
| 1384 |   have *:"UNIV = insert k (UNIV - {k})" "\<And>x. finite (UNIV-{x::'n})" "\<And>x. x\<notin>UNIV-{x}" by auto
 | |
| 1385 |   have *:"\<And>X Y Z. (\<Prod>i\<in>UNIV. Z i (if i = k then X else Y i)) = Z k X * (\<Prod>i\<in>UNIV-{k}. Z i (Y i))"
 | |
| 1386 |     "(\<Prod>i\<in>UNIV. b$i - a$i) = (\<Prod>i\<in>UNIV-{k}. b$i - a$i) * (b$k - a$k)" 
 | |
| 1387 | apply(subst *(1)) defer apply(subst *(1)) unfolding setprod_insert[OF *(2-)] by auto | |
| 1388 | assume as:"a\<le>b" moreover have "\<And>x. min (b $ k) c = max (a $ k) c | |
| 1389 | \<Longrightarrow> x* (b$k - a$k) = x*(max (a $ k) c - a $ k) + x*(b $ k - max (a $ k) c)" | |
| 1390 | by (auto simp add:field_simps) | |
| 1391 | moreover have "\<not> a $ k \<le> c \<Longrightarrow> \<not> c \<le> b $ k \<Longrightarrow> False" | |
| 1392 | unfolding not_le using as[unfolded vector_le_def,rule_format,of k] by auto | |
| 1393 | ultimately show ?thesis | |
| 1394 | unfolding simps unfolding *(1)[of "\<lambda>i x. b$i - x"] *(1)[of "\<lambda>i x. x - a$i"] *(2) by(auto) | |
| 1395 | qed | |
| 1396 | ||
| 1397 | lemma division_split_left_inj: | |
| 1398 | assumes "d division_of i" "k1 \<in> d" "k2 \<in> d" "k1 \<noteq> k2" | |
| 1399 |   "k1 \<inter> {x::real^'n. x$k \<le> c} = k2 \<inter> {x. x$k \<le> c}"
 | |
| 1400 |   shows "content(k1 \<inter> {x. x$k \<le> c}) = 0"
 | |
| 1401 | proof- note d=division_ofD[OF assms(1)] | |
| 1402 |   have *:"\<And>a b::real^'n. \<And> c k. (content({a..b} \<inter> {x. x$k \<le> c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$k \<le> c}) = {})"
 | |
| 1403 | unfolding interval_split content_eq_0_interior by auto | |
| 1404 | guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this | |
| 1405 | guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this | |
| 1406 |   have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
 | |
| 1407 | show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]]) | |
| 1408 | defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed | |
| 1409 | ||
| 1410 | lemma division_split_right_inj: | |
| 1411 | assumes "d division_of i" "k1 \<in> d" "k2 \<in> d" "k1 \<noteq> k2" | |
| 1412 |   "k1 \<inter> {x::real^'n. x$k \<ge> c} = k2 \<inter> {x. x$k \<ge> c}"
 | |
| 1413 |   shows "content(k1 \<inter> {x. x$k \<ge> c}) = 0"
 | |
| 1414 | proof- note d=division_ofD[OF assms(1)] | |
| 1415 |   have *:"\<And>a b::real^'n. \<And> c k. (content({a..b} \<inter> {x. x$k >= c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$k >= c}) = {})"
 | |
| 1416 | unfolding interval_split content_eq_0_interior by auto | |
| 1417 | guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this | |
| 1418 | guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this | |
| 1419 |   have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
 | |
| 1420 | show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]]) | |
| 1421 | defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed | |
| 1422 | ||
| 1423 | lemma tagged_division_split_left_inj: | |
| 1424 |   assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2"  "k1 \<inter> {x. x$k \<le> c} = k2 \<inter> {x. x$k \<le> c}" 
 | |
| 1425 |   shows "content(k1 \<inter> {x. x$k \<le> c}) = 0"
 | |
| 1426 | proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto | |
| 1427 | show ?thesis apply(rule division_split_left_inj[OF division_of_tagged_division[OF assms(1)]]) | |
| 1428 | apply(rule_tac[1-2] *) using assms(2-) by auto qed | |
| 1429 | ||
| 1430 | lemma tagged_division_split_right_inj: | |
| 1431 |   assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2"  "k1 \<inter> {x. x$k \<ge> c} = k2 \<inter> {x. x$k \<ge> c}" 
 | |
| 1432 |   shows "content(k1 \<inter> {x. x$k \<ge> c}) = 0"
 | |
| 1433 | proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto | |
| 1434 | show ?thesis apply(rule division_split_right_inj[OF division_of_tagged_division[OF assms(1)]]) | |
| 1435 | apply(rule_tac[1-2] *) using assms(2-) by auto qed | |
| 1436 | ||
| 1437 | lemma division_split: | |
| 1438 |   assumes "p division_of {a..b::real^'n}"
 | |
| 1439 |   shows "{l \<inter> {x. x$k \<le> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$k \<le> c} = {})} division_of ({a..b} \<inter> {x. x$k \<le> c})" (is "?p1 division_of ?I1") and 
 | |
| 1440 |         "{l \<inter> {x. x$k \<ge> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$k \<ge> c} = {})} division_of ({a..b} \<inter> {x. x$k \<ge> c})" (is "?p2 division_of ?I2")
 | |
| 1441 | proof(rule_tac[!] division_ofI) note p=division_ofD[OF assms] | |
| 1442 | show "finite ?p1" "finite ?p2" using p(1) by auto show "\<Union>?p1 = ?I1" "\<Union>?p2 = ?I2" unfolding p(6)[THEN sym] by auto | |
| 1443 |   { fix k assume "k\<in>?p1" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
 | |
| 1444 | guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this | |
| 1445 |     show "k\<subseteq>?I1" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
 | |
| 1446 | using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split) by auto | |
| 1447 | fix k' assume "k'\<in>?p1" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this | |
| 1448 |     assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
 | |
| 1449 |   { fix k assume "k\<in>?p2" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
 | |
| 1450 | guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this | |
| 1451 |     show "k\<subseteq>?I2" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
 | |
| 1452 | using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split) by auto | |
| 1453 | fix k' assume "k'\<in>?p2" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this | |
| 1454 |     assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
 | |
| 1455 | qed | |
| 1456 | ||
| 1457 | lemma has_integral_split: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector" | |
| 1458 |   assumes "(f has_integral i) ({a..b} \<inter> {x. x$k \<le> c})"  "(f has_integral j) ({a..b} \<inter> {x. x$k \<ge> c})"
 | |
| 1459 |   shows "(f has_integral (i + j)) ({a..b})"
 | |
| 1460 | proof(unfold has_integral,rule,rule) case goal1 hence e:"e/2>0" by auto | |
| 1461 | guess d1 using has_integralD[OF assms(1)[unfolded interval_split] e] . note d1=this[unfolded interval_split[THEN sym]] | |
| 1462 | guess d2 using has_integralD[OF assms(2)[unfolded interval_split] e] . note d2=this[unfolded interval_split[THEN sym]] | |
| 1463 | let ?d = "\<lambda>x. if x$k = c then (d1 x \<inter> d2 x) else ball x (abs(x$k - c)) \<inter> d1 x \<inter> d2 x" | |
| 1464 | show ?case apply(rule_tac x="?d" in exI,rule) defer apply(rule,rule,(erule conjE)+) | |
| 1465 | proof- show "gauge ?d" using d1(1) d2(1) unfolding gauge_def by auto | |
| 1466 |     fix p assume "p tagged_division_of {a..b}" "?d fine p" note p = this tagged_division_ofD[OF this(1)]
 | |
| 1467 |     have lem0:"\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$k \<le> c} = {}) \<Longrightarrow> x$k \<le> c"
 | |
| 1468 |          "\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$k \<ge> c} = {}) \<Longrightarrow> x$k \<ge> c"
 | |
| 1469 | proof- fix x kk assume as:"(x,kk)\<in>p" | |
| 1470 |       show "~(kk \<inter> {x. x$k \<le> c} = {}) \<Longrightarrow> x$k \<le> c"
 | |
| 1471 | proof(rule ccontr) case goal1 | |
| 1472 | from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $ k - c\<bar>" | |
| 1473 | using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto | |
| 1474 |         hence "\<exists>y. y \<in> ball x \<bar>x $ k - c\<bar> \<inter> {x. x $ k \<le> c}" using goal1(1) by blast 
 | |
| 1475 | then guess y .. hence "\<bar>x $ k - y $ k\<bar> < \<bar>x $ k - c\<bar>" "y$k \<le> c" apply-apply(rule le_less_trans) | |
| 1476 | using component_le_norm[of "x - y" k,unfolded vector_minus_component] by(auto simp add:vector_dist_norm) | |
| 1477 | thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps) | |
| 1478 | qed | |
| 1479 |       show "~(kk \<inter> {x. x$k \<ge> c} = {}) \<Longrightarrow> x$k \<ge> c"
 | |
| 1480 | proof(rule ccontr) case goal1 | |
| 1481 | from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $ k - c\<bar>" | |
| 1482 | using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto | |
| 1483 |         hence "\<exists>y. y \<in> ball x \<bar>x $ k - c\<bar> \<inter> {x. x $ k \<ge> c}" using goal1(1) by blast 
 | |
| 1484 | then guess y .. hence "\<bar>x $ k - y $ k\<bar> < \<bar>x $ k - c\<bar>" "y$k \<ge> c" apply-apply(rule le_less_trans) | |
| 1485 | using component_le_norm[of "x - y" k,unfolded vector_minus_component] by(auto simp add:vector_dist_norm) | |
| 1486 | thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps) | |
| 1487 | qed | |
| 1488 | qed | |
| 1489 | ||
| 1490 |     have lem1: "\<And>f P Q. (\<forall>x k. (x,k) \<in> {(x,f k) | x k. P x k} \<longrightarrow> Q x k) \<longleftrightarrow> (\<forall>x k. P x k \<longrightarrow> Q x (f k))" by auto
 | |
| 1491 |     have lem2: "\<And>f s P f. finite s \<Longrightarrow> finite {(x,f k) | x k. (x,k) \<in> s \<and> P x k}"
 | |
| 1492 | proof- case goal1 thus ?case apply-apply(rule finite_subset[of _ "(\<lambda>(x,k). (x,f k)) ` s"]) by auto qed | |
| 1493 | have lem3: "\<And>g::(real ^ 'n \<Rightarrow> bool) \<Rightarrow> real ^ 'n \<Rightarrow> bool. finite p \<Longrightarrow> | |
| 1494 |       setsum (\<lambda>(x,k). content k *\<^sub>R f x) {(x,g k) |x k. (x,k) \<in> p \<and> ~(g k = {})}
 | |
| 1495 | = setsum (\<lambda>(x,k). content k *\<^sub>R f x) ((\<lambda>(x,k). (x,g k)) ` p)" | |
| 1496 | apply(rule setsum_mono_zero_left) prefer 3 | |
| 1497 | proof fix g::"(real ^ 'n \<Rightarrow> bool) \<Rightarrow> real ^ 'n \<Rightarrow> bool" and i::"(real^'n) \<times> ((real^'n) set)" | |
| 1498 |       assume "i \<in> (\<lambda>(x, k). (x, g k)) ` p - {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}"
 | |
| 1499 |       then obtain x k where xk:"i=(x,g k)" "(x,k)\<in>p" "(x,g k) \<notin> {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}" by auto
 | |
| 1500 | have "content (g k) = 0" using xk using content_empty by auto | |
| 1501 | thus "(\<lambda>(x, k). content k *\<^sub>R f x) i = 0" unfolding xk split_conv by auto | |
| 1502 | qed auto | |
| 1503 | have lem4:"\<And>g. (\<lambda>(x,l). content (g l) *\<^sub>R f x) = (\<lambda>(x,l). content l *\<^sub>R f x) o (\<lambda>(x,l). (x,g l))" apply(rule ext) by auto | |
| 1504 | ||
| 1505 |     let ?M1 = "{(x,kk \<inter> {x. x$k \<le> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$k \<le> c} \<noteq> {}}"
 | |
| 1506 | have "norm ((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) < e/2" apply(rule d1(2),rule tagged_division_ofI) | |
| 1507 | apply(rule lem2 p(3))+ prefer 6 apply(rule fineI) | |
| 1508 |     proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M1} = {a..b} \<inter> {x. x$k \<le> c}" unfolding p(8)[THEN sym] by auto
 | |
| 1509 | fix x l assume xl:"(x,l)\<in>?M1" | |
| 1510 | then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note xl'=this | |
| 1511 | have "l' \<subseteq> d1 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto | |
| 1512 | thus "l \<subseteq> d1 x" unfolding xl' by auto | |
| 1513 |       show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $ k \<le> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
 | |
| 1514 | using lem0(1)[OF xl'(3-4)] by auto | |
| 1515 |       show  "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastsimp simp add: interval_split[where c=c and k=k])
 | |
| 1516 |       fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M1"
 | |
| 1517 | then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note yr'=this | |
| 1518 |       assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
 | |
| 1519 | proof(cases "l' = r' \<longrightarrow> x' = y'") | |
| 1520 | case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto | |
| 1521 | next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto | |
| 1522 | thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto | |
| 1523 | qed qed moreover | |
| 1524 | ||
| 1525 |     let ?M2 = "{(x,kk \<inter> {x. x$k \<ge> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$k \<ge> c} \<noteq> {}}" 
 | |
| 1526 | have "norm ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j) < e/2" apply(rule d2(2),rule tagged_division_ofI) | |
| 1527 | apply(rule lem2 p(3))+ prefer 6 apply(rule fineI) | |
| 1528 |     proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M2} = {a..b} \<inter> {x. x$k \<ge> c}" unfolding p(8)[THEN sym] by auto
 | |
| 1529 | fix x l assume xl:"(x,l)\<in>?M2" | |
| 1530 | then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note xl'=this | |
| 1531 | have "l' \<subseteq> d2 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto | |
| 1532 | thus "l \<subseteq> d2 x" unfolding xl' by auto | |
| 1533 |       show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $ k \<ge> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
 | |
| 1534 | using lem0(2)[OF xl'(3-4)] by auto | |
| 1535 |       show  "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastsimp simp add: interval_split[where c=c and k=k])
 | |
| 1536 |       fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M2"
 | |
| 1537 | then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note yr'=this | |
| 1538 |       assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
 | |
| 1539 | proof(cases "l' = r' \<longrightarrow> x' = y'") | |
| 1540 | case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto | |
| 1541 | next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto | |
| 1542 | thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto | |
| 1543 | qed qed ultimately | |
| 1544 | ||
| 1545 | have "norm (((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j)) < e/2 + e/2" | |
| 1546 | apply- apply(rule norm_triangle_lt) by auto | |
| 1547 |     also { have *:"\<And>x y. x = (0::real) \<Longrightarrow> x *\<^sub>R (y::'a) = 0" using scaleR_zero_left by auto
 | |
| 1548 | have "((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j) | |
| 1549 | = (\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - (i + j)" by auto | |
| 1550 |       also have "\<dots> = (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. x $ k \<le> c}) *\<^sub>R f x) + (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. c \<le> x $ k}) *\<^sub>R f x) - (i + j)"
 | |
| 1551 | unfolding lem3[OF p(3)] apply(subst setsum_reindex_nonzero[OF p(3)]) defer apply(subst setsum_reindex_nonzero[OF p(3)]) | |
| 1552 | defer unfolding lem4[THEN sym] apply(rule refl) unfolding split_paired_all split_conv apply(rule_tac[!] *) | |
| 1553 | proof- case goal1 thus ?case apply- apply(rule tagged_division_split_left_inj [OF p(1), of a b aa ba]) by auto | |
| 1554 | next case goal2 thus ?case apply- apply(rule tagged_division_split_right_inj[OF p(1), of a b aa ba]) by auto | |
| 1555 | qed also note setsum_addf[THEN sym] | |
| 1556 |       also have *:"\<And>x. x\<in>p \<Longrightarrow> (\<lambda>(x, ka). content (ka \<inter> {x. x $ k \<le> c}) *\<^sub>R f x) x + (\<lambda>(x, ka). content (ka \<inter> {x. c \<le> x $ k}) *\<^sub>R f x) x
 | |
| 1557 | = (\<lambda>(x,ka). content ka *\<^sub>R f x) x" unfolding split_paired_all split_conv | |
| 1558 | proof- fix a b assume "(a,b) \<in> p" from p(6)[OF this] guess u v apply-by(erule exE)+ note uv=this | |
| 1559 |         thus "content (b \<inter> {x. x $ k \<le> c}) *\<^sub>R f a + content (b \<inter> {x. c \<le> x $ k}) *\<^sub>R f a = content b *\<^sub>R f a"
 | |
| 1560 | unfolding scaleR_left_distrib[THEN sym] unfolding uv content_split[of u v k c] by auto | |
| 1561 | qed note setsum_cong2[OF this] | |
| 1562 |       finally have "(\<Sum>(x, k)\<in>{(x, kk \<inter> {x. x $ k \<le> c}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. x $ k \<le> c} \<noteq> {}}. content k *\<^sub>R f x) - i +
 | |
| 1563 |         ((\<Sum>(x, k)\<in>{(x, kk \<inter> {x. c \<le> x $ k}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. c \<le> x $ k} \<noteq> {}}. content k *\<^sub>R f x) - j) =
 | |
| 1564 | (\<Sum>(x, ka)\<in>p. content ka *\<^sub>R f x) - (i + j)" by auto } | |
| 1565 | finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - (i + j)) < e" by auto qed qed | |
| 1566 | ||
| 1567 | subsection {* A sort of converse, integrability on subintervals. *}
 | |
| 1568 | ||
| 1569 | lemma tagged_division_union_interval: | |
| 1570 |   assumes "p1 tagged_division_of ({a..b} \<inter> {x::real^'n. x$k \<le> (c::real)})"  "p2 tagged_division_of ({a..b} \<inter> {x. x$k \<ge> c})"
 | |
| 1571 |   shows "(p1 \<union> p2) tagged_division_of ({a..b})"
 | |
| 1572 | proof- have *:"{a..b} = ({a..b} \<inter> {x. x$k \<le> c}) \<union> ({a..b} \<inter> {x. x$k \<ge> c})" by auto
 | |
| 1573 | show ?thesis apply(subst *) apply(rule tagged_division_union[OF assms]) | |
| 1574 | unfolding interval_split interior_closed_interval | |
| 1575 | by(auto simp add: vector_less_def Cart_lambda_beta elim!:allE[where x=k]) qed | |
| 1576 | ||
| 1577 | lemma has_integral_separate_sides: fixes f::"real^'m \<Rightarrow> 'a::real_normed_vector" | |
| 1578 |   assumes "(f has_integral i) ({a..b})" "e>0"
 | |
| 1579 |   obtains d where "gauge d" "(\<forall>p1 p2. p1 tagged_division_of ({a..b} \<inter> {x. x$k \<le> c}) \<and> d fine p1 \<and>
 | |
| 1580 |                                 p2 tagged_division_of ({a..b} \<inter> {x. x$k \<ge> c}) \<and> d fine p2
 | |
| 1581 | \<longrightarrow> norm((setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 + | |
| 1582 | setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) - i) < e)" | |
| 1583 | proof- guess d using has_integralD[OF assms] . note d=this | |
| 1584 | show ?thesis apply(rule that[of d]) apply(rule d) apply(rule,rule,rule,(erule conjE)+) | |
| 1585 |   proof- fix p1 p2 assume "p1 tagged_division_of {a..b} \<inter> {x. x $ k \<le> c}" "d fine p1" note p1=tagged_division_ofD[OF this(1)] this
 | |
| 1586 |                    assume "p2 tagged_division_of {a..b} \<inter> {x. c \<le> x $ k}" "d fine p2" note p2=tagged_division_ofD[OF this(1)] this
 | |
| 1587 | note tagged_division_union_interval[OF p1(7) p2(7)] note p12 = tagged_division_ofD[OF this] this | |
| 1588 | have "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) = norm ((\<Sum>(x, k)\<in>p1 \<union> p2. content k *\<^sub>R f x) - i)" | |
| 1589 | apply(subst setsum_Un_zero) apply(rule p1 p2)+ apply(rule) unfolding split_paired_all split_conv | |
| 1590 | proof- fix a b assume ab:"(a,b) \<in> p1 \<inter> p2" | |
| 1591 | have "(a,b) \<in> p1" using ab by auto from p1(4)[OF this] guess u v apply-by(erule exE)+ note uv =this | |
| 1592 |       have "b \<subseteq> {x. x$k = c}" using ab p1(3)[of a b] p2(3)[of a b] by fastsimp
 | |
| 1593 |       moreover have "interior {x. x $ k = c} = {}" 
 | |
| 1594 |       proof(rule ccontr) case goal1 then obtain x where x:"x\<in>interior {x. x$k = c}" by auto
 | |
| 1595 | then guess e unfolding mem_interior .. note e=this | |
| 1596 | have x:"x$k = c" using x interior_subset by fastsimp | |
| 1597 | have *:"\<And>i. \<bar>(x - (x + (\<chi> i. if i = k then e / 2 else 0))) $ i\<bar> = (if i = k then e/2 else 0)" using e by auto | |
| 1598 | have "x + (\<chi> i. if i = k then e/2 else 0) \<in> ball x e" unfolding mem_ball vector_dist_norm | |
| 1599 | apply(rule le_less_trans[OF norm_le_l1]) unfolding * | |
| 1600 | unfolding setsum_delta[OF finite_UNIV] using e by auto | |
| 1601 |         hence "x + (\<chi> i. if i = k then e/2 else 0) \<in> {x. x$k = c}" using e by auto
 | |
| 1602 | thus False unfolding mem_Collect_eq using e x by auto | |
| 1603 | qed ultimately have "content b = 0" unfolding uv content_eq_0_interior apply-apply(drule subset_interior) by auto | |
| 1604 | thus "content b *\<^sub>R f a = 0" by auto | |
| 1605 | qed auto | |
| 1606 | also have "\<dots> < e" by(rule d(2) p12 fine_union p1 p2)+ | |
| 1607 | finally show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) < e" . qed qed | |
| 1608 | ||
| 1609 | lemma integrable_split[intro]: fixes f::"real^'n \<Rightarrow> 'a::{real_normed_vector,complete_space}" assumes "f integrable_on {a..b}"
 | |
| 1610 |   shows "f integrable_on ({a..b} \<inter> {x. x$k \<le> c})" (is ?t1) and "f integrable_on ({a..b} \<inter> {x. x$k \<ge> c})" (is ?t2) 
 | |
| 1611 | proof- guess y using assms unfolding integrable_on_def .. note y=this | |
| 1612 | def b' \<equiv> "(\<chi> i. if i = k then min (b$k) c else b$i)::real^'n" | |
| 1613 | and a' \<equiv> "(\<chi> i. if i = k then max (a$k) c else a$i)::real^'n" | |
| 1614 | show ?t1 ?t2 unfolding interval_split integrable_cauchy unfolding interval_split[THEN sym] | |
| 1615 | proof(rule_tac[!] allI impI)+ fix e::real assume "e>0" hence "e/2>0" by auto | |
| 1616 | from has_integral_separate_sides[OF y this,of k c] guess d . note d=this[rule_format] | |
| 1617 |     let ?P = "\<lambda>A. \<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<inter> A \<and> d fine p1 \<and> p2 tagged_division_of {a..b} \<inter> A \<and> d fine p2 \<longrightarrow>
 | |
| 1618 | norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e)" | |
| 1619 |     show "?P {x. x $ k \<le> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
 | |
| 1620 |     proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $ k \<le> c} \<and> d fine p1 \<and> p2 tagged_division_of {a..b} \<inter> {x. x $ k \<le> c} \<and> d fine p2"
 | |
| 1621 | show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e" | |
| 1622 | proof- guess p using fine_division_exists[OF d(1), of a' b] . note p=this | |
| 1623 | show ?thesis using norm_triangle_half_l[OF d(2)[of p1 p] d(2)[of p2 p]] | |
| 1624 | using as unfolding interval_split b'_def[symmetric] a'_def[symmetric] | |
| 1625 | using p using assms by(auto simp add:group_simps) | |
| 1626 | qed qed | |
| 1627 |     show "?P {x. x $ k \<ge> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
 | |
| 1628 |     proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $ k \<ge> c} \<and> d fine p1 \<and> p2 tagged_division_of {a..b} \<inter> {x. x $ k \<ge> c} \<and> d fine p2"
 | |
| 1629 | show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e" | |
| 1630 | proof- guess p using fine_division_exists[OF d(1), of a b'] . note p=this | |
| 1631 | show ?thesis using norm_triangle_half_l[OF d(2)[of p p1] d(2)[of p p2]] | |
| 1632 | using as unfolding interval_split b'_def[symmetric] a'_def[symmetric] | |
| 1633 | using p using assms by(auto simp add:group_simps) qed qed qed qed | |
| 1634 | ||
| 1635 | subsection {* Generalized notion of additivity. *}
 | |
| 1636 | ||
| 1637 | definition "neutral opp = (SOME x. \<forall>y. opp x y = y \<and> opp y x = y)" | |
| 1638 | ||
| 1639 | definition operative :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ((real^'n) set \<Rightarrow> 'a) \<Rightarrow> bool" where
 | |
| 1640 | "operative opp f \<equiv> | |
| 1641 |     (\<forall>a b. content {a..b} = 0 \<longrightarrow> f {a..b} = neutral(opp)) \<and>
 | |
| 1642 |     (\<forall>a b c k. f({a..b}) =
 | |
| 1643 |                    opp (f({a..b} \<inter> {x. x$k \<le> c}))
 | |
| 1644 |                        (f({a..b} \<inter> {x. x$k \<ge> c})))"
 | |
| 1645 | ||
| 1646 | lemma operativeD[dest]: assumes "operative opp f" | |
| 1647 |   shows "\<And>a b. content {a..b} = 0 \<Longrightarrow> f {a..b} = neutral(opp)"
 | |
| 1648 |   "\<And>a b c k. f({a..b}) = opp (f({a..b} \<inter> {x. x$k \<le> c})) (f({a..b} \<inter> {x. x$k \<ge> c}))"
 | |
| 1649 | using assms unfolding operative_def by auto | |
| 1650 | ||
| 1651 | lemma operative_trivial: | |
| 1652 |  "operative opp f \<Longrightarrow> content({a..b}) = 0 \<Longrightarrow> f({a..b}) = neutral opp"
 | |
| 1653 | unfolding operative_def by auto | |
| 1654 | ||
| 1655 | lemma property_empty_interval: | |
| 1656 |  "(\<forall>a b. content({a..b}) = 0 \<longrightarrow> P({a..b})) \<Longrightarrow> P {}" 
 | |
| 1657 | using content_empty unfolding empty_as_interval by auto | |
| 1658 | ||
| 1659 | lemma operative_empty: "operative opp f \<Longrightarrow> f {} = neutral opp"
 | |
| 1660 | unfolding operative_def apply(rule property_empty_interval) by auto | |
| 1661 | ||
| 1662 | subsection {* Using additivity of lifted function to encode definedness. *}
 | |
| 1663 | ||
| 1664 | lemma forall_option: "(\<forall>x. P x) \<longleftrightarrow> P None \<and> (\<forall>x. P(Some x))" | |
| 1665 | by (metis map_of.simps option.nchotomy) | |
| 1666 | ||
| 1667 | lemma exists_option: | |
| 1668 | "(\<exists>x. P x) \<longleftrightarrow> P None \<or> (\<exists>x. P(Some x))" | |
| 1669 | by (metis map_of.simps option.nchotomy) | |
| 1670 | ||
| 1671 | fun lifted where | |
| 1672 | "lifted (opp::'a\<Rightarrow>'a\<Rightarrow>'b) (Some x) (Some y) = Some(opp x y)" | | |
| 1673 | "lifted opp None _ = (None::'b option)" | | |
| 1674 | "lifted opp _ None = None" | |
| 1675 | ||
| 1676 | lemma lifted_simp_1[simp]: "lifted opp v None = None" | |
| 1677 | apply(induct v) by auto | |
| 1678 | ||
| 1679 | definition "monoidal opp \<equiv> (\<forall>x y. opp x y = opp y x) \<and> | |
| 1680 | (\<forall>x y z. opp x (opp y z) = opp (opp x y) z) \<and> | |
| 1681 | (\<forall>x. opp (neutral opp) x = x)" | |
| 1682 | ||
| 1683 | lemma monoidalI: assumes "\<And>x y. opp x y = opp y x" | |
| 1684 | "\<And>x y z. opp x (opp y z) = opp (opp x y) z" | |
| 1685 | "\<And>x. opp (neutral opp) x = x" shows "monoidal opp" | |
| 1686 | unfolding monoidal_def using assms by fastsimp | |
| 1687 | ||
| 1688 | lemma monoidal_ac: assumes "monoidal opp" | |
| 1689 | shows "opp (neutral opp) a = a" "opp a (neutral opp) = a" "opp a b = opp b a" | |
| 1690 | "opp (opp a b) c = opp a (opp b c)" "opp a (opp b c) = opp b (opp a c)" | |
| 1691 | using assms unfolding monoidal_def apply- by metis+ | |
| 1692 | ||
| 1693 | lemma monoidal_simps[simp]: assumes "monoidal opp" | |
| 1694 | shows "opp (neutral opp) a = a" "opp a (neutral opp) = a" | |
| 1695 | using monoidal_ac[OF assms] by auto | |
| 1696 | ||
| 1697 | lemma neutral_lifted[cong]: assumes "monoidal opp" | |
| 1698 | shows "neutral (lifted opp) = Some(neutral opp)" | |
| 1699 | apply(subst neutral_def) apply(rule some_equality) apply(rule,induct_tac y) prefer 3 | |
| 1700 | proof- fix x assume "\<forall>y. lifted opp x y = y \<and> lifted opp y x = y" | |
| 1701 | thus "x = Some (neutral opp)" apply(induct x) defer | |
| 1702 | apply rule apply(subst neutral_def) apply(subst eq_commute,rule some_equality) | |
| 1703 | apply(rule,erule_tac x="Some y" in allE) defer apply(erule_tac x="Some x" in allE) by auto | |
| 1704 | qed(auto simp add:monoidal_ac[OF assms]) | |
| 1705 | ||
| 1706 | lemma monoidal_lifted[intro]: assumes "monoidal opp" shows "monoidal(lifted opp)" | |
| 1707 | unfolding monoidal_def forall_option neutral_lifted[OF assms] using monoidal_ac[OF assms] by auto | |
| 1708 | ||
| 1709 | definition "support opp f s = {x. x\<in>s \<and> f x \<noteq> neutral opp}"
 | |
| 1710 | definition "fold' opp e s \<equiv> (if finite s then fold opp e s else e)" | |
| 1711 | definition "iterate opp s f \<equiv> fold' (\<lambda>x a. opp (f x) a) (neutral opp) (support opp f s)" | |
| 1712 | ||
| 1713 | lemma support_subset[intro]:"support opp f s \<subseteq> s" unfolding support_def by auto | |
| 1714 | lemma support_empty[simp]:"support opp f {} = {}" using support_subset[of opp f "{}"] by auto
 | |
| 1715 | ||
| 1716 | lemma fun_left_comm_monoidal[intro]: assumes "monoidal opp" shows "fun_left_comm opp" | |
| 1717 | unfolding fun_left_comm_def using monoidal_ac[OF assms] by auto | |
| 1718 | ||
| 1719 | lemma support_clauses: | |
| 1720 |   "\<And>f g s. support opp f {} = {}"
 | |
| 1721 | "\<And>f g s. support opp f (insert x s) = (if f(x) = neutral opp then support opp f s else insert x (support opp f s))" | |
| 1722 |   "\<And>f g s. support opp f (s - {x}) = (support opp f s) - {x}"
 | |
| 1723 | "\<And>f g s. support opp f (s \<union> t) = (support opp f s) \<union> (support opp f t)" | |
| 1724 | "\<And>f g s. support opp f (s \<inter> t) = (support opp f s) \<inter> (support opp f t)" | |
| 1725 | "\<And>f g s. support opp f (s - t) = (support opp f s) - (support opp f t)" | |
| 1726 | "\<And>f g s. support opp g (f ` s) = f ` (support opp (g o f) s)" | |
| 1727 | unfolding support_def by auto | |
| 1728 | ||
| 1729 | lemma finite_support[intro]:"finite s \<Longrightarrow> finite (support opp f s)" | |
| 1730 | unfolding support_def by auto | |
| 1731 | ||
| 1732 | lemma iterate_empty[simp]:"iterate opp {} f = neutral opp"
 | |
| 1733 | unfolding iterate_def fold'_def by auto | |
| 1734 | ||
| 1735 | lemma iterate_insert[simp]: assumes "monoidal opp" "finite s" | |
| 1736 | shows "iterate opp (insert x s) f = (if x \<in> s then iterate opp s f else opp (f x) (iterate opp s f))" | |
| 1737 | proof(cases "x\<in>s") case True hence *:"insert x s = s" by auto | |
| 1738 | show ?thesis unfolding iterate_def if_P[OF True] * by auto | |
| 1739 | next case False note x=this | |
| 1740 | note * = fun_left_comm.fun_left_comm_apply[OF fun_left_comm_monoidal[OF assms(1)]] | |
| 1741 | show ?thesis proof(cases "f x = neutral opp") | |
| 1742 | case True show ?thesis unfolding iterate_def if_not_P[OF x] support_clauses if_P[OF True] | |
| 1743 | unfolding True monoidal_simps[OF assms(1)] by auto | |
| 1744 | next case False show ?thesis unfolding iterate_def fold'_def if_not_P[OF x] support_clauses if_not_P[OF False] | |
| 1745 | apply(subst fun_left_comm.fold_insert[OF * finite_support]) | |
| 1746 | using `finite s` unfolding support_def using False x by auto qed qed | |
| 1747 | ||
| 1748 | lemma iterate_some: | |
| 1749 | assumes "monoidal opp" "finite s" | |
| 1750 | shows "iterate (lifted opp) s (\<lambda>x. Some(f x)) = Some (iterate opp s f)" using assms(2) | |
| 1751 | proof(induct s) case empty thus ?case using assms by auto | |
| 1752 | next case (insert x F) show ?case apply(subst iterate_insert) prefer 3 apply(subst if_not_P) | |
| 1753 | defer unfolding insert(3) lifted.simps apply rule using assms insert by auto qed | |
| 1754 | ||
| 1755 | subsection {* Two key instances of additivity. *}
 | |
| 1756 | ||
| 1757 | lemma neutral_add[simp]: | |
| 1758 | "neutral op + = (0::_::comm_monoid_add)" unfolding neutral_def | |
| 1759 | apply(rule some_equality) defer apply(erule_tac x=0 in allE) by auto | |
| 1760 | ||
| 1761 | lemma operative_content[intro]: "operative (op +) content" | |
| 1762 | unfolding operative_def content_split[THEN sym] neutral_add by auto | |
| 1763 | ||
| 1764 | lemma neutral_monoid[simp]: "neutral ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a) = 0"
 | |
| 1765 | unfolding neutral_def apply(rule some_equality) defer | |
| 1766 | apply(erule_tac x=0 in allE) by auto | |
| 1767 | ||
| 1768 | lemma monoidal_monoid[intro]: | |
| 1769 |   shows "monoidal ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a)"
 | |
| 1770 | unfolding monoidal_def neutral_monoid by(auto simp add: group_simps) | |
| 1771 | ||
| 1772 | lemma operative_integral: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 1773 | shows "operative (lifted(op +)) (\<lambda>i. if f integrable_on i then Some(integral i f) else None)" | |
| 1774 | unfolding operative_def unfolding neutral_lifted[OF monoidal_monoid] neutral_add | |
| 1775 | apply(rule,rule,rule,rule) defer apply(rule allI)+ | |
| 1776 | proof- fix a b c k show "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) =
 | |
| 1777 |               lifted op + (if f integrable_on {a..b} \<inter> {x. x $ k \<le> c} then Some (integral ({a..b} \<inter> {x. x $ k \<le> c}) f) else None)
 | |
| 1778 |                (if f integrable_on {a..b} \<inter> {x. c \<le> x $ k} then Some (integral ({a..b} \<inter> {x. c \<le> x $ k}) f) else None)"
 | |
| 1779 |   proof(cases "f integrable_on {a..b}") 
 | |
| 1780 | case True show ?thesis unfolding if_P[OF True] | |
| 1781 | unfolding if_P[OF integrable_split(1)[OF True]] if_P[OF integrable_split(2)[OF True]] | |
| 1782 | unfolding lifted.simps option.inject apply(rule integral_unique) apply(rule has_integral_split) | |
| 1783 | apply(rule_tac[!] integrable_integral integrable_split)+ using True by assumption+ | |
| 1784 |   next case False have "(\<not> (f integrable_on {a..b} \<inter> {x. x $ k \<le> c})) \<or> (\<not> ( f integrable_on {a..b} \<inter> {x. c \<le> x $ k}))"
 | |
| 1785 |     proof(rule ccontr) case goal1 hence "f integrable_on {a..b}" apply- unfolding integrable_on_def
 | |
| 1786 |         apply(rule_tac x="integral ({a..b} \<inter> {x. x $ k \<le> c}) f + integral ({a..b} \<inter> {x. x $ k \<ge> c}) f" in exI)
 | |
| 1787 | apply(rule has_integral_split) apply(rule_tac[!] integrable_integral) by auto | |
| 1788 | thus False using False by auto | |
| 1789 | qed thus ?thesis using False by auto | |
| 1790 | qed next | |
| 1791 |   fix a b assume as:"content {a..b::real^'n} = 0"
 | |
| 1792 |   thus "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) = Some 0"
 | |
| 1793 | unfolding if_P[OF integrable_on_null[OF as]] using has_integral_null_eq[OF as] by auto qed | |
| 1794 | ||
| 1795 | subsection {* Points of division of a partition. *}
 | |
| 1796 | ||
| 1797 | definition "division_points (k::(real^'n) set) d = | |
| 1798 |     {(j,x). (interval_lowerbound k)$j < x \<and> x < (interval_upperbound k)$j \<and>
 | |
| 1799 | (\<exists>i\<in>d. (interval_lowerbound i)$j = x \<or> (interval_upperbound i)$j = x)}" | |
| 1800 | ||
| 1801 | lemma division_points_finite: assumes "d division_of i" | |
| 1802 | shows "finite (division_points i d)" | |
| 1803 | proof- note assm = division_ofD[OF assms] | |
| 1804 |   let ?M = "\<lambda>j. {(j,x)|x. (interval_lowerbound i)$j < x \<and> x < (interval_upperbound i)$j \<and>
 | |
| 1805 | (\<exists>i\<in>d. (interval_lowerbound i)$j = x \<or> (interval_upperbound i)$j = x)}" | |
| 1806 | have *:"division_points i d = \<Union>(?M ` UNIV)" | |
| 1807 | unfolding division_points_def by auto | |
| 1808 | show ?thesis unfolding * using assm by auto qed | |
| 1809 | ||
| 1810 | lemma division_points_subset: | |
| 1811 |   assumes "d division_of {a..b}" "\<forall>i. a$i < b$i"  "a$k < c" "c < b$k"
 | |
| 1812 |   shows "division_points ({a..b} \<inter> {x. x$k \<le> c}) {l \<inter> {x. x$k \<le> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$k \<le> c} = {})}
 | |
| 1813 |                   \<subseteq> division_points ({a..b}) d" (is ?t1) and
 | |
| 1814 |         "division_points ({a..b} \<inter> {x. x$k \<ge> c}) {l \<inter> {x. x$k \<ge> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$k \<ge> c} = {})}
 | |
| 1815 |                   \<subseteq> division_points ({a..b}) d" (is ?t2)
 | |
| 1816 | proof- note assm = division_ofD[OF assms(1)] | |
| 1817 | have *:"\<forall>i. a$i \<le> b$i" "\<forall>i. a$i \<le> (\<chi> i. if i = k then min (b $ k) c else b $ i) $ i" | |
| 1818 | "\<forall>i. (\<chi> i. if i = k then max (a $ k) c else a $ i) $ i \<le> b$i" "min (b $ k) c = c" "max (a $ k) c = c" | |
| 1819 | using assms using less_imp_le by auto | |
| 1820 | show ?t1 unfolding division_points_def interval_split[of a b] | |
| 1821 | unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] Cart_lambda_beta unfolding * | |
| 1822 | unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+ unfolding mem_Collect_eq apply(erule exE conjE)+ | |
| 1823 | proof- fix i l x assume as:"a $ fst x < snd x" "snd x < (if fst x = k then c else b $ fst x)" | |
| 1824 |       "interval_lowerbound i $ fst x = snd x \<or> interval_upperbound i $ fst x = snd x"  "i = l \<inter> {x. x $ k \<le> c}" "l \<in> d" "l \<inter> {x. x $ k \<le> c} \<noteq> {}"
 | |
| 1825 | from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this | |
| 1826 | have *:"\<forall>i. u $ i \<le> (\<chi> i. if i = k then min (v $ k) c else v $ i) $ i" using as(6) unfolding l interval_split interval_ne_empty as . | |
| 1827 | have **:"\<forall>i. u$i \<le> v$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto | |
| 1828 | show "a $ fst x < snd x \<and> snd x < b $ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $ fst x = snd x \<or> interval_upperbound i $ fst x = snd x)" | |
| 1829 | using as(1-3,5) unfolding l interval_split interval_ne_empty as interval_bounds[OF *] Cart_lambda_beta apply- | |
| 1830 |       apply(rule,assumption,rule) defer apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
 | |
| 1831 | apply(case_tac[!] "fst x = k") using assms by auto | |
| 1832 | qed | |
| 1833 | show ?t2 unfolding division_points_def interval_split[of a b] | |
| 1834 | unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] Cart_lambda_beta unfolding * | |
| 1835 | unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+ unfolding mem_Collect_eq apply(erule exE conjE)+ | |
| 1836 | proof- fix i l x assume as:"(if fst x = k then c else a $ fst x) < snd x" "snd x < b $ fst x" "interval_lowerbound i $ fst x = snd x \<or> interval_upperbound i $ fst x = snd x" | |
| 1837 |       "i = l \<inter> {x. c \<le> x $ k}" "l \<in> d" "l \<inter> {x. c \<le> x $ k} \<noteq> {}"
 | |
| 1838 | from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this | |
| 1839 | have *:"\<forall>i. (\<chi> i. if i = k then max (u $ k) c else u $ i) $ i \<le> v $ i" using as(6) unfolding l interval_split interval_ne_empty as . | |
| 1840 | have **:"\<forall>i. u$i \<le> v$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto | |
| 1841 | show "a $ fst x < snd x \<and> snd x < b $ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $ fst x = snd x \<or> interval_upperbound i $ fst x = snd x)" | |
| 1842 | using as(1-3,5) unfolding l interval_split interval_ne_empty as interval_bounds[OF *] Cart_lambda_beta apply- | |
| 1843 |       apply rule defer apply(rule,assumption) apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
 | |
| 1844 | apply(case_tac[!] "fst x = k") using assms by auto qed qed | |
| 1845 | ||
| 1846 | lemma division_points_psubset: | |
| 1847 |   assumes "d division_of {a..b}"  "\<forall>i. a$i < b$i"  "a$k < c" "c < b$k"
 | |
| 1848 | "l \<in> d" "interval_lowerbound l$k = c \<or> interval_upperbound l$k = c" | |
| 1849 |   shows "division_points ({a..b} \<inter> {x. x$k \<le> c}) {l \<inter> {x. x$k \<le> c} | l. l\<in>d \<and> l \<inter> {x. x$k \<le> c} \<noteq> {}} \<subset> division_points ({a..b}) d" (is "?D1 \<subset> ?D") 
 | |
| 1850 |         "division_points ({a..b} \<inter> {x. x$k \<ge> c}) {l \<inter> {x. x$k \<ge> c} | l. l\<in>d \<and> l \<inter> {x. x$k \<ge> c} \<noteq> {}} \<subset> division_points ({a..b}) d" (is "?D2 \<subset> ?D") 
 | |
| 1851 | proof- have ab:"\<forall>i. a$i \<le> b$i" using assms(2) by(auto intro!:less_imp_le) | |
| 1852 | guess u v using division_ofD(4)[OF assms(1,5)] apply-by(erule exE)+ note l=this | |
| 1853 | have uv:"\<forall>i. u$i \<le> v$i" "\<forall>i. a$i \<le> u$i \<and> v$i \<le> b$i" using division_ofD(2,2,3)[OF assms(1,5)] unfolding l interval_ne_empty | |
| 1854 | unfolding subset_eq apply- defer apply(erule_tac x=u in ballE, erule_tac x=v in ballE) unfolding mem_interval by auto | |
| 1855 |   have *:"interval_upperbound ({a..b} \<inter> {x. x $ k \<le> interval_upperbound l $ k}) $ k = interval_upperbound l $ k"
 | |
| 1856 |          "interval_upperbound ({a..b} \<inter> {x. x $ k \<le> interval_lowerbound l $ k}) $ k = interval_lowerbound l $ k"
 | |
| 1857 | unfolding interval_split apply(subst interval_bounds) prefer 3 apply(subst interval_bounds) | |
| 1858 | unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab by auto | |
| 1859 | have "\<exists>x. x \<in> ?D - ?D1" using assms(2-) apply-apply(erule disjE) | |
| 1860 | apply(rule_tac x="(k,(interval_lowerbound l)$k)" in exI) defer | |
| 1861 | apply(rule_tac x="(k,(interval_upperbound l)$k)" in exI) | |
| 1862 | unfolding division_points_def unfolding interval_bounds[OF ab] | |
| 1863 | apply (auto simp add:interval_bounds) unfolding * by auto | |
| 1864 | thus "?D1 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4)]) by auto | |
| 1865 | ||
| 1866 |   have *:"interval_lowerbound ({a..b} \<inter> {x. x $ k \<ge> interval_lowerbound l $ k}) $ k = interval_lowerbound l $ k"
 | |
| 1867 |          "interval_lowerbound ({a..b} \<inter> {x. x $ k \<ge> interval_upperbound l $ k}) $ k = interval_upperbound l $ k"
 | |
| 1868 | unfolding interval_split apply(subst interval_bounds) prefer 3 apply(subst interval_bounds) | |
| 1869 | unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab by auto | |
| 1870 | have "\<exists>x. x \<in> ?D - ?D2" using assms(2-) apply-apply(erule disjE) | |
| 1871 | apply(rule_tac x="(k,(interval_lowerbound l)$k)" in exI) defer | |
| 1872 | apply(rule_tac x="(k,(interval_upperbound l)$k)" in exI) | |
| 1873 | unfolding division_points_def unfolding interval_bounds[OF ab] | |
| 1874 | apply (auto simp add:interval_bounds) unfolding * by auto | |
| 1875 | thus "?D2 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4)]) by auto qed | |
| 1876 | ||
| 1877 | subsection {* Preservation by divisions and tagged divisions. *}
 | |
| 1878 | ||
| 1879 | lemma support_support[simp]:"support opp f (support opp f s) = support opp f s" | |
| 1880 | unfolding support_def by auto | |
| 1881 | ||
| 1882 | lemma iterate_support[simp]: "iterate opp (support opp f s) f = iterate opp s f" | |
| 1883 | unfolding iterate_def support_support by auto | |
| 1884 | ||
| 1885 | lemma iterate_expand_cases: | |
| 1886 | "iterate opp s f = (if finite(support opp f s) then iterate opp (support opp f s) f else neutral opp)" | |
| 1887 | apply(cases) apply(subst if_P,assumption) unfolding iterate_def support_support fold'_def by auto | |
| 1888 | ||
| 1889 | lemma iterate_image: assumes "monoidal opp" "inj_on f s" | |
| 1890 | shows "iterate opp (f ` s) g = iterate opp s (g \<circ> f)" | |
| 1891 | proof- have *:"\<And>s. finite s \<Longrightarrow> \<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<longrightarrow> x = y \<Longrightarrow> | |
| 1892 | iterate opp (f ` s) g = iterate opp s (g \<circ> f)" | |
| 1893 | proof- case goal1 show ?case using goal1 | |
| 1894 | proof(induct s) case empty thus ?case using assms(1) by auto | |
| 1895 | next case (insert x s) show ?case unfolding iterate_insert[OF assms(1) insert(1)] | |
| 1896 | unfolding if_not_P[OF insert(2)] apply(subst insert(3)[THEN sym]) | |
| 1897 | unfolding image_insert defer apply(subst iterate_insert[OF assms(1)]) | |
| 1898 | apply(rule finite_imageI insert)+ apply(subst if_not_P) | |
| 1899 | unfolding image_iff o_def using insert(2,4) by auto | |
| 1900 | qed qed | |
| 1901 | show ?thesis | |
| 1902 | apply(cases "finite (support opp g (f ` s))") | |
| 1903 | apply(subst (1) iterate_support[THEN sym],subst (2) iterate_support[THEN sym]) | |
| 1904 | unfolding support_clauses apply(rule *)apply(rule finite_imageD,assumption) unfolding inj_on_def[symmetric] | |
| 1905 | apply(rule subset_inj_on[OF assms(2) support_subset])+ | |
| 1906 | apply(subst iterate_expand_cases) unfolding support_clauses apply(simp only: if_False) | |
| 1907 | apply(subst iterate_expand_cases) apply(subst if_not_P) by auto qed | |
| 1908 | ||
| 1909 | ||
| 1910 | (* This lemma about iterations comes up in a few places. *) | |
| 1911 | lemma iterate_nonzero_image_lemma: | |
| 1912 | assumes "monoidal opp" "finite s" "g(a) = neutral opp" | |
| 1913 | "\<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<and> x \<noteq> y \<longrightarrow> g(f x) = neutral opp" | |
| 1914 |   shows "iterate opp {f x | x. x \<in> s \<and> f x \<noteq> a} g = iterate opp s (g \<circ> f)"
 | |
| 1915 | proof- have *:"{f x |x. x \<in> s \<and> ~(f x = a)} = f ` {x. x \<in> s \<and> ~(f x = a)}" by auto
 | |
| 1916 |   have **:"support opp (g \<circ> f) {x \<in> s. f x \<noteq> a} = support opp (g \<circ> f) s"
 | |
| 1917 | unfolding support_def using assms(3) by auto | |
| 1918 | show ?thesis unfolding * | |
| 1919 | apply(subst iterate_support[THEN sym]) unfolding support_clauses | |
| 1920 | apply(subst iterate_image[OF assms(1)]) defer | |
| 1921 | apply(subst(2) iterate_support[THEN sym]) apply(subst **) | |
| 1922 | unfolding inj_on_def using assms(3,4) unfolding support_def by auto qed | |
| 1923 | ||
| 1924 | lemma iterate_eq_neutral: | |
| 1925 | assumes "monoidal opp" "\<forall>x \<in> s. (f(x) = neutral opp)" | |
| 1926 | shows "(iterate opp s f = neutral opp)" | |
| 1927 | proof- have *:"support opp f s = {}" unfolding support_def using assms(2) by auto
 | |
| 1928 | show ?thesis apply(subst iterate_support[THEN sym]) | |
| 1929 | unfolding * using assms(1) by auto qed | |
| 1930 | ||
| 1931 | lemma iterate_op: assumes "monoidal opp" "finite s" | |
| 1932 | shows "iterate opp s (\<lambda>x. opp (f x) (g x)) = opp (iterate opp s f) (iterate opp s g)" using assms(2) | |
| 1933 | proof(induct s) case empty thus ?case unfolding iterate_insert[OF assms(1)] using assms(1) by auto | |
| 1934 | next case (insert x F) show ?case unfolding iterate_insert[OF assms(1) insert(1)] if_not_P[OF insert(2)] insert(3) | |
| 1935 | unfolding monoidal_ac[OF assms(1)] by(rule refl) qed | |
| 1936 | ||
| 1937 | lemma iterate_eq: assumes "monoidal opp" "\<And>x. x \<in> s \<Longrightarrow> f x = g x" | |
| 1938 | shows "iterate opp s f = iterate opp s g" | |
| 1939 | proof- have *:"support opp g s = support opp f s" | |
| 1940 | unfolding support_def using assms(2) by auto | |
| 1941 | show ?thesis | |
| 1942 | proof(cases "finite (support opp f s)") | |
| 1943 | case False thus ?thesis apply(subst iterate_expand_cases,subst(2) iterate_expand_cases) | |
| 1944 | unfolding * by auto | |
| 1945 | next def su \<equiv> "support opp f s" | |
| 1946 | case True note support_subset[of opp f s] | |
| 1947 | thus ?thesis apply- apply(subst iterate_support[THEN sym],subst(2) iterate_support[THEN sym]) unfolding * using True | |
| 1948 | unfolding su_def[symmetric] | |
| 1949 | proof(induct su) case empty show ?case by auto | |
| 1950 | next case (insert x s) show ?case unfolding iterate_insert[OF assms(1) insert(1)] | |
| 1951 | unfolding if_not_P[OF insert(2)] apply(subst insert(3)) | |
| 1952 | defer apply(subst assms(2)[of x]) using insert by auto qed qed qed | |
| 1953 | ||
| 1954 | lemma nonempty_witness: assumes "s \<noteq> {}" obtains x where "x \<in> s" using assms by auto
 | |
| 1955 | ||
| 1956 | lemma operative_division: fixes f::"(real^'n) set \<Rightarrow> 'a" | |
| 1957 |   assumes "monoidal opp" "operative opp f" "d division_of {a..b}"
 | |
| 1958 |   shows "iterate opp d f = f {a..b}"
 | |
| 1959 | proof- def C \<equiv> "card (division_points {a..b} d)" thus ?thesis using assms
 | |
| 1960 | proof(induct C arbitrary:a b d rule:full_nat_induct) | |
| 1961 | case goal1 | |
| 1962 |     { presume *:"content {a..b} \<noteq> 0 \<Longrightarrow> ?case"
 | |
| 1963 | thus ?case apply-apply(cases) defer apply assumption | |
| 1964 |       proof- assume as:"content {a..b} = 0"
 | |
| 1965 | show ?case unfolding operativeD(1)[OF assms(2) as] apply(rule iterate_eq_neutral[OF goal1(2)]) | |
| 1966 | proof fix x assume x:"x\<in>d" | |
| 1967 | then guess u v apply(drule_tac division_ofD(4)[OF goal1(4)]) by(erule exE)+ | |
| 1968 | thus "f x = neutral opp" using division_of_content_0[OF as goal1(4)] | |
| 1969 | using operativeD(1)[OF assms(2)] x by auto | |
| 1970 | qed qed } | |
| 1971 |     assume "content {a..b} \<noteq> 0" note ab = this[unfolded content_lt_nz[THEN sym] content_pos_lt_eq]
 | |
| 1972 | hence ab':"\<forall>i. a$i \<le> b$i" by (auto intro!: less_imp_le) show ?case | |
| 1973 |     proof(cases "division_points {a..b} d = {}")
 | |
| 1974 |       case True have d':"\<forall>i\<in>d. \<exists>u v. i = {u..v} \<and>
 | |
| 1975 | (\<forall>j. u$j = a$j \<and> v$j = a$j \<or> u$j = b$j \<and> v$j = b$j \<or> u$j = a$j \<and> v$j = b$j)" | |
| 1976 | unfolding forall_in_division[OF goal1(4)] apply(rule,rule,rule) | |
| 1977 | apply(rule_tac x=a in exI,rule_tac x=b in exI) apply(rule,rule refl) apply(rule) | |
| 1978 |       proof- fix u v j assume as:"{u..v} \<in> d" note division_ofD(3)[OF goal1(4) this]
 | |
| 1979 | hence uv:"\<forall>i. u$i \<le> v$i" "u$j \<le> v$j" unfolding interval_ne_empty by auto | |
| 1980 |         have *:"\<And>p r Q. p \<or> r \<or> (\<forall>x\<in>d. Q x) \<Longrightarrow> p \<or> r \<or> (Q {u..v})" using as by auto
 | |
| 1981 |         have "(j, u$j) \<notin> division_points {a..b} d"
 | |
| 1982 |           "(j, v$j) \<notin> division_points {a..b} d" using True by auto
 | |
| 1983 | note this[unfolded de_Morgan_conj division_points_def mem_Collect_eq split_conv interval_bounds[OF ab'] bex_simps] | |
| 1984 | note *[OF this(1)] *[OF this(2)] note this[unfolded interval_bounds[OF uv(1)]] | |
| 1985 | moreover have "a$j \<le> u$j" "v$j \<le> b$j" using division_ofD(2,2,3)[OF goal1(4) as] | |
| 1986 | unfolding subset_eq apply- apply(erule_tac x=u in ballE,erule_tac[3] x=v in ballE) | |
| 1987 | unfolding interval_ne_empty mem_interval by auto | |
| 1988 | ultimately show "u$j = a$j \<and> v$j = a$j \<or> u$j = b$j \<and> v$j = b$j \<or> u$j = a$j \<and> v$j = b$j" | |
| 1989 | unfolding not_less de_Morgan_disj using ab[rule_format,of j] uv(2) by auto | |
| 1990 |       qed have "(1/2) *\<^sub>R (a+b) \<in> {a..b}" unfolding mem_interval using ab by(auto intro!:less_imp_le)
 | |
| 1991 | note this[unfolded division_ofD(6)[OF goal1(4),THEN sym] Union_iff] | |
| 1992 | then guess i .. note i=this guess u v using d'[rule_format,OF i(1)] apply-by(erule exE conjE)+ note uv=this | |
| 1993 |       have "{a..b} \<in> d"
 | |
| 1994 |       proof- { presume "i = {a..b}" thus ?thesis using i by auto }
 | |
| 1995 |         { presume "u = a" "v = b" thus "i = {a..b}" using uv by auto }
 | |
| 1996 | show "u = a" "v = b" unfolding Cart_eq | |
| 1997 | proof(rule_tac[!] allI) fix j note i(2)[unfolded uv mem_interval,rule_format,of j] | |
| 1998 | thus "u $ j = a $ j" "v $ j = b $ j" using uv(2)[rule_format,of j] by auto | |
| 1999 | qed qed | |
| 2000 |       hence *:"d = insert {a..b} (d - {{a..b}})" by auto
 | |
| 2001 |       have "iterate opp (d - {{a..b}}) f = neutral opp" apply(rule iterate_eq_neutral[OF goal1(2)])
 | |
| 2002 |       proof fix x assume x:"x \<in> d - {{a..b}}" hence "x\<in>d" by auto note d'[rule_format,OF this]
 | |
| 2003 | then guess u v apply-by(erule exE conjE)+ note uv=this | |
| 2004 | have "u\<noteq>a \<or> v\<noteq>b" using x[unfolded uv] by auto | |
| 2005 | then obtain j where "u$j \<noteq> a$j \<or> v$j \<noteq> b$j" unfolding Cart_eq by auto | |
| 2006 | hence "u$j = v$j" using uv(2)[rule_format,of j] by auto | |
| 2007 |         hence "content {u..v} = 0"  unfolding content_eq_0 apply(rule_tac x=j in exI) by auto
 | |
| 2008 | thus "f x = neutral opp" unfolding uv(1) by(rule operativeD(1)[OF goal1(3)]) | |
| 2009 |       qed thus "iterate opp d f = f {a..b}" apply-apply(subst *) 
 | |
| 2010 | apply(subst iterate_insert[OF goal1(2)]) using goal1(2,4) by auto | |
| 2011 |     next case False hence "\<exists>x. x\<in>division_points {a..b} d" by auto
 | |
| 2012 | then guess k c unfolding split_paired_Ex apply- unfolding division_points_def mem_Collect_eq split_conv | |
| 2013 | by(erule exE conjE)+ note kc=this[unfolded interval_bounds[OF ab']] | |
| 2014 | from this(3) guess j .. note j=this | |
| 2015 |       def d1 \<equiv> "{l \<inter> {x. x$k \<le> c} | l. l \<in> d \<and> l \<inter> {x. x$k \<le> c} \<noteq> {}}"
 | |
| 2016 |       def d2 \<equiv> "{l \<inter> {x. x$k \<ge> c} | l. l \<in> d \<and> l \<inter> {x. x$k \<ge> c} \<noteq> {}}"
 | |
| 2017 | def cb \<equiv> "(\<chi> i. if i = k then c else b$i)" and ca \<equiv> "(\<chi> i. if i = k then c else a$i)" | |
| 2018 | note division_points_psubset[OF goal1(4) ab kc(1-2) j] | |
| 2019 | note psubset_card_mono[OF _ this(1)] psubset_card_mono[OF _ this(2)] | |
| 2020 |       hence *:"(iterate opp d1 f) = f ({a..b} \<inter> {x. x$k \<le> c})" "(iterate opp d2 f) = f ({a..b} \<inter> {x. x$k \<ge> c})"
 | |
| 2021 | apply- unfolding interval_split apply(rule_tac[!] goal1(1)[rule_format]) | |
| 2022 | using division_split[OF goal1(4), where k=k and c=c] | |
| 2023 | unfolding interval_split d1_def[symmetric] d2_def[symmetric] unfolding goal1(2) Suc_le_mono | |
| 2024 | using goal1(2-3) using division_points_finite[OF goal1(4)] by auto | |
| 2025 |       have "f {a..b} = opp (iterate opp d1 f) (iterate opp d2 f)" (is "_ = ?prev")
 | |
| 2026 | unfolding * apply(rule operativeD(2)) using goal1(3) . | |
| 2027 |       also have "iterate opp d1 f = iterate opp d (\<lambda>l. f(l \<inter> {x. x$k \<le> c}))"
 | |
| 2028 | unfolding d1_def apply(rule iterate_nonzero_image_lemma[unfolded o_def]) | |
| 2029 | unfolding empty_as_interval apply(rule goal1 division_of_finite operativeD[OF goal1(3)])+ | |
| 2030 | unfolding empty_as_interval[THEN sym] apply(rule content_empty) | |
| 2031 |       proof(rule,rule,rule,erule conjE) fix l y assume as:"l \<in> d" "y \<in> d" "l \<inter> {x. x $ k \<le> c} = y \<inter> {x. x $ k \<le> c}" "l \<noteq> y" 
 | |
| 2032 | from division_ofD(4)[OF goal1(4) this(1)] guess u v apply-by(erule exE)+ note l=this | |
| 2033 |         show "f (l \<inter> {x. x $ k \<le> c}) = neutral opp" unfolding l interval_split
 | |
| 2034 | apply(rule operativeD(1) goal1)+ unfolding interval_split[THEN sym] apply(rule division_split_left_inj) | |
| 2035 | apply(rule goal1) unfolding l[THEN sym] apply(rule as(1),rule as(2)) by(rule as)+ | |
| 2036 |       qed also have "iterate opp d2 f = iterate opp d (\<lambda>l. f(l \<inter> {x. x$k \<ge> c}))"
 | |
| 2037 | unfolding d2_def apply(rule iterate_nonzero_image_lemma[unfolded o_def]) | |
| 2038 | unfolding empty_as_interval apply(rule goal1 division_of_finite operativeD[OF goal1(3)])+ | |
| 2039 | unfolding empty_as_interval[THEN sym] apply(rule content_empty) | |
| 2040 |       proof(rule,rule,rule,erule conjE) fix l y assume as:"l \<in> d" "y \<in> d" "l \<inter> {x. c \<le> x $ k} = y \<inter> {x. c \<le> x $ k}" "l \<noteq> y" 
 | |
| 2041 | from division_ofD(4)[OF goal1(4) this(1)] guess u v apply-by(erule exE)+ note l=this | |
| 2042 |         show "f (l \<inter> {x. x $ k \<ge> c}) = neutral opp" unfolding l interval_split
 | |
| 2043 | apply(rule operativeD(1) goal1)+ unfolding interval_split[THEN sym] apply(rule division_split_right_inj) | |
| 2044 | apply(rule goal1) unfolding l[THEN sym] apply(rule as(1),rule as(2)) by(rule as)+ | |
| 2045 |       qed also have *:"\<forall>x\<in>d. f x = opp (f (x \<inter> {x. x $ k \<le> c})) (f (x \<inter> {x. c \<le> x $ k}))"
 | |
| 2046 | unfolding forall_in_division[OF goal1(4)] apply(rule,rule,rule,rule operativeD(2)) using goal1(3) . | |
| 2047 |       have "opp (iterate opp d (\<lambda>l. f (l \<inter> {x. x $ k \<le> c}))) (iterate opp d (\<lambda>l. f (l \<inter> {x. c \<le> x $ k})))
 | |
| 2048 | = iterate opp d f" apply(subst(3) iterate_eq[OF _ *[rule_format]]) prefer 3 | |
| 2049 | apply(rule iterate_op[THEN sym]) using goal1 by auto | |
| 2050 | finally show ?thesis by auto | |
| 2051 | qed qed qed | |
| 2052 | ||
| 2053 | lemma iterate_image_nonzero: assumes "monoidal opp" | |
| 2054 | "finite s" "\<forall>x\<in>s. \<forall>y\<in>s. ~(x = y) \<and> f x = f y \<longrightarrow> g(f x) = neutral opp" | |
| 2055 | shows "iterate opp (f ` s) g = iterate opp s (g \<circ> f)" using assms | |
| 2056 | proof(induct rule:finite_subset_induct[OF assms(2) subset_refl]) | |
| 2057 | case goal1 show ?case using assms(1) by auto | |
| 2058 | next case goal2 have *:"\<And>x y. y = neutral opp \<Longrightarrow> x = opp y x" using assms(1) by auto | |
| 2059 | show ?case unfolding image_insert apply(subst iterate_insert[OF assms(1)]) | |
| 2060 | apply(rule finite_imageI goal2)+ | |
| 2061 | apply(cases "f a \<in> f ` F") unfolding if_P if_not_P apply(subst goal2(4)[OF assms(1) goal2(1)]) defer | |
| 2062 | apply(subst iterate_insert[OF assms(1) goal2(1)]) defer | |
| 2063 | apply(subst iterate_insert[OF assms(1) goal2(1)]) | |
| 2064 | unfolding if_not_P[OF goal2(3)] defer unfolding image_iff defer apply(erule bexE) | |
| 2065 | apply(rule *) unfolding o_def apply(rule_tac y=x in goal2(7)[rule_format]) | |
| 2066 | using goal2 unfolding o_def by auto qed | |
| 2067 | ||
| 2068 | lemma operative_tagged_division: assumes "monoidal opp" "operative opp f" "d tagged_division_of {a..b}"
 | |
| 2069 |   shows "iterate(opp) d (\<lambda>(x,l). f l) = f {a..b}"
 | |
| 2070 | proof- have *:"(\<lambda>(x,l). f l) = (f o snd)" unfolding o_def by(rule,auto) note assm = tagged_division_ofD[OF assms(3)] | |
| 2071 | have "iterate(opp) d (\<lambda>(x,l). f l) = iterate opp (snd ` d) f" unfolding * | |
| 2072 | apply(rule iterate_image_nonzero[THEN sym,OF assms(1)]) apply(rule tagged_division_of_finite assms)+ | |
| 2073 | unfolding Ball_def split_paired_All snd_conv apply(rule,rule,rule,rule,rule,rule,rule,erule conjE) | |
| 2074 | proof- fix a b aa ba assume as:"(a, b) \<in> d" "(aa, ba) \<in> d" "(a, b) \<noteq> (aa, ba)" "b = ba" | |
| 2075 | guess u v using assm(4)[OF as(1)] apply-by(erule exE)+ note uv=this | |
| 2076 | show "f b = neutral opp" unfolding uv apply(rule operativeD(1)[OF assms(2)]) | |
| 2077 | unfolding content_eq_0_interior using tagged_division_ofD(5)[OF assms(3) as(1-3)] | |
| 2078 | unfolding as(4)[THEN sym] uv by auto | |
| 2079 |   qed also have "\<dots> = f {a..b}" 
 | |
| 2080 | using operative_division[OF assms(1-2) division_of_tagged_division[OF assms(3)]] . | |
| 2081 | finally show ?thesis . qed | |
| 2082 | ||
| 2083 | subsection {* Additivity of content. *}
 | |
| 2084 | ||
| 2085 | lemma setsum_iterate:assumes "finite s" shows "setsum f s = iterate op + s f" | |
| 2086 | proof- have *:"setsum f s = setsum f (support op + f s)" | |
| 2087 | apply(rule setsum_mono_zero_right) | |
| 2088 | unfolding support_def neutral_monoid using assms by auto | |
| 2089 | thus ?thesis unfolding * setsum_def iterate_def fold_image_def fold'_def | |
| 2090 | unfolding neutral_monoid . qed | |
| 2091 | ||
| 2092 | lemma additive_content_division: assumes "d division_of {a..b}"
 | |
| 2093 |   shows "setsum content d = content({a..b})"
 | |
| 2094 | unfolding operative_division[OF monoidal_monoid operative_content assms,THEN sym] | |
| 2095 | apply(subst setsum_iterate) using assms by auto | |
| 2096 | ||
| 2097 | lemma additive_content_tagged_division: | |
| 2098 |   assumes "d tagged_division_of {a..b}"
 | |
| 2099 |   shows "setsum (\<lambda>(x,l). content l) d = content({a..b})"
 | |
| 2100 | unfolding operative_tagged_division[OF monoidal_monoid operative_content assms,THEN sym] | |
| 2101 | apply(subst setsum_iterate) using assms by auto | |
| 2102 | ||
| 2103 | subsection {* Finally, the integral of a constant\<forall> *}
 | |
| 2104 | ||
| 2105 | lemma has_integral_const[intro]: | |
| 2106 |   "((\<lambda>x. c) has_integral (content({a..b::real^'n}) *\<^sub>R c)) ({a..b})"
 | |
| 2107 | unfolding has_integral apply(rule,rule,rule_tac x="\<lambda>x. ball x 1" in exI) | |
| 2108 | apply(rule,rule gauge_trivial)apply(rule,rule,erule conjE) | |
| 2109 | unfolding split_def apply(subst scaleR_left.setsum[THEN sym, unfolded o_def]) | |
| 2110 | defer apply(subst additive_content_tagged_division[unfolded split_def]) apply assumption by auto | |
| 2111 | ||
| 2112 | subsection {* Bounds on the norm of Riemann sums and the integral itself. *}
 | |
| 2113 | ||
| 2114 | lemma dsum_bound: assumes "p division_of {a..b}" "norm(c) \<le> e"
 | |
| 2115 |   shows "norm(setsum (\<lambda>l. content l *\<^sub>R c) p) \<le> e * content({a..b})" (is "?l \<le> ?r")
 | |
| 2116 | apply(rule order_trans,rule setsum_norm) defer unfolding norm_scaleR setsum_left_distrib[THEN sym] | |
| 2117 | apply(rule order_trans[OF mult_left_mono],rule assms,rule setsum_abs_ge_zero) | |
| 2118 | apply(subst real_mult_commute) apply(rule mult_left_mono) | |
| 2119 | apply(rule order_trans[of _ "setsum content p"]) apply(rule eq_refl,rule setsum_cong2) | |
| 2120 | apply(subst abs_of_nonneg) unfolding additive_content_division[OF assms(1)] | |
| 2121 | proof- from order_trans[OF norm_ge_zero[of c] assms(2)] show "0 \<le> e" . | |
| 2122 | fix x assume "x\<in>p" from division_ofD(4)[OF assms(1) this] guess u v apply-by(erule exE)+ | |
| 2123 | thus "0 \<le> content x" using content_pos_le by auto | |
| 2124 | qed(insert assms,auto) | |
| 2125 | ||
| 2126 | lemma rsum_bound: assumes "p tagged_division_of {a..b}" "\<forall>x\<in>{a..b}. norm(f x) \<le> e"
 | |
| 2127 |   shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p) \<le> e * content({a..b})"
 | |
| 2128 | proof(cases "{a..b} = {}") case True
 | |
| 2129 | show ?thesis using assms(1) unfolding True tagged_division_of_trivial by auto | |
| 2130 | next case False show ?thesis | |
| 2131 | apply(rule order_trans,rule setsum_norm) defer unfolding split_def norm_scaleR | |
| 2132 | apply(rule order_trans[OF setsum_mono]) apply(rule mult_left_mono[OF _ abs_ge_zero, of _ e]) defer | |
| 2133 | unfolding setsum_left_distrib[THEN sym] apply(subst real_mult_commute) apply(rule mult_left_mono) | |
| 2134 | apply(rule order_trans[of _ "setsum (content \<circ> snd) p"]) apply(rule eq_refl,rule setsum_cong2) | |
| 2135 | apply(subst o_def, rule abs_of_nonneg) | |
| 2136 |   proof- show "setsum (content \<circ> snd) p \<le> content {a..b}" apply(rule eq_refl)
 | |
| 2137 | unfolding additive_content_tagged_division[OF assms(1),THEN sym] split_def by auto | |
| 2138 | guess w using nonempty_witness[OF False] . | |
| 2139 | thus "e\<ge>0" apply-apply(rule order_trans) defer apply(rule assms(2)[rule_format],assumption) by auto | |
| 2140 | fix xk assume *:"xk\<in>p" guess x k using surj_pair[of xk] apply-by(erule exE)+ note xk = this *[unfolded this] | |
| 2141 | from tagged_division_ofD(4)[OF assms(1) xk(2)] guess u v apply-by(erule exE)+ note uv=this | |
| 2142 | show "0\<le> content (snd xk)" unfolding xk snd_conv uv by(rule content_pos_le) | |
| 2143 | show "norm (f (fst xk)) \<le> e" unfolding xk fst_conv using tagged_division_ofD(2,3)[OF assms(1) xk(2)] assms(2) by auto | |
| 2144 | qed(insert assms,auto) qed | |
| 2145 | ||
| 2146 | lemma rsum_diff_bound: | |
| 2147 |   assumes "p tagged_division_of {a..b}"  "\<forall>x\<in>{a..b}. norm(f x - g x) \<le> e"
 | |
| 2148 |   shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - setsum (\<lambda>(x,k). content k *\<^sub>R g x) p) \<le> e * content({a..b})"
 | |
| 2149 | apply(rule order_trans[OF _ rsum_bound[OF assms]]) apply(rule eq_refl) apply(rule arg_cong[where f=norm]) | |
| 2150 | unfolding setsum_subtractf[THEN sym] apply(rule setsum_cong2) unfolding scaleR.diff_right by auto | |
| 2151 | ||
| 2152 | lemma has_integral_bound: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector" | |
| 2153 |   assumes "0 \<le> B" "(f has_integral i) ({a..b})" "\<forall>x\<in>{a..b}. norm(f x) \<le> B"
 | |
| 2154 |   shows "norm i \<le> B * content {a..b}"
 | |
| 2155 | proof- let ?P = "content {a..b} > 0" { presume "?P \<Longrightarrow> ?thesis"
 | |
| 2156 | thus ?thesis proof(cases ?P) case False | |
| 2157 |       hence *:"content {a..b} = 0" using content_lt_nz by auto
 | |
| 2158 | hence **:"i = 0" using assms(2) apply(subst has_integral_null_eq[THEN sym]) by auto | |
| 2159 | show ?thesis unfolding * ** using assms(1) by auto | |
| 2160 | qed auto } assume ab:?P | |
| 2161 |   { presume "\<not> ?thesis \<Longrightarrow> False" thus ?thesis by auto }
 | |
| 2162 |   assume "\<not> ?thesis" hence *:"norm i - B * content {a..b} > 0" by auto
 | |
| 2163 | from assms(2)[unfolded has_integral,rule_format,OF *] guess d apply-by(erule exE conjE)+ note d=this[rule_format] | |
| 2164 | from fine_division_exists[OF this(1), of a b] guess p . note p=this | |
| 2165 | have *:"\<And>s B. norm s \<le> B \<Longrightarrow> \<not> (norm (s - i) < norm i - B)" | |
| 2166 | proof- case goal1 thus ?case unfolding not_less | |
| 2167 | using norm_triangle_sub[of i s] unfolding norm_minus_commute by auto | |
| 2168 | qed show False using d(2)[OF conjI[OF p]] *[OF rsum_bound[OF p(1) assms(3)]] by auto qed | |
| 2169 | ||
| 2170 | subsection {* Similar theorems about relationship among components. *}
 | |
| 2171 | ||
| 2172 | lemma rsum_component_le: fixes f::"real^'n \<Rightarrow> real^'m" | |
| 2173 |   assumes "p tagged_division_of {a..b}"  "\<forall>x\<in>{a..b}. (f x)$i \<le> (g x)$i"
 | |
| 2174 | shows "(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p)$i \<le> (setsum (\<lambda>(x,k). content k *\<^sub>R g x) p)$i" | |
| 2175 | unfolding setsum_component apply(rule setsum_mono) | |
| 2176 | apply(rule mp) defer apply assumption apply(induct_tac x,rule) unfolding split_conv | |
| 2177 | proof- fix a b assume ab:"(a,b) \<in> p" note assm = tagged_division_ofD(2-4)[OF assms(1) ab] | |
| 2178 | from this(3) guess u v apply-by(erule exE)+ note b=this | |
| 2179 | show "(content b *\<^sub>R f a) $ i \<le> (content b *\<^sub>R g a) $ i" unfolding b | |
| 2180 | unfolding Cart_nth.scaleR real_scaleR_def apply(rule mult_left_mono) | |
| 2181 | defer apply(rule content_pos_le,rule assms(2)[rule_format]) using assm by auto qed | |
| 2182 | ||
| 2183 | lemma has_integral_component_le: fixes f::"real^'n \<Rightarrow> real^'m" | |
| 2184 | assumes "(f has_integral i) s" "(g has_integral j) s" "\<forall>x\<in>s. (f x)$k \<le> (g x)$k" | |
| 2185 | shows "i$k \<le> j$k" | |
| 2186 | proof- have lem:"\<And>a b g i j. \<And>f::real^'n \<Rightarrow> real^'m. (f has_integral i) ({a..b}) \<Longrightarrow> 
 | |
| 2187 |     (g has_integral j) ({a..b}) \<Longrightarrow> \<forall>x\<in>{a..b}. (f x)$k \<le> (g x)$k \<Longrightarrow> i$k \<le> j$k"
 | |
| 2188 | proof(rule ccontr) case goal1 hence *:"0 < (i$k - j$k) / 3" by auto | |
| 2189 | guess d1 using goal1(1)[unfolded has_integral,rule_format,OF *] apply-by(erule exE conjE)+ note d1=this[rule_format] | |
| 2190 | guess d2 using goal1(2)[unfolded has_integral,rule_format,OF *] apply-by(erule exE conjE)+ note d2=this[rule_format] | |
| 2191 | guess p using fine_division_exists[OF gauge_inter[OF d1(1) d2(1)], of a b] unfolding fine_inter . | |
| 2192 | note p = this(1) conjunctD2[OF this(2)] note le_less_trans[OF component_le_norm, of _ _ k] | |
| 2193 | note this[OF d1(2)[OF conjI[OF p(1,2)]]] this[OF d2(2)[OF conjI[OF p(1,3)]]] | |
| 2194 | thus False unfolding Cart_nth.diff using rsum_component_le[OF p(1) goal1(3)] by smt | |
| 2195 |   qed let ?P = "\<exists>a b. s = {a..b}"
 | |
| 2196 |   { presume "\<not> ?P \<Longrightarrow> ?thesis" thus ?thesis proof(cases ?P)
 | |
| 2197 | case True then guess a b apply-by(erule exE)+ note s=this | |
| 2198 | show ?thesis apply(rule lem) using assms[unfolded s] by auto | |
| 2199 | qed auto } assume as:"\<not> ?P" | |
| 2200 |   { presume "\<not> ?thesis \<Longrightarrow> False" thus ?thesis by auto }
 | |
| 2201 | assume "\<not> i$k \<le> j$k" hence ij:"(i$k - j$k) / 3 > 0" by auto | |
| 2202 | note has_integral_altD[OF _ as this] from this[OF assms(1)] this[OF assms(2)] guess B1 B2 . note B=this[rule_format] | |
| 2203 | have "bounded (ball 0 B1 \<union> ball (0::real^'n) B2)" unfolding bounded_Un by(rule conjI bounded_ball)+ | |
| 2204 | from bounded_subset_closed_interval[OF this] guess a b apply- by(erule exE)+ | |
| 2205 | note ab = conjunctD2[OF this[unfolded Un_subset_iff]] | |
| 2206 | guess w1 using B(2)[OF ab(1)] .. note w1=conjunctD2[OF this] | |
| 2207 | guess w2 using B(4)[OF ab(2)] .. note w2=conjunctD2[OF this] | |
| 2208 | have *:"\<And>w1 w2 j i::real .\<bar>w1 - i\<bar> < (i - j) / 3 \<Longrightarrow> \<bar>w2 - j\<bar> < (i - j) / 3 \<Longrightarrow> w1 \<le> w2 \<Longrightarrow> False" by smt(*SMTSMT*) | |
| 2209 | note le_less_trans[OF component_le_norm[of _ k]] note this[OF w1(2)] this[OF w2(2)] moreover | |
| 2210 | have "w1$k \<le> w2$k" apply(rule lem[OF w1(1) w2(1)]) using assms by auto ultimately | |
| 2211 | show False unfolding Cart_nth.diff by(rule *) qed | |
| 2212 | ||
| 2213 | lemma integral_component_le: fixes f::"real^'n \<Rightarrow> real^'m" | |
| 2214 | assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. (f x)$k \<le> (g x)$k" | |
| 2215 | shows "(integral s f)$k \<le> (integral s g)$k" | |
| 2216 | apply(rule has_integral_component_le) using integrable_integral assms by auto | |
| 2217 | ||
| 2218 | lemma has_integral_dest_vec1_le: fixes f::"real^'n \<Rightarrow> real^1" | |
| 2219 | assumes "(f has_integral i) s" "(g has_integral j) s" "\<forall>x\<in>s. f x \<le> g x" | |
| 2220 | shows "dest_vec1 i \<le> dest_vec1 j" apply(rule has_integral_component_le[OF assms(1-2)]) | |
| 2221 | using assms(3) unfolding vector_le_def by auto | |
| 2222 | ||
| 2223 | lemma integral_dest_vec1_le: fixes f::"real^'n \<Rightarrow> real^1" | |
| 2224 | assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. f x \<le> g x" | |
| 2225 | shows "dest_vec1(integral s f) \<le> dest_vec1(integral s g)" | |
| 2226 | apply(rule has_integral_dest_vec1_le) apply(rule_tac[1-2] integrable_integral) using assms by auto | |
| 2227 | ||
| 2228 | lemma has_integral_component_pos: fixes f::"real^'n \<Rightarrow> real^'m" | |
| 2229 | assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> (f x)$k" shows "0 \<le> i$k" | |
| 2230 | using has_integral_component_le[OF has_integral_0 assms(1)] using assms(2) by auto | |
| 2231 | ||
| 2232 | lemma integral_component_pos: fixes f::"real^'n \<Rightarrow> real^'m" | |
| 2233 | assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> (f x)$k" shows "0 \<le> (integral s f)$k" | |
| 2234 | apply(rule has_integral_component_pos) using assms by auto | |
| 2235 | ||
| 2236 | lemma has_integral_dest_vec1_pos: fixes f::"real^'n \<Rightarrow> real^1" | |
| 2237 | assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> i" | |
| 2238 | using has_integral_component_pos[OF assms(1), of 1] | |
| 2239 | using assms(2) unfolding vector_le_def by auto | |
| 2240 | ||
| 2241 | lemma integral_dest_vec1_pos: fixes f::"real^'n \<Rightarrow> real^1" | |
| 2242 | assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> integral s f" | |
| 2243 | apply(rule has_integral_dest_vec1_pos) using assms by auto | |
| 2244 | ||
| 2245 | lemma has_integral_component_neg: fixes f::"real^'n \<Rightarrow> real^'m" | |
| 2246 | assumes "(f has_integral i) s" "\<forall>x\<in>s. (f x)$k \<le> 0" shows "i$k \<le> 0" | |
| 2247 | using has_integral_component_le[OF assms(1) has_integral_0] assms(2) by auto | |
| 2248 | ||
| 2249 | lemma has_integral_dest_vec1_neg: fixes f::"real^'n \<Rightarrow> real^1" | |
| 2250 | assumes "(f has_integral i) s" "\<forall>x\<in>s. f x \<le> 0" shows "i \<le> 0" | |
| 2251 | using has_integral_component_neg[OF assms(1),of 1] using assms(2) by auto | |
| 2252 | ||
| 2253 | lemma has_integral_component_lbound: | |
| 2254 |   assumes "(f has_integral i) {a..b}"  "\<forall>x\<in>{a..b}. B \<le> f(x)$k" shows "B * content {a..b} \<le> i$k"
 | |
| 2255 | using has_integral_component_le[OF has_integral_const assms(1),of "(\<chi> i. B)" k] assms(2) | |
| 2256 | unfolding Cart_lambda_beta vector_scaleR_component by(auto simp add:field_simps) | |
| 2257 | ||
| 2258 | lemma has_integral_component_ubound: | |
| 2259 |   assumes "(f has_integral i) {a..b}" "\<forall>x\<in>{a..b}. f x$k \<le> B"
 | |
| 2260 |   shows "i$k \<le> B * content({a..b})"
 | |
| 2261 | using has_integral_component_le[OF assms(1) has_integral_const, of k "vec B"] | |
| 2262 | unfolding vec_component Cart_nth.scaleR using assms(2) by(auto simp add:field_simps) | |
| 2263 | ||
| 2264 | lemma integral_component_lbound: | |
| 2265 |   assumes "f integrable_on {a..b}" "\<forall>x\<in>{a..b}. B \<le> f(x)$k"
 | |
| 2266 |   shows "B * content({a..b}) \<le> (integral({a..b}) f)$k"
 | |
| 2267 | apply(rule has_integral_component_lbound) using assms unfolding has_integral_integral by auto | |
| 2268 | ||
| 2269 | lemma integral_component_ubound: | |
| 2270 |   assumes "f integrable_on {a..b}" "\<forall>x\<in>{a..b}. f(x)$k \<le> B"
 | |
| 2271 |   shows "(integral({a..b}) f)$k \<le> B * content({a..b})"
 | |
| 2272 | apply(rule has_integral_component_ubound) using assms unfolding has_integral_integral by auto | |
| 2273 | ||
| 2274 | subsection {* Uniform limit of integrable functions is integrable. *}
 | |
| 2275 | ||
| 2276 | lemma real_arch_invD: | |
| 2277 | "0 < (e::real) \<Longrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)" | |
| 2278 | by(subst(asm) real_arch_inv) | |
| 2279 | ||
| 2280 | lemma integrable_uniform_limit: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 2281 |   assumes "\<forall>e>0. \<exists>g. (\<forall>x\<in>{a..b}. norm(f x - g x) \<le> e) \<and> g integrable_on {a..b}"
 | |
| 2282 |   shows "f integrable_on {a..b}"
 | |
| 2283 | proof- { presume *:"content {a..b} > 0 \<Longrightarrow> ?thesis"
 | |
| 2284 | show ?thesis apply cases apply(rule *,assumption) | |
| 2285 | unfolding content_lt_nz integrable_on_def using has_integral_null by auto } | |
| 2286 |   assume as:"content {a..b} > 0"
 | |
| 2287 | have *:"\<And>P. \<forall>e>(0::real). P e \<Longrightarrow> \<forall>n::nat. P (inverse (real n+1))" by auto | |
| 2288 | from choice[OF *[OF assms]] guess g .. note g=conjunctD2[OF this[rule_format],rule_format] | |
| 2289 | from choice[OF allI[OF g(2)[unfolded integrable_on_def], of "\<lambda>x. x"]] guess i .. note i=this[rule_format] | |
| 2290 | ||
| 2291 | have "Cauchy i" unfolding Cauchy_def | |
| 2292 | proof(rule,rule) fix e::real assume "e>0" | |
| 2293 |     hence "e / 4 / content {a..b} > 0" using as by(auto simp add:field_simps)
 | |
| 2294 | then guess M apply-apply(subst(asm) real_arch_inv) by(erule exE conjE)+ note M=this | |
| 2295 | show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (i m) (i n) < e" apply(rule_tac x=M in exI,rule,rule,rule,rule) | |
| 2296 | proof- case goal1 have "e/4>0" using `e>0` by auto note * = i[unfolded has_integral,rule_format,OF this] | |
| 2297 | from *[of m] guess gm apply-by(erule conjE exE)+ note gm=this[rule_format] | |
| 2298 | from *[of n] guess gn apply-by(erule conjE exE)+ note gn=this[rule_format] | |
| 2299 | from fine_division_exists[OF gauge_inter[OF gm(1) gn(1)], of a b] guess p . note p=this | |
| 2300 | have lem2:"\<And>s1 s2 i1 i2. norm(s2 - s1) \<le> e/2 \<Longrightarrow> norm(s1 - i1) < e / 4 \<Longrightarrow> norm(s2 - i2) < e / 4 \<Longrightarrow>norm(i1 - i2) < e" | |
| 2301 | proof- case goal1 have "norm (i1 - i2) \<le> norm (i1 - s1) + norm (s1 - s2) + norm (s2 - i2)" | |
| 2302 | using norm_triangle_ineq[of "i1 - s1" "s1 - i2"] | |
| 2303 | using norm_triangle_ineq[of "s1 - s2" "s2 - i2"] by(auto simp add:group_simps) | |
| 2304 | also have "\<dots> < e" using goal1 unfolding norm_minus_commute by(auto simp add:group_simps) | |
| 2305 | finally show ?case . | |
| 2306 | qed | |
| 2307 | show ?case unfolding vector_dist_norm apply(rule lem2) defer | |
| 2308 | apply(rule gm(2)[OF conjI[OF p(1)]],rule_tac[2] gn(2)[OF conjI[OF p(1)]]) | |
| 2309 | using conjunctD2[OF p(2)[unfolded fine_inter]] apply- apply assumption+ apply(rule order_trans) | |
| 2310 | apply(rule rsum_diff_bound[OF p(1), where e="2 / real M"]) | |
| 2311 |       proof show "2 / real M * content {a..b} \<le> e / 2" unfolding divide_inverse 
 | |
| 2312 | using M as by(auto simp add:field_simps) | |
| 2313 |         fix x assume x:"x \<in> {a..b}"
 | |
| 2314 | have "norm (f x - g n x) + norm (f x - g m x) \<le> inverse (real n + 1) + inverse (real m + 1)" | |
| 2315 | using g(1)[OF x, of n] g(1)[OF x, of m] by auto | |
| 2316 | also have "\<dots> \<le> inverse (real M) + inverse (real M)" apply(rule add_mono) | |
| 2317 | apply(rule_tac[!] le_imp_inverse_le) using goal1 M by auto | |
| 2318 | also have "\<dots> = 2 / real M" unfolding real_divide_def by auto | |
| 2319 | finally show "norm (g n x - g m x) \<le> 2 / real M" | |
| 2320 | using norm_triangle_le[of "g n x - f x" "f x - g m x" "2 / real M"] | |
| 2321 | by(auto simp add:group_simps simp add:norm_minus_commute) | |
| 2322 | qed qed qed | |
| 2323 | from this[unfolded convergent_eq_cauchy[THEN sym]] guess s .. note s=this | |
| 2324 | ||
| 2325 | show ?thesis unfolding integrable_on_def apply(rule_tac x=s in exI) unfolding has_integral | |
| 2326 | proof(rule,rule) | |
| 2327 | case goal1 hence *:"e/3 > 0" by auto | |
| 2328 | from s[unfolded Lim_sequentially,rule_format,OF this] guess N1 .. note N1=this | |
| 2329 |     from goal1 as have "e / 3 / content {a..b} > 0" by(auto simp add:field_simps)
 | |
| 2330 | from real_arch_invD[OF this] guess N2 apply-by(erule exE conjE)+ note N2=this | |
| 2331 | from i[of "N1 + N2",unfolded has_integral,rule_format,OF *] guess g' .. note g'=conjunctD2[OF this,rule_format] | |
| 2332 | have lem:"\<And>sf sg i. norm(sf - sg) \<le> e / 3 \<Longrightarrow> norm(i - s) < e / 3 \<Longrightarrow> norm(sg - i) < e / 3 \<Longrightarrow> norm(sf - s) < e" | |
| 2333 | proof- case goal1 have "norm (sf - s) \<le> norm (sf - sg) + norm (sg - i) + norm (i - s)" | |
| 2334 | using norm_triangle_ineq[of "sf - sg" "sg - s"] | |
| 2335 | using norm_triangle_ineq[of "sg - i" " i - s"] by(auto simp add:group_simps) | |
| 2336 | also have "\<dots> < e" using goal1 unfolding norm_minus_commute by(auto simp add:group_simps) | |
| 2337 | finally show ?case . | |
| 2338 | qed | |
| 2339 | show ?case apply(rule_tac x=g' in exI) apply(rule,rule g') | |
| 2340 |     proof(rule,rule) fix p assume p:"p tagged_division_of {a..b} \<and> g' fine p" note * = g'(2)[OF this]
 | |
| 2341 | show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - s) < e" apply-apply(rule lem[OF _ _ *]) | |
| 2342 | apply(rule order_trans,rule rsum_diff_bound[OF p[THEN conjunct1]]) apply(rule,rule g,assumption) | |
| 2343 |       proof- have "content {a..b} < e / 3 * (real N2)"
 | |
| 2344 | using N2 unfolding inverse_eq_divide using as by(auto simp add:field_simps) | |
| 2345 |         hence "content {a..b} < e / 3 * (real (N1 + N2) + 1)"
 | |
| 2346 | apply-apply(rule less_le_trans,assumption) using `e>0` by auto | |
| 2347 |         thus "inverse (real (N1 + N2) + 1) * content {a..b} \<le> e / 3"
 | |
| 2348 | unfolding inverse_eq_divide by(auto simp add:field_simps) | |
| 2349 | show "norm (i (N1 + N2) - s) < e / 3" by(rule N1[rule_format,unfolded vector_dist_norm],auto) | |
| 2350 | qed qed qed qed | |
| 2351 | ||
| 2352 | subsection {* Negligible sets. *}
 | |
| 2353 | ||
| 2354 | definition "indicator s \<equiv> (\<lambda>x. if x \<in> s then 1 else (0::real))" | |
| 2355 | ||
| 2356 | lemma dest_vec1_indicator: | |
| 2357 | "indicator s x = (if x \<in> s then 1 else 0)" unfolding indicator_def by auto | |
| 2358 | ||
| 2359 | lemma indicator_pos_le[intro]: "0 \<le> (indicator s x)" unfolding indicator_def by auto | |
| 2360 | ||
| 2361 | lemma indicator_le_1[intro]: "(indicator s x) \<le> 1" unfolding indicator_def by auto | |
| 2362 | ||
| 2363 | lemma dest_vec1_indicator_abs_le_1: "abs(indicator s x) \<le> 1" | |
| 2364 | unfolding indicator_def by auto | |
| 2365 | ||
| 2366 | definition "negligible (s::(real^'n) set) \<equiv> (\<forall>a b. ((indicator s) has_integral 0) {a..b})"
 | |
| 2367 | ||
| 2368 | lemma indicator_simps[simp]:"x\<in>s \<Longrightarrow> indicator s x = 1" "x\<notin>s \<Longrightarrow> indicator s x = 0" | |
| 2369 | unfolding indicator_def by auto | |
| 2370 | ||
| 2371 | subsection {* Negligibility of hyperplane. *}
 | |
| 2372 | ||
| 2373 | lemma vsum_nonzero_image_lemma: | |
| 2374 | assumes "finite s" "g(a) = 0" | |
| 2375 | "\<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<and> x \<noteq> y \<longrightarrow> g(f x) = 0" | |
| 2376 |   shows "setsum g {f x |x. x \<in> s \<and> f x \<noteq> a} = setsum (g o f) s"
 | |
| 2377 | unfolding setsum_iterate[OF assms(1)] apply(subst setsum_iterate) defer | |
| 2378 | apply(rule iterate_nonzero_image_lemma) apply(rule assms monoidal_monoid)+ | |
| 2379 | unfolding assms using neutral_add unfolding neutral_add using assms by auto | |
| 2380 | ||
| 2381 | lemma interval_doublesplit: shows "{a..b} \<inter> {x . abs(x$k - c) \<le> (e::real)} =
 | |
| 2382 |   {(\<chi> i. if i = k then max (a$k) (c - e) else a$i) .. (\<chi> i. if i = k then min (b$k) (c + e) else b$i)}"
 | |
| 2383 | proof- have *:"\<And>x c e::real. abs(x - c) \<le> e \<longleftrightarrow> x \<ge> c - e \<and> x \<le> c + e" by auto | |
| 2384 |   have **:"\<And>s P Q. s \<inter> {x. P x \<and> Q x} = (s \<inter> {x. Q x}) \<inter> {x. P x}" by blast
 | |
| 2385 | show ?thesis unfolding * ** interval_split by(rule refl) qed | |
| 2386 | ||
| 2387 | lemma division_doublesplit: assumes "p division_of {a..b::real^'n}" 
 | |
| 2388 |   shows "{l \<inter> {x. abs(x$k - c) \<le> e} |l. l \<in> p \<and> l \<inter> {x. abs(x$k - c) \<le> e} \<noteq> {}} division_of ({a..b} \<inter> {x. abs(x$k - c) \<le> e})"
 | |
| 2389 | proof- have *:"\<And>x c. abs(x - c) \<le> e \<longleftrightarrow> x \<ge> c - e \<and> x \<le> c + e" by auto | |
| 2390 | have **:"\<And>p q p' q'. p division_of q \<Longrightarrow> p = p' \<Longrightarrow> q = q' \<Longrightarrow> p' division_of q'" by auto | |
| 2391 | note division_split(1)[OF assms, where c="c+e" and k=k,unfolded interval_split] | |
| 2392 | note division_split(2)[OF this, where c="c-e" and k=k] | |
| 2393 | thus ?thesis apply(rule **) unfolding interval_doublesplit unfolding * unfolding interval_split interval_doublesplit | |
| 2394 | apply(rule set_ext) unfolding mem_Collect_eq apply rule apply(erule conjE exE)+ apply(rule_tac x=la in exI) defer | |
| 2395 |     apply(erule conjE exE)+ apply(rule_tac x="l \<inter> {x. c + e \<ge> x $ k}" in exI) apply rule defer apply rule
 | |
| 2396 | apply(rule_tac x=l in exI) by blast+ qed | |
| 2397 | ||
| 2398 | lemma content_doublesplit: assumes "0 < e" | |
| 2399 |   obtains d where "0 < d" "content({a..b} \<inter> {x. abs(x$k - c) \<le> d}) < e"
 | |
| 2400 | proof(cases "content {a..b} = 0")
 | |
| 2401 | case True show ?thesis apply(rule that[of 1]) defer unfolding interval_doublesplit | |
| 2402 | apply(rule le_less_trans[OF content_subset]) defer apply(subst True) | |
| 2403 | unfolding interval_doublesplit[THEN sym] using assms by auto | |
| 2404 | next case False def d \<equiv> "e / 3 / setprod (\<lambda>i. b$i - a$i) (UNIV - {k})"
 | |
| 2405 | note False[unfolded content_eq_0 not_ex not_le, rule_format] | |
| 2406 |   hence prod0:"0 < setprod (\<lambda>i. b$i - a$i) (UNIV - {k})" apply-apply(rule setprod_pos) by smt
 | |
| 2407 | hence "d > 0" unfolding d_def using assms by(auto simp add:field_simps) thus ?thesis | |
| 2408 |   proof(rule that[of d]) have *:"UNIV = insert k (UNIV - {k})" by auto
 | |
| 2409 |     have **:"{a..b} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d} \<noteq> {} \<Longrightarrow> 
 | |
| 2410 |       (\<Prod>i\<in>UNIV - {k}. interval_upperbound ({a..b} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) $ i - interval_lowerbound ({a..b} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) $ i)
 | |
| 2411 |       = (\<Prod>i\<in>UNIV - {k}. b$i - a$i)" apply(rule setprod_cong,rule refl)
 | |
| 2412 | unfolding interval_doublesplit interval_eq_empty not_ex not_less unfolding interval_bounds by auto | |
| 2413 |     show "content ({a..b} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) < e" apply(cases) unfolding content_def apply(subst if_P,assumption,rule assms)
 | |
| 2414 | unfolding if_not_P apply(subst *) apply(subst setprod_insert) unfolding ** | |
| 2415 | unfolding interval_doublesplit interval_eq_empty not_ex not_less unfolding interval_bounds unfolding Cart_lambda_beta if_P[OF refl] | |
| 2416 | proof- have "(min (b $ k) (c + d) - max (a $ k) (c - d)) \<le> 2 * d" by auto | |
| 2417 |       also have "... < e / (\<Prod>i\<in>UNIV - {k}. b $ i - a $ i)" unfolding d_def using assms prod0 by(auto simp add:field_simps)
 | |
| 2418 |       finally show "(min (b $ k) (c + d) - max (a $ k) (c - d)) * (\<Prod>i\<in>UNIV - {k}. b $ i - a $ i) < e"
 | |
| 2419 | unfolding pos_less_divide_eq[OF prod0] . qed auto qed qed | |
| 2420 | ||
| 2421 | lemma negligible_standard_hyperplane[intro]: "negligible {x. x$k = (c::real)}" 
 | |
| 2422 | unfolding negligible_def has_integral apply(rule,rule,rule,rule) | |
| 2423 | proof- case goal1 from content_doublesplit[OF this,of a b k c] guess d . note d=this let ?i = "indicator {x. x$k = c}"
 | |
| 2424 | show ?case apply(rule_tac x="\<lambda>x. ball x d" in exI) apply(rule,rule gauge_ball,rule d) | |
| 2425 |   proof(rule,rule) fix p assume p:"p tagged_division_of {a..b} \<and> (\<lambda>x. ball x d) fine p"
 | |
| 2426 |     have *:"(\<Sum>(x, ka)\<in>p. content ka *\<^sub>R ?i x) = (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. abs(x$k - c) \<le> d}) *\<^sub>R ?i x)"
 | |
| 2427 | apply(rule setsum_cong2) unfolding split_paired_all real_scaleR_def mult_cancel_right split_conv | |
| 2428 | apply(cases,rule disjI1,assumption,rule disjI2) | |
| 2429 | proof- fix x l assume as:"(x,l)\<in>p" "?i x \<noteq> 0" hence xk:"x$k = c" unfolding indicator_def apply-by(rule ccontr,auto) | |
| 2430 |       show "content l = content (l \<inter> {x. \<bar>x $ k - c\<bar> \<le> d})" apply(rule arg_cong[where f=content])
 | |
| 2431 | apply(rule set_ext,rule,rule) unfolding mem_Collect_eq | |
| 2432 | proof- fix y assume y:"y\<in>l" note p[THEN conjunct2,unfolded fine_def,rule_format,OF as(1),unfolded split_conv] | |
| 2433 | note this[unfolded subset_eq mem_ball vector_dist_norm,rule_format,OF y] note le_less_trans[OF component_le_norm[of _ k] this] | |
| 2434 | thus "\<bar>y $ k - c\<bar> \<le> d" unfolding Cart_nth.diff xk by auto | |
| 2435 | qed auto qed | |
| 2436 | note p'= tagged_division_ofD[OF p[THEN conjunct1]] and p''=division_of_tagged_division[OF p[THEN conjunct1]] | |
| 2437 | show "norm ((\<Sum>(x, ka)\<in>p. content ka *\<^sub>R ?i x) - 0) < e" unfolding diff_0_right * unfolding real_scaleR_def real_norm_def | |
| 2438 | apply(subst abs_of_nonneg) apply(rule setsum_nonneg,rule) unfolding split_paired_all split_conv | |
| 2439 | apply(rule mult_nonneg_nonneg) apply(drule p'(4)) apply(erule exE)+ apply(rule_tac b=b in back_subst) | |
| 2440 | prefer 2 apply(subst(asm) eq_commute) apply assumption | |
| 2441 | apply(subst interval_doublesplit) apply(rule content_pos_le) apply(rule indicator_pos_le) | |
| 2442 |     proof- have "(\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) * ?i x) \<le> (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}))"
 | |
| 2443 | apply(rule setsum_mono) unfolding split_paired_all split_conv | |
| 2444 | apply(rule mult_right_le_one_le) apply(drule p'(4)) by(auto simp add:interval_doublesplit intro!:content_pos_le) | |
| 2445 | also have "... < e" apply(subst setsum_over_tagged_division_lemma[OF p[THEN conjunct1]]) | |
| 2446 |       proof- case goal1 have "content ({u..v} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) \<le> content {u..v}"
 | |
| 2447 | unfolding interval_doublesplit apply(rule content_subset) unfolding interval_doublesplit[THEN sym] by auto | |
| 2448 | thus ?case unfolding goal1 unfolding interval_doublesplit using content_pos_le by smt | |
| 2449 |       next have *:"setsum content {l \<inter> {x. \<bar>x $ k - c\<bar> \<le> d} |l. l \<in> snd ` p \<and> l \<inter> {x. \<bar>x $ k - c\<bar> \<le> d} \<noteq> {}} \<ge> 0"
 | |
| 2450 | apply(rule setsum_nonneg,rule) unfolding mem_Collect_eq image_iff apply(erule exE bexE conjE)+ unfolding split_paired_all | |
| 2451 |         proof- fix x l a b assume as:"x = l \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}" "(a, b) \<in> p" "l = snd (a, b)"
 | |
| 2452 | guess u v using p'(4)[OF as(2)] apply-by(erule exE)+ note * = this | |
| 2453 | show "content x \<ge> 0" unfolding as snd_conv * interval_doublesplit by(rule content_pos_le) | |
| 2454 | qed have **:"norm (1::real) \<le> 1" by auto note division_doublesplit[OF p'',unfolded interval_doublesplit] | |
| 2455 | note dsum_bound[OF this **,unfolded interval_doublesplit[THEN sym]] | |
| 2456 | note this[unfolded real_scaleR_def real_norm_def class_semiring.semiring_rules, of k c d] note le_less_trans[OF this d(2)] | |
| 2457 |         from this[unfolded abs_of_nonneg[OF *]] show "(\<Sum>ka\<in>snd ` p. content (ka \<inter> {x. \<bar>x $ k - c\<bar> \<le> d})) < e"
 | |
| 2458 |           apply(subst vsum_nonzero_image_lemma[of "snd ` p" content "{}", unfolded o_def,THEN sym])
 | |
| 2459 | apply(rule finite_imageI p' content_empty)+ unfolding forall_in_division[OF p''] | |
| 2460 | proof(rule,rule,rule,rule,rule,rule,rule,erule conjE) fix m n u v | |
| 2461 |           assume as:"{m..n} \<in> snd ` p" "{u..v} \<in> snd ` p" "{m..n} \<noteq> {u..v}"  "{m..n} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d} = {u..v} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}"
 | |
| 2462 |           have "({m..n} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) \<inter> ({u..v} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) \<subseteq> {m..n} \<inter> {u..v}" by blast
 | |
| 2463 |           note subset_interior[OF this, unfolded division_ofD(5)[OF p'' as(1-3)] interior_inter[of "{m..n}"]]
 | |
| 2464 |           hence "interior ({m..n} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) = {}" unfolding as Int_absorb by auto
 | |
| 2465 |           thus "content ({m..n} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) = 0" unfolding interval_doublesplit content_eq_0_interior[THEN sym] .
 | |
| 2466 | qed qed | |
| 2467 |       finally show "(\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) * ?i x) < e" .
 | |
| 2468 | qed qed qed | |
| 2469 | ||
| 2470 | subsection {* A technical lemma about "refinement" of division. *}
 | |
| 2471 | ||
| 2472 | lemma tagged_division_finer: fixes p::"((real^'n) \<times> ((real^'n) set)) set" | |
| 2473 |   assumes "p tagged_division_of {a..b}" "gauge d"
 | |
| 2474 |   obtains q where "q tagged_division_of {a..b}" "d fine q" "\<forall>(x,k) \<in> p. k \<subseteq> d(x) \<longrightarrow> (x,k) \<in> q"
 | |
| 2475 | proof- | |
| 2476 |   let ?P = "\<lambda>p. p tagged_partial_division_of {a..b} \<longrightarrow> gauge d \<longrightarrow>
 | |
| 2477 |     (\<exists>q. q tagged_division_of (\<Union>{k. \<exists>x. (x,k) \<in> p}) \<and> d fine q \<and>
 | |
| 2478 | (\<forall>(x,k) \<in> p. k \<subseteq> d(x) \<longrightarrow> (x,k) \<in> q))" | |
| 2479 |   { have *:"finite p" "p tagged_partial_division_of {a..b}" using assms(1) unfolding tagged_division_of_def by auto
 | |
| 2480 | presume "\<And>p. finite p \<Longrightarrow> ?P p" from this[rule_format,OF * assms(2)] guess q .. note q=this | |
| 2481 | thus ?thesis apply-apply(rule that[of q]) unfolding tagged_division_ofD[OF assms(1)] by auto | |
| 2482 | } fix p::"((real^'n) \<times> ((real^'n) set)) set" assume as:"finite p" | |
| 2483 | show "?P p" apply(rule,rule) using as proof(induct p) | |
| 2484 |     case empty show ?case apply(rule_tac x="{}" in exI) unfolding fine_def by auto
 | |
| 2485 | next case (insert xk p) guess x k using surj_pair[of xk] apply- by(erule exE)+ note xk=this | |
| 2486 | note tagged_partial_division_subset[OF insert(4) subset_insertI] | |
| 2487 | from insert(3)[OF this insert(5)] guess q1 .. note q1 = conjunctD3[OF this] | |
| 2488 |     have *:"\<Union>{l. \<exists>y. (y,l) \<in> insert xk p} = k \<union> \<Union>{l. \<exists>y. (y,l) \<in> p}" unfolding xk by auto
 | |
| 2489 | note p = tagged_partial_division_ofD[OF insert(4)] | |
| 2490 | from p(4)[unfolded xk, OF insertI1] guess u v apply-by(erule exE)+ note uv=this | |
| 2491 | ||
| 2492 |     have "finite {k. \<exists>x. (x, k) \<in> p}" 
 | |
| 2493 | apply(rule finite_subset[of _ "snd ` p"],rule) unfolding subset_eq image_iff mem_Collect_eq | |
| 2494 | apply(erule exE,rule_tac x="(xa,x)" in bexI) using p by auto | |
| 2495 |     hence int:"interior {u..v} \<inter> interior (\<Union>{k. \<exists>x. (x, k) \<in> p}) = {}"
 | |
| 2496 | apply(rule inter_interior_unions_intervals) apply(rule open_interior) apply(rule_tac[!] ballI) | |
| 2497 | unfolding mem_Collect_eq apply(erule_tac[!] exE) apply(drule p(4)[OF insertI2],assumption) | |
| 2498 | apply(rule p(5)) unfolding uv xk apply(rule insertI1,rule insertI2) apply assumption | |
| 2499 | using insert(2) unfolding uv xk by auto | |
| 2500 | ||
| 2501 |     show ?case proof(cases "{u..v} \<subseteq> d x")
 | |
| 2502 |       case True thus ?thesis apply(rule_tac x="{(x,{u..v})} \<union> q1" in exI) apply rule
 | |
| 2503 | unfolding * uv apply(rule tagged_division_union,rule tagged_division_of_self) | |
| 2504 | apply(rule p[unfolded xk uv] insertI1)+ apply(rule q1,rule int) | |
| 2505 | apply(rule,rule fine_union,subst fine_def) defer apply(rule q1) | |
| 2506 | unfolding Ball_def split_paired_All split_conv apply(rule,rule,rule,rule) | |
| 2507 | apply(erule insertE) defer apply(rule UnI2) apply(drule q1(3)[rule_format]) unfolding xk uv by auto | |
| 2508 | next case False from fine_division_exists[OF assms(2), of u v] guess q2 . note q2=this | |
| 2509 | show ?thesis apply(rule_tac x="q2 \<union> q1" in exI) | |
| 2510 | apply rule unfolding * uv apply(rule tagged_division_union q2 q1 int fine_union)+ | |
| 2511 | unfolding Ball_def split_paired_All split_conv apply rule apply(rule fine_union) | |
| 2512 | apply(rule q1 q2)+ apply(rule,rule,rule,rule) apply(erule insertE) | |
| 2513 | apply(rule UnI2) defer apply(drule q1(3)[rule_format])using False unfolding xk uv by auto | |
| 2514 | qed qed qed | |
| 2515 | ||
| 2516 | subsection {* Hence the main theorem about negligible sets. *}
 | |
| 2517 | ||
| 2518 | lemma finite_product_dependent: assumes "finite s" "\<And>x. x\<in>s\<Longrightarrow> finite (t x)" | |
| 2519 |   shows "finite {(i, j) |i j. i \<in> s \<and> j \<in> t i}" using assms
 | |
| 2520 | proof(induct) case (insert x s) | |
| 2521 |   have *:"{(i, j) |i j. i \<in> insert x s \<and> j \<in> t i} = (\<lambda>y. (x,y)) ` (t x) \<union> {(i, j) |i j. i \<in> s \<and> j \<in> t i}" by auto
 | |
| 2522 | show ?case unfolding * apply(rule finite_UnI) using insert by auto qed auto | |
| 2523 | ||
| 2524 | lemma sum_sum_product: assumes "finite s" "\<forall>i\<in>s. finite (t i)" | |
| 2525 |   shows "setsum (\<lambda>i. setsum (x i) (t i)::real) s = setsum (\<lambda>(i,j). x i j) {(i,j) | i j. i \<in> s \<and> j \<in> t i}" using assms
 | |
| 2526 | proof(induct) case (insert a s) | |
| 2527 |   have *:"{(i, j) |i j. i \<in> insert a s \<and> j \<in> t i} = (\<lambda>y. (a,y)) ` (t a) \<union> {(i, j) |i j. i \<in> s \<and> j \<in> t i}" by auto
 | |
| 2528 | show ?case unfolding * apply(subst setsum_Un_disjoint) unfolding setsum_insert[OF insert(1-2)] | |
| 2529 | prefer 4 apply(subst insert(3)) unfolding add_right_cancel | |
| 2530 | proof- show "setsum (x a) (t a) = (\<Sum>(xa, y)\<in>Pair a ` t a. x xa y)" apply(subst setsum_reindex) unfolding inj_on_def by auto | |
| 2531 |     show "finite {(i, j) |i j. i \<in> s \<and> j \<in> t i}" apply(rule finite_product_dependent) using insert by auto
 | |
| 2532 | qed(insert insert, auto) qed auto | |
| 2533 | ||
| 2534 | lemma has_integral_negligible: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector" | |
| 2535 | assumes "negligible s" "\<forall>x\<in>(t - s). f x = 0" | |
| 2536 | shows "(f has_integral 0) t" | |
| 2537 | proof- presume P:"\<And>f::real^'n \<Rightarrow> 'a. \<And>a b. (\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0) \<Longrightarrow> (f has_integral 0) ({a..b})"
 | |
| 2538 | let ?f = "(\<lambda>x. if x \<in> t then f x else 0)" | |
| 2539 | show ?thesis apply(rule_tac f="?f" in has_integral_eq) apply(rule) unfolding if_P apply(rule refl) | |
| 2540 | apply(subst has_integral_alt) apply(cases,subst if_P,assumption) unfolding if_not_P | |
| 2541 |   proof- assume "\<exists>a b. t = {a..b}" then guess a b apply-by(erule exE)+ note t = this
 | |
| 2542 | show "(?f has_integral 0) t" unfolding t apply(rule P) using assms(2) unfolding t by auto | |
| 2543 |   next show "\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> t then ?f x else 0) has_integral z) {a..b} \<and> norm (z - 0) < e)"
 | |
| 2544 | apply(safe,rule_tac x=1 in exI,rule) apply(rule zero_less_one,safe) apply(rule_tac x=0 in exI) | |
| 2545 | apply(rule,rule P) using assms(2) by auto | |
| 2546 | qed | |
| 2547 | next fix f::"real^'n \<Rightarrow> 'a" and a b::"real^'n" assume assm:"\<forall>x. x \<notin> s \<longrightarrow> f x = 0" | |
| 2548 |   show "(f has_integral 0) {a..b}" unfolding has_integral
 | |
| 2549 | proof(safe) case goal1 | |
| 2550 | hence "\<And>n. e / 2 / ((real n+1) * (2 ^ n)) > 0" | |
| 2551 | apply-apply(rule divide_pos_pos) defer apply(rule mult_pos_pos) by(auto simp add:field_simps) | |
| 2552 | note assms(1)[unfolded negligible_def has_integral,rule_format,OF this,of a b] note allI[OF this,of "\<lambda>x. x"] | |
| 2553 | from choice[OF this] guess d .. note d=conjunctD2[OF this[rule_format]] | |
| 2554 | show ?case apply(rule_tac x="\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x" in exI) | |
| 2555 | proof safe show "gauge (\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x)" using d(1) unfolding gauge_def by auto | |
| 2556 |       fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x) fine p" 
 | |
| 2557 | let ?goal = "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e" | |
| 2558 |       { presume "p\<noteq>{} \<Longrightarrow> ?goal" thus ?goal apply(cases "p={}") using goal1 by auto  }
 | |
| 2559 |       assume as':"p \<noteq> {}" from real_arch_simple[of "Sup((\<lambda>(x,k). norm(f x)) ` p)"] guess N ..
 | |
| 2560 | hence N:"\<forall>x\<in>(\<lambda>(x, k). norm (f x)) ` p. x \<le> real N" apply(subst(asm) Sup_finite_le_iff) using as as' by auto | |
| 2561 |       have "\<forall>i. \<exists>q. q tagged_division_of {a..b} \<and> (d i) fine q \<and> (\<forall>(x, k)\<in>p. k \<subseteq> (d i) x \<longrightarrow> (x, k) \<in> q)"
 | |
| 2562 | apply(rule,rule tagged_division_finer[OF as(1) d(1)]) by auto | |
| 2563 | from choice[OF this] guess q .. note q=conjunctD3[OF this[rule_format]] | |
| 2564 | have *:"\<And>i. (\<Sum>(x, k)\<in>q i. content k *\<^sub>R indicator s x) \<ge> 0" apply(rule setsum_nonneg,safe) | |
| 2565 | unfolding real_scaleR_def apply(rule mult_nonneg_nonneg) apply(drule tagged_division_ofD(4)[OF q(1)]) by auto | |
| 2566 | have **:"\<And>f g s t. finite s \<Longrightarrow> finite t \<Longrightarrow> (\<forall>(x,y) \<in> t. (0::real) \<le> g(x,y)) \<Longrightarrow> (\<forall>y\<in>s. \<exists>x. (x,y) \<in> t \<and> f(y) \<le> g(x,y)) \<Longrightarrow> setsum f s \<le> setsum g t" | |
| 2567 | proof- case goal1 thus ?case apply-apply(rule setsum_le_included[of s t g snd f]) prefer 4 | |
| 2568 | apply safe apply(erule_tac x=x in ballE) apply(erule exE) apply(rule_tac x="(xa,x)" in bexI) by auto qed | |
| 2569 | have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) \<le> setsum (\<lambda>i. (real i + 1) * | |
| 2570 |                      norm(setsum (\<lambda>(x,k). content k *\<^sub>R indicator s x) (q i))) {0..N+1}"
 | |
| 2571 | unfolding real_norm_def setsum_right_distrib abs_of_nonneg[OF *] diff_0_right | |
| 2572 | apply(rule order_trans,rule setsum_norm) defer apply(subst sum_sum_product) prefer 3 | |
| 2573 |       proof(rule **,safe) show "finite {(i, j) |i j. i \<in> {0..N + 1} \<and> j \<in> q i}" apply(rule finite_product_dependent) using q by auto
 | |
| 2574 | fix i a b assume as'':"(a,b) \<in> q i" show "0 \<le> (real i + 1) * (content b *\<^sub>R indicator s a)" | |
| 2575 | unfolding real_scaleR_def apply(rule mult_nonneg_nonneg) defer apply(rule mult_nonneg_nonneg) | |
| 2576 | using tagged_division_ofD(4)[OF q(1) as''] by auto | |
| 2577 | next fix i::nat show "finite (q i)" using q by auto | |
| 2578 | next fix x k assume xk:"(x,k) \<in> p" def n \<equiv> "nat \<lfloor>norm (f x)\<rfloor>" | |
| 2579 | have *:"norm (f x) \<in> (\<lambda>(x, k). norm (f x)) ` p" using xk by auto | |
| 2580 | have nfx:"real n \<le> norm(f x)" "norm(f x) \<le> real n + 1" unfolding n_def by auto | |
| 2581 |         hence "n \<in> {0..N + 1}" using N[rule_format,OF *] by auto
 | |
| 2582 | moreover note as(2)[unfolded fine_def,rule_format,OF xk,unfolded split_conv] | |
| 2583 | note q(3)[rule_format,OF xk,unfolded split_conv,rule_format,OF this] note this[unfolded n_def[symmetric]] | |
| 2584 | moreover have "norm (content k *\<^sub>R f x) \<le> (real n + 1) * (content k * indicator s x)" | |
| 2585 | proof(cases "x\<in>s") case False thus ?thesis using assm by auto | |
| 2586 | next case True have *:"content k \<ge> 0" using tagged_division_ofD(4)[OF as(1) xk] by auto | |
| 2587 | moreover have "content k * norm (f x) \<le> content k * (real n + 1)" apply(rule mult_mono) using nfx * by auto | |
| 2588 | ultimately show ?thesis unfolding abs_mult using nfx True by(auto simp add:field_simps) | |
| 2589 |         qed ultimately show "\<exists>y. (y, x, k) \<in> {(i, j) |i j. i \<in> {0..N + 1} \<and> j \<in> q i} \<and> norm (content k *\<^sub>R f x) \<le> (real y + 1) * (content k *\<^sub>R indicator s x)"
 | |
| 2590 | apply(rule_tac x=n in exI,safe) apply(rule_tac x=n in exI,rule_tac x="(x,k)" in exI,safe) by auto | |
| 2591 | qed(insert as, auto) | |
| 2592 |       also have "... \<le> setsum (\<lambda>i. e / 2 / 2 ^ i) {0..N+1}" apply(rule setsum_mono) 
 | |
| 2593 | proof- case goal1 thus ?case apply(subst mult_commute, subst pos_le_divide_eq[THEN sym]) | |
| 2594 | using d(2)[rule_format,of "q i" i] using q[rule_format] by(auto simp add:field_simps) | |
| 2595 | qed also have "... < e * inverse 2 * 2" unfolding real_divide_def setsum_right_distrib[THEN sym] | |
| 2596 | apply(rule mult_strict_left_mono) unfolding power_inverse atLeastLessThanSuc_atLeastAtMost[THEN sym] | |
| 2597 | apply(subst sumr_geometric) using goal1 by auto | |
| 2598 | finally show "?goal" by auto qed qed qed | |
| 2599 | ||
| 2600 | lemma has_integral_spike: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector" | |
| 2601 | assumes "negligible s" "(\<forall>x\<in>(t - s). g x = f x)" "(f has_integral y) t" | |
| 2602 | shows "(g has_integral y) t" | |
| 2603 | proof- { fix a b::"real^'n" and f g ::"real^'n \<Rightarrow> 'a" and y::'a
 | |
| 2604 |     assume as:"\<forall>x \<in> {a..b} - s. g x = f x" "(f has_integral y) {a..b}"
 | |
| 2605 |     have "((\<lambda>x. f x + (g x - f x)) has_integral (y + 0)) {a..b}" apply(rule has_integral_add[OF as(2)])
 | |
| 2606 | apply(rule has_integral_negligible[OF assms(1)]) using as by auto | |
| 2607 |     hence "(g has_integral y) {a..b}" by auto } note * = this
 | |
| 2608 | show ?thesis apply(subst has_integral_alt) using assms(2-) apply-apply(rule cond_cases,safe) | |
| 2609 | apply(rule *, assumption+) apply(subst(asm) has_integral_alt) unfolding if_not_P | |
| 2610 | apply(erule_tac x=e in allE,safe,rule_tac x=B in exI,safe) apply(erule_tac x=a in allE,erule_tac x=b in allE,safe) | |
| 2611 | apply(rule_tac x=z in exI,safe) apply(rule *[where fa2="\<lambda>x. if x\<in>t then f x else 0"]) by auto qed | |
| 2612 | ||
| 2613 | lemma has_integral_spike_eq: | |
| 2614 | assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x" | |
| 2615 | shows "((f has_integral y) t \<longleftrightarrow> (g has_integral y) t)" | |
| 2616 | apply rule apply(rule_tac[!] has_integral_spike[OF assms(1)]) using assms(2) by auto | |
| 2617 | ||
| 2618 | lemma integrable_spike: assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x" "f integrable_on t" | |
| 2619 | shows "g integrable_on t" | |
| 2620 | using assms unfolding integrable_on_def apply-apply(erule exE) | |
| 2621 | apply(rule,rule has_integral_spike) by fastsimp+ | |
| 2622 | ||
| 2623 | lemma integral_spike: assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x" | |
| 2624 | shows "integral t f = integral t g" | |
| 2625 | unfolding integral_def using has_integral_spike_eq[OF assms] by auto | |
| 2626 | ||
| 2627 | subsection {* Some other trivialities about negligible sets. *}
 | |
| 2628 | ||
| 2629 | lemma negligible_subset[intro]: assumes "negligible s" "t \<subseteq> s" shows "negligible t" unfolding negligible_def | |
| 2630 | proof(safe) case goal1 show ?case using assms(1)[unfolded negligible_def,rule_format,of a b] | |
| 2631 | apply-apply(rule has_integral_spike[OF assms(1)]) defer apply assumption | |
| 2632 | using assms(2) unfolding indicator_def by auto qed | |
| 2633 | ||
| 2634 | lemma negligible_diff[intro?]: assumes "negligible s" shows "negligible(s - t)" using assms by auto | |
| 2635 | ||
| 2636 | lemma negligible_inter: assumes "negligible s \<or> negligible t" shows "negligible(s \<inter> t)" using assms by auto | |
| 2637 | ||
| 2638 | lemma negligible_union: assumes "negligible s" "negligible t" shows "negligible (s \<union> t)" unfolding negligible_def | |
| 2639 | proof safe case goal1 note assm = assms[unfolded negligible_def,rule_format,of a b] | |
| 2640 | thus ?case apply(subst has_integral_spike_eq[OF assms(2)]) | |
| 2641 | defer apply assumption unfolding indicator_def by auto qed | |
| 2642 | ||
| 2643 | lemma negligible_union_eq[simp]: "negligible (s \<union> t) \<longleftrightarrow> (negligible s \<and> negligible t)" | |
| 2644 | using negligible_union by auto | |
| 2645 | ||
| 2646 | lemma negligible_sing[intro]: "negligible {a::real^'n}" 
 | |
| 2647 | proof- guess x using UNIV_witness[where 'a='n] .. | |
| 2648 | show ?thesis using negligible_standard_hyperplane[of x "a$x"] by auto qed | |
| 2649 | ||
| 2650 | lemma negligible_insert[simp]: "negligible(insert a s) \<longleftrightarrow> negligible s" | |
| 2651 | apply(subst insert_is_Un) unfolding negligible_union_eq by auto | |
| 2652 | ||
| 2653 | lemma negligible_empty[intro]: "negligible {}" by auto
 | |
| 2654 | ||
| 2655 | lemma negligible_finite[intro]: assumes "finite s" shows "negligible s" | |
| 2656 | using assms apply(induct s) by auto | |
| 2657 | ||
| 2658 | lemma negligible_unions[intro]: assumes "finite s" "\<forall>t\<in>s. negligible t" shows "negligible(\<Union>s)" | |
| 2659 | using assms by(induct,auto) | |
| 2660 | ||
| 2661 | lemma negligible: "negligible s \<longleftrightarrow> (\<forall>t::(real^'n) set. (indicator s has_integral 0) t)" | |
| 2662 | apply safe defer apply(subst negligible_def) | |
| 2663 | proof- fix t::"(real^'n) set" assume as:"negligible s" | |
| 2664 | have *:"(\<lambda>x. if x \<in> s \<inter> t then 1 else 0) = (\<lambda>x. if x\<in>t then if x\<in>s then 1 else 0 else 0)" by(rule ext,auto) | |
| 2665 | show "(indicator s has_integral 0) t" apply(subst has_integral_alt) | |
| 2666 | apply(cases,subst if_P,assumption) unfolding if_not_P apply(safe,rule as[unfolded negligible_def,rule_format]) | |
| 2667 | apply(rule_tac x=1 in exI) apply(safe,rule zero_less_one) apply(rule_tac x=0 in exI) | |
| 2668 | using negligible_subset[OF as,of "s \<inter> t"] unfolding negligible_def indicator_def unfolding * by auto qed auto | |
| 2669 | ||
| 2670 | subsection {* Finite case of the spike theorem is quite commonly needed. *}
 | |
| 2671 | ||
| 2672 | lemma has_integral_spike_finite: assumes "finite s" "\<forall>x\<in>t-s. g x = f x" | |
| 2673 | "(f has_integral y) t" shows "(g has_integral y) t" | |
| 2674 | apply(rule has_integral_spike) using assms by auto | |
| 2675 | ||
| 2676 | lemma has_integral_spike_finite_eq: assumes "finite s" "\<forall>x\<in>t-s. g x = f x" | |
| 2677 | shows "((f has_integral y) t \<longleftrightarrow> (g has_integral y) t)" | |
| 2678 | apply rule apply(rule_tac[!] has_integral_spike_finite) using assms by auto | |
| 2679 | ||
| 2680 | lemma integrable_spike_finite: | |
| 2681 | assumes "finite s" "\<forall>x\<in>t-s. g x = f x" "f integrable_on t" shows "g integrable_on t" | |
| 2682 | using assms unfolding integrable_on_def apply safe apply(rule_tac x=y in exI) | |
| 2683 | apply(rule has_integral_spike_finite) by auto | |
| 2684 | ||
| 2685 | subsection {* In particular, the boundary of an interval is negligible. *}
 | |
| 2686 | ||
| 2687 | lemma negligible_frontier_interval: "negligible({a..b} - {a<..<b})"
 | |
| 2688 | proof- let ?A = "\<Union>((\<lambda>k. {x. x$k = a$k} \<union> {x. x$k = b$k}) ` UNIV)"
 | |
| 2689 |   have "{a..b} - {a<..<b} \<subseteq> ?A" apply rule unfolding Diff_iff mem_interval not_all
 | |
| 2690 |     apply(erule conjE exE)+ apply(rule_tac X="{x. x $ xa = a $ xa} \<union> {x. x $ xa = b $ xa}" in UnionI)
 | |
| 2691 | apply(erule_tac[!] x=xa in allE) by auto | |
| 2692 | thus ?thesis apply-apply(rule negligible_subset[of ?A]) apply(rule negligible_unions[OF finite_imageI]) by auto qed | |
| 2693 | ||
| 2694 | lemma has_integral_spike_interior: | |
| 2695 |   assumes "\<forall>x\<in>{a<..<b}. g x = f x" "(f has_integral y) ({a..b})" shows "(g has_integral y) ({a..b})"
 | |
| 2696 | apply(rule has_integral_spike[OF negligible_frontier_interval _ assms(2)]) using assms(1) by auto | |
| 2697 | ||
| 2698 | lemma has_integral_spike_interior_eq: | |
| 2699 |   assumes "\<forall>x\<in>{a<..<b}. g x = f x" shows "((f has_integral y) ({a..b}) \<longleftrightarrow> (g has_integral y) ({a..b}))"
 | |
| 2700 | apply rule apply(rule_tac[!] has_integral_spike_interior) using assms by auto | |
| 2701 | ||
| 2702 | lemma integrable_spike_interior: assumes "\<forall>x\<in>{a<..<b}. g x = f x" "f integrable_on {a..b}" shows "g integrable_on {a..b}"
 | |
| 2703 | using assms unfolding integrable_on_def using has_integral_spike_interior[OF assms(1)] by auto | |
| 2704 | ||
| 2705 | subsection {* Integrability of continuous functions. *}
 | |
| 2706 | ||
| 2707 | lemma neutral_and[simp]: "neutral op \<and> = True" | |
| 2708 | unfolding neutral_def apply(rule some_equality) by auto | |
| 2709 | ||
| 2710 | lemma monoidal_and[intro]: "monoidal op \<and>" unfolding monoidal_def by auto | |
| 2711 | ||
| 2712 | lemma iterate_and[simp]: assumes "finite s" shows "(iterate op \<and>) s p \<longleftrightarrow> (\<forall>x\<in>s. p x)" using assms | |
| 2713 | apply induct unfolding iterate_insert[OF monoidal_and] by auto | |
| 2714 | ||
| 2715 | lemma operative_division_and: assumes "operative op \<and> P" "d division_of {a..b}"
 | |
| 2716 |   shows "(\<forall>i\<in>d. P i) \<longleftrightarrow> P {a..b}"
 | |
| 2717 | using operative_division[OF monoidal_and assms] division_of_finite[OF assms(2)] by auto | |
| 2718 | ||
| 2719 | lemma operative_approximable: assumes "0 \<le> e" fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 2720 | shows "operative op \<and> (\<lambda>i. \<exists>g. (\<forall>x\<in>i. norm (f x - g (x::real^'n)) \<le> e) \<and> g integrable_on i)" unfolding operative_def neutral_and | |
| 2721 | proof safe fix a b::"real^'n" { assume "content {a..b} = 0"
 | |
| 2722 |     thus "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" 
 | |
| 2723 | apply(rule_tac x=f in exI) using assms by(auto intro!:integrable_on_null) } | |
| 2724 |   { fix c k g assume as:"\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e" "g integrable_on {a..b}"
 | |
| 2725 |     show "\<exists>g. (\<forall>x\<in>{a..b} \<inter> {x. x $ k \<le> c}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b} \<inter> {x. x $ k \<le> c}"
 | |
| 2726 |       "\<exists>g. (\<forall>x\<in>{a..b} \<inter> {x. c \<le> x $ k}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b} \<inter> {x. c \<le> x $ k}"
 | |
| 2727 | apply(rule_tac[!] x=g in exI) using as(1) integrable_split[OF as(2)] by auto } | |
| 2728 |   fix c k g1 g2 assume as:"\<forall>x\<in>{a..b} \<inter> {x. x $ k \<le> c}. norm (f x - g1 x) \<le> e" "g1 integrable_on {a..b} \<inter> {x. x $ k \<le> c}"
 | |
| 2729 |                           "\<forall>x\<in>{a..b} \<inter> {x. c \<le> x $ k}. norm (f x - g2 x) \<le> e" "g2 integrable_on {a..b} \<inter> {x. c \<le> x $ k}"
 | |
| 2730 | let ?g = "\<lambda>x. if x$k = c then f x else if x$k \<le> c then g1 x else g2 x" | |
| 2731 |   show "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" apply(rule_tac x="?g" in exI)
 | |
| 2732 | proof safe case goal1 thus ?case apply- apply(cases "x$k=c", case_tac "x$k < c") using as assms by auto | |
| 2733 |   next case goal2 presume "?g integrable_on {a..b} \<inter> {x. x $ k \<le> c}" "?g integrable_on {a..b} \<inter> {x. x $ k \<ge> c}"
 | |
| 2734 | then guess h1 h2 unfolding integrable_on_def by auto from has_integral_split[OF this] | |
| 2735 | show ?case unfolding integrable_on_def by auto | |
| 2736 |   next show "?g integrable_on {a..b} \<inter> {x. x $ k \<le> c}" "?g integrable_on {a..b} \<inter> {x. x $ k \<ge> c}"
 | |
| 2737 | apply(rule_tac[!] integrable_spike[OF negligible_standard_hyperplane[of k c]]) using as(2,4) by auto qed qed | |
| 2738 | ||
| 2739 | lemma approximable_on_division: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 2740 |   assumes "0 \<le> e" "d division_of {a..b}" "\<forall>i\<in>d. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i"
 | |
| 2741 |   obtains g where "\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e" "g integrable_on {a..b}"
 | |
| 2742 | proof- note * = operative_division[OF monoidal_and operative_approximable[OF assms(1)] assms(2)] | |
| 2743 | note this[unfolded iterate_and[OF division_of_finite[OF assms(2)]]] from assms(3)[unfolded this[of f]] | |
| 2744 | guess g .. thus thesis apply-apply(rule that[of g]) by auto qed | |
| 2745 | ||
| 2746 | lemma integrable_continuous: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 2747 |   assumes "continuous_on {a..b} f" shows "f integrable_on {a..b}"
 | |
| 2748 | proof(rule integrable_uniform_limit,safe) fix e::real assume e:"0 < e" | |
| 2749 | from compact_uniformly_continuous[OF assms compact_interval,unfolded uniformly_continuous_on_def,rule_format,OF e] guess d .. | |
| 2750 | note d=conjunctD2[OF this,rule_format] | |
| 2751 | from fine_division_exists[OF gauge_ball[OF d(1)], of a b] guess p . note p=this | |
| 2752 | note p' = tagged_division_ofD[OF p(1)] | |
| 2753 | have *:"\<forall>i\<in>snd ` p. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i" | |
| 2754 | proof(safe,unfold snd_conv) fix x l assume as:"(x,l) \<in> p" | |
| 2755 | from p'(4)[OF this] guess a b apply-by(erule exE)+ note l=this | |
| 2756 | show "\<exists>g. (\<forall>x\<in>l. norm (f x - g x) \<le> e) \<and> g integrable_on l" apply(rule_tac x="\<lambda>y. f x" in exI) | |
| 2757 | proof safe show "(\<lambda>y. f x) integrable_on l" unfolding integrable_on_def l by(rule,rule has_integral_const) | |
| 2758 | fix y assume y:"y\<in>l" note fineD[OF p(2) as,unfolded subset_eq,rule_format,OF this] | |
| 2759 | note d(2)[OF _ _ this[unfolded mem_ball]] | |
| 2760 | thus "norm (f y - f x) \<le> e" using y p'(2-3)[OF as] unfolding vector_dist_norm l norm_minus_commute by fastsimp qed qed | |
| 2761 | from e have "0 \<le> e" by auto from approximable_on_division[OF this division_of_tagged_division[OF p(1)] *] guess g . | |
| 2762 |   thus "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" by auto qed 
 | |
| 2763 | ||
| 2764 | subsection {* Specialization of additivity to one dimension. *}
 | |
| 2765 | ||
| 2766 | lemma operative_1_lt: assumes "monoidal opp" | |
| 2767 |   shows "operative opp f \<longleftrightarrow> ((\<forall>a b. b \<le> a \<longrightarrow> f {a..b::real^1} = neutral opp) \<and>
 | |
| 2768 |                 (\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f{a..c})(f{c..b}) = f {a..b}))"
 | |
| 2769 | unfolding operative_def content_eq_0_1 forall_1 vector_le_def vector_less_def | |
| 2770 | proof safe fix a b c::"real^1" assume as:"\<forall>a b c. f {a..b} = opp (f ({a..b} \<inter> {x. x $ 1 \<le> c})) (f ({a..b} \<inter> {x. c \<le> x $ 1}))" "a $ 1 < c $ 1" "c $ 1 < b $ 1"
 | |
| 2771 |     from this(2-) have "{a..b} \<inter> {x. x $ 1 \<le> c $ 1} = {a..c}" "{a..b} \<inter> {x. x $ 1 \<ge> c $ 1} = {c..b}" by auto
 | |
| 2772 |     thus "opp (f {a..c}) (f {c..b}) = f {a..b}" unfolding as(1)[rule_format,of a b "c$1"] by auto
 | |
| 2773 | next fix a b::"real^1" and c::real | |
| 2774 |   assume as:"\<forall>a b. b $ 1 \<le> a $ 1 \<longrightarrow> f {a..b} = neutral opp" "\<forall>a b c. a $ 1 < c $ 1 \<and> c $ 1 < b $ 1 \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}"
 | |
| 2775 |   show "f {a..b} = opp (f ({a..b} \<inter> {x. x $ 1 \<le> c})) (f ({a..b} \<inter> {x. c \<le> x $ 1}))"
 | |
| 2776 |   proof(cases "c \<in> {a$1 .. b$1}")
 | |
| 2777 | case False hence "c<a$1 \<or> c>b$1" by auto | |
| 2778 | thus ?thesis apply-apply(erule disjE) | |
| 2779 |     proof- assume "c<a$1" hence *:"{a..b} \<inter> {x. x $ 1 \<le> c} = {1..0}"  "{a..b} \<inter> {x. c \<le> x $ 1} = {a..b}" by auto
 | |
| 2780 | show ?thesis unfolding * apply(subst as(1)[rule_format,of 0 1]) using assms by auto | |
| 2781 |     next   assume "b$1<c" hence *:"{a..b} \<inter> {x. x $ 1 \<le> c} = {a..b}"  "{a..b} \<inter> {x. c \<le> x $ 1} = {1..0}" by auto
 | |
| 2782 | show ?thesis unfolding * apply(subst as(1)[rule_format,of 0 1]) using assms by auto | |
| 2783 | qed | |
| 2784 | next case True hence *:"min (b $ 1) c = c" "max (a $ 1) c = c" by auto | |
| 2785 | show ?thesis unfolding interval_split num1_eq_iff if_True * vec_def[THEN sym] | |
| 2786 | proof(cases "c = a$1 \<or> c = b$1") | |
| 2787 |       case False thus "f {a..b} = opp (f {a..vec1 c}) (f {vec1 c..b})"
 | |
| 2788 | apply-apply(subst as(2)[rule_format]) using True by auto | |
| 2789 |     next case True thus "f {a..b} = opp (f {a..vec1 c}) (f {vec1 c..b})" apply-
 | |
| 2790 | proof(erule disjE) assume "c=a$1" hence *:"a = vec1 c" unfolding Cart_eq by auto | |
| 2791 |         hence "f {a..vec1 c} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | |
| 2792 | thus ?thesis using assms unfolding * by auto | |
| 2793 | next assume "c=b$1" hence *:"b = vec1 c" unfolding Cart_eq by auto | |
| 2794 |         hence "f {vec1 c..b} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | |
| 2795 | thus ?thesis using assms unfolding * by auto qed qed qed qed | |
| 2796 | ||
| 2797 | lemma operative_1_le: assumes "monoidal opp" | |
| 2798 |   shows "operative opp f \<longleftrightarrow> ((\<forall>a b. b \<le> a \<longrightarrow> f {a..b::real^1} = neutral opp) \<and>
 | |
| 2799 |                 (\<forall>a b c. a \<le> c \<and> c \<le> b \<longrightarrow> opp (f{a..c})(f{c..b}) = f {a..b}))"
 | |
| 2800 | unfolding operative_1_lt[OF assms] | |
| 2801 | proof safe fix a b c::"real^1" assume as:"\<forall>a b c. a \<le> c \<and> c \<le> b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}" "a < c" "c < b"
 | |
| 2802 |   show "opp (f {a..c}) (f {c..b}) = f {a..b}" apply(rule as(1)[rule_format]) using as(2-) unfolding vector_le_def vector_less_def by auto
 | |
| 2803 | next fix a b c ::"real^1" | |
| 2804 |   assume "\<forall>a b. b \<le> a \<longrightarrow> f {a..b} = neutral opp" "\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}" "a \<le> c" "c \<le> b"
 | |
| 2805 | note as = this[rule_format] | |
| 2806 |   show "opp (f {a..c}) (f {c..b}) = f {a..b}"
 | |
| 2807 | proof(cases "c = a \<or> c = b") | |
| 2808 | case False thus ?thesis apply-apply(subst as(2)) using as(3-) unfolding vector_le_def vector_less_def Cart_eq by(auto simp del:dest_vec1_eq) | |
| 2809 | next case True thus ?thesis apply- | |
| 2810 |       proof(erule disjE) assume *:"c=a" hence "f {a..c} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | |
| 2811 | thus ?thesis using assms unfolding * by auto | |
| 2812 |       next               assume *:"c=b" hence "f {c..b} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | |
| 2813 | thus ?thesis using assms unfolding * by auto qed qed qed | |
| 2814 | ||
| 2815 | subsection {* Special case of additivity we need for the FCT. *}
 | |
| 2816 | ||
| 35540 | 2817 | lemma interval_bound_sing[simp]: "interval_upperbound {a} = a"  "interval_lowerbound {a} = a"
 | 
| 2818 | unfolding interval_upperbound_def interval_lowerbound_def unfolding Cart_eq by auto | |
| 2819 | ||
| 35172 | 2820 | lemma additive_tagged_division_1: fixes f::"real^1 \<Rightarrow> 'a::real_normed_vector" | 
| 2821 |   assumes "dest_vec1 a \<le> dest_vec1 b" "p tagged_division_of {a..b}"
 | |
| 2822 | shows "setsum (\<lambda>(x,k). f(interval_upperbound k) - f(interval_lowerbound k)) p = f b - f a" | |
| 2823 | proof- let ?f = "(\<lambda>k::(real^1) set. if k = {} then 0 else f(interval_upperbound k) - f(interval_lowerbound k))"
 | |
| 2824 | have *:"operative op + ?f" unfolding operative_1_lt[OF monoidal_monoid] interval_eq_empty_1 | |
| 2825 | by(auto simp add:not_less interval_bound_1 vector_less_def) | |
| 2826 |   have **:"{a..b} \<noteq> {}" using assms(1) by auto note operative_tagged_division[OF monoidal_monoid * assms(2)]
 | |
| 2827 | note * = this[unfolded if_not_P[OF **] interval_bound_1[OF assms(1)],THEN sym ] | |
| 2828 | show ?thesis unfolding * apply(subst setsum_iterate[THEN sym]) defer | |
| 2829 | apply(rule setsum_cong2) unfolding split_paired_all split_conv using assms(2) by auto qed | |
| 2830 | ||
| 2831 | subsection {* A useful lemma allowing us to factor out the content size. *}
 | |
| 2832 | ||
| 2833 | lemma has_integral_factor_content: | |
| 2834 |   "(f has_integral i) {a..b} \<longleftrightarrow> (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p
 | |
| 2835 |     \<longrightarrow> norm (setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - i) \<le> e * content {a..b}))"
 | |
| 2836 | proof(cases "content {a..b} = 0")
 | |
| 2837 | case True show ?thesis unfolding has_integral_null_eq[OF True] apply safe | |
| 2838 | apply(rule,rule,rule gauge_trivial,safe) unfolding setsum_content_null[OF True] True defer | |
| 2839 | apply(erule_tac x=1 in allE,safe) defer apply(rule fine_division_exists[of _ a b],assumption) | |
| 2840 | apply(erule_tac x=p in allE) unfolding setsum_content_null[OF True] by auto | |
| 2841 | next case False note F = this[unfolded content_lt_nz[THEN sym]] | |
| 2842 |   let ?P = "\<lambda>e opp. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> opp (norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - i)) e)"
 | |
| 2843 | show ?thesis apply(subst has_integral) | |
| 2844 | proof safe fix e::real assume e:"e>0" | |
| 2845 |     { assume "\<forall>e>0. ?P e op <" thus "?P (e * content {a..b}) op \<le>" apply(erule_tac x="e * content {a..b}" in allE)
 | |
| 2846 | apply(erule impE) defer apply(erule exE,rule_tac x=d in exI) | |
| 2847 | using F e by(auto simp add:field_simps intro:mult_pos_pos) } | |
| 2848 |     {  assume "\<forall>e>0. ?P (e * content {a..b}) op \<le>" thus "?P e op <" apply(erule_tac x="e / 2 / content {a..b}" in allE)
 | |
| 2849 | apply(erule impE) defer apply(erule exE,rule_tac x=d in exI) | |
| 2850 | using F e by(auto simp add:field_simps intro:mult_pos_pos) } qed qed | |
| 2851 | ||
| 2852 | subsection {* Fundamental theorem of calculus. *}
 | |
| 2853 | ||
| 2854 | lemma fundamental_theorem_of_calculus: fixes f::"real^1 \<Rightarrow> 'a::banach" | |
| 2855 |   assumes "a \<le> b"  "\<forall>x\<in>{a..b}. ((f o vec1) has_vector_derivative f'(vec1 x)) (at x within {a..b})"
 | |
| 2856 |   shows "(f' has_integral (f(vec1 b) - f(vec1 a))) ({vec1 a..vec1 b})"
 | |
| 2857 | unfolding has_integral_factor_content | |
| 2858 | proof safe fix e::real assume e:"e>0" have ab:"dest_vec1 (vec1 a) \<le> dest_vec1 (vec1 b)" using assms(1) by auto | |
| 2859 | note assm = assms(2)[unfolded has_vector_derivative_def has_derivative_within_alt] | |
| 2860 |   have *:"\<And>P Q. \<forall>x\<in>{a..b}. P x \<and> (\<forall>e>0. \<exists>d>0. Q x e d) \<Longrightarrow> \<forall>x. \<exists>(d::real)>0. x\<in>{a..b} \<longrightarrow> Q x e d" using e by blast
 | |
| 2861 | note this[OF assm,unfolded gauge_existence_lemma] from choice[OF this,unfolded Ball_def[symmetric]] | |
| 2862 | guess d .. note d=conjunctD2[OF this[rule_format],rule_format] | |
| 2863 |   show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {vec1 a..vec1 b} \<and> d fine p \<longrightarrow>
 | |
| 2864 |                  norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f (vec1 b) - f (vec1 a))) \<le> e * content {vec1 a..vec1 b})"
 | |
| 2865 | apply(rule_tac x="\<lambda>x. ball x (d (dest_vec1 x))" in exI,safe) | |
| 2866 | apply(rule gauge_ball_dependent,rule,rule d(1)) | |
| 2867 |   proof- fix p assume as:"p tagged_division_of {vec1 a..vec1 b}" "(\<lambda>x. ball x (d (dest_vec1 x))) fine p"
 | |
| 2868 |     show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f (vec1 b) - f (vec1 a))) \<le> e * content {vec1 a..vec1 b}" 
 | |
| 2869 | unfolding content_1[OF ab] additive_tagged_division_1[OF ab as(1),of f,THEN sym] | |
| 2870 | unfolding vector_minus_component[THEN sym] additive_tagged_division_1[OF ab as(1),of "\<lambda>x. x",THEN sym] | |
| 2871 | apply(subst dest_vec1_setsum) unfolding setsum_right_distrib defer unfolding setsum_subtractf[THEN sym] | |
| 2872 | proof(rule setsum_norm_le,safe) fix x k assume "(x,k)\<in>p" | |
| 2873 | note xk = tagged_division_ofD(2-4)[OF as(1) this] from this(3) guess u v apply-by(erule exE)+ note k=this | |
| 2874 | have *:"dest_vec1 u \<le> dest_vec1 v" using xk unfolding k by auto | |
| 2875 | have ball:"\<forall>xa\<in>k. xa \<in> ball x (d (dest_vec1 x))" using as(2)[unfolded fine_def,rule_format,OF `(x,k)\<in>p`,unfolded split_conv subset_eq] . | |
| 2876 | have "norm ((v$1 - u$1) *\<^sub>R f' x - (f v - f u)) \<le> norm (f u - f x - (u$1 - x$1) *\<^sub>R f' x) + norm (f v - f x - (v$1 - x$1) *\<^sub>R f' x)" | |
| 2877 | apply(rule order_trans[OF _ norm_triangle_ineq4]) apply(rule eq_refl) apply(rule arg_cong[where f=norm]) | |
| 2878 | unfolding scaleR.diff_left by(auto simp add:group_simps) | |
| 2879 | also have "... \<le> e * norm (dest_vec1 u - dest_vec1 x) + e * norm (dest_vec1 v - dest_vec1 x)" | |
| 2880 | apply(rule add_mono) apply(rule d(2)[of "x$1" "u$1",unfolded o_def vec1_dest_vec1]) prefer 4 | |
| 2881 | apply(rule d(2)[of "x$1" "v$1",unfolded o_def vec1_dest_vec1]) | |
| 2882 | using ball[rule_format,of u] ball[rule_format,of v] | |
| 2883 | using xk(1-2) unfolding k subset_eq by(auto simp add:vector_dist_norm norm_real) | |
| 2884 | also have "... \<le> e * dest_vec1 (interval_upperbound k - interval_lowerbound k)" | |
| 2885 | unfolding k interval_bound_1[OF *] using xk(1) unfolding k by(auto simp add:vector_dist_norm norm_real field_simps) | |
| 2886 | finally show "norm (content k *\<^sub>R f' x - (f (interval_upperbound k) - f (interval_lowerbound k))) \<le> | |
| 2887 | e * dest_vec1 (interval_upperbound k - interval_lowerbound k)" unfolding k interval_bound_1[OF *] content_1[OF *] . | |
| 2888 | qed(insert as, auto) qed qed | |
| 2889 | ||
| 2890 | subsection {* Attempt a systematic general set of "offset" results for components. *}
 | |
| 2891 | ||
| 2892 | lemma gauge_modify: | |
| 2893 |   assumes "(\<forall>s. open s \<longrightarrow> open {x. f(x) \<in> s})" "gauge d"
 | |
| 2894 | shows "gauge (\<lambda>x y. d (f x) (f y))" | |
| 2895 | using assms unfolding gauge_def apply safe defer apply(erule_tac x="f x" in allE) | |
| 2896 | apply(erule_tac x="d (f x)" in allE) unfolding mem_def Collect_def by auto | |
| 2897 | ||
| 2898 | subsection {* Only need trivial subintervals if the interval itself is trivial. *}
 | |
| 2899 | ||
| 2900 | lemma division_of_nontrivial: fixes s::"(real^'n) set set" | |
| 2901 |   assumes "s division_of {a..b}" "content({a..b}) \<noteq> 0"
 | |
| 2902 |   shows "{k. k \<in> s \<and> content k \<noteq> 0} division_of {a..b}" using assms(1) apply-
 | |
| 2903 | proof(induct "card s" arbitrary:s rule:nat_less_induct) | |
| 2904 |   fix s::"(real^'n) set set" assume assm:"s division_of {a..b}"
 | |
| 2905 |     "\<forall>m<card s. \<forall>x. m = card x \<longrightarrow> x division_of {a..b} \<longrightarrow> {k \<in> x. content k \<noteq> 0} division_of {a..b}" 
 | |
| 2906 |   note s = division_ofD[OF assm(1)] let ?thesis = "{k \<in> s. content k \<noteq> 0} division_of {a..b}"
 | |
| 2907 |   { presume *:"{k \<in> s. content k \<noteq> 0} \<noteq> s \<Longrightarrow> ?thesis"
 | |
| 2908 | show ?thesis apply cases defer apply(rule *,assumption) using assm(1) by auto } | |
| 2909 |   assume noteq:"{k \<in> s. content k \<noteq> 0} \<noteq> s"
 | |
| 2910 | then obtain k where k:"k\<in>s" "content k = 0" by auto | |
| 2911 | from s(4)[OF k(1)] guess c d apply-by(erule exE)+ note k=k this | |
| 2912 | from k have "card s > 0" unfolding card_gt_0_iff using assm(1) by auto | |
| 2913 |   hence card:"card (s - {k}) < card s" using assm(1) k(1) apply(subst card_Diff_singleton_if) by auto
 | |
| 2914 |   have *:"closed (\<Union>(s - {k}))" apply(rule closed_Union) defer apply rule apply(drule DiffD1,drule s(4))
 | |
| 2915 | apply safe apply(rule closed_interval) using assm(1) by auto | |
| 2916 |   have "k \<subseteq> \<Union>(s - {k})" apply safe apply(rule *[unfolded closed_limpt,rule_format]) unfolding islimpt_approachable
 | |
| 2917 | proof safe fix x and e::real assume as:"x\<in>k" "e>0" | |
| 2918 | from k(2)[unfolded k content_eq_0] guess i .. | |
| 2919 | hence i:"c$i = d$i" using s(3)[OF k(1),unfolded k] unfolding interval_ne_empty by smt | |
| 2920 | hence xi:"x$i = d$i" using as unfolding k mem_interval by smt | |
| 2921 | def y \<equiv> "(\<chi> j. if j = i then if c$i \<le> (a$i + b$i) / 2 then c$i + min e (b$i - c$i) / 2 else c$i - min e (c$i - a$i) / 2 else x$j)" | |
| 2922 |     show "\<exists>x'\<in>\<Union>(s - {k}). x' \<noteq> x \<and> dist x' x < e" apply(rule_tac x=y in bexI) 
 | |
| 2923 |     proof have "d \<in> {c..d}" using s(3)[OF k(1)] unfolding k interval_eq_empty mem_interval by(fastsimp simp add: not_less)
 | |
| 2924 |       hence "d \<in> {a..b}" using s(2)[OF k(1)] unfolding k by auto note di = this[unfolded mem_interval,THEN spec[where x=i]]
 | |
| 2925 | hence xyi:"y$i \<noteq> x$i" unfolding y_def unfolding i xi Cart_lambda_beta if_P[OF refl] | |
| 2926 | apply(cases) apply(subst if_P,assumption) unfolding if_not_P not_le using as(2) using assms(2)[unfolded content_eq_0] by smt+ | |
| 2927 | thus "y \<noteq> x" unfolding Cart_eq by auto | |
| 2928 |       have *:"UNIV = insert i (UNIV - {i})" by auto
 | |
| 2929 | have "norm (y - x) < e + setsum (\<lambda>i. 0) (UNIV::'n set)" apply(rule le_less_trans[OF norm_le_l1]) | |
| 2930 | apply(subst *,subst setsum_insert) prefer 3 apply(rule add_less_le_mono) | |
| 2931 | proof- show "\<bar>(y - x) $ i\<bar> < e" unfolding y_def Cart_lambda_beta vector_minus_component if_P[OF refl] | |
| 2932 | apply(cases) apply(subst if_P,assumption) unfolding if_not_P unfolding i xi using di as(2) by auto | |
| 2933 |         show "(\<Sum>i\<in>UNIV - {i}. \<bar>(y - x) $ i\<bar>) \<le> (\<Sum>i\<in>UNIV. 0)" unfolding y_def by auto 
 | |
| 2934 | qed auto thus "dist y x < e" unfolding vector_dist_norm by auto | |
| 2935 | have "y\<notin>k" unfolding k mem_interval apply rule apply(erule_tac x=i in allE) using xyi unfolding k i xi by auto | |
| 2936 | moreover have "y \<in> \<Union>s" unfolding s mem_interval | |
| 2937 | proof note simps = y_def Cart_lambda_beta if_not_P | |
| 2938 | fix j::'n show "a $ j \<le> y $ j \<and> y $ j \<le> b $ j" | |
| 2939 |         proof(cases "j = i") case False have "x \<in> {a..b}" using s(2)[OF k(1)] as(1) by auto
 | |
| 2940 | thus ?thesis unfolding simps if_not_P[OF False] unfolding mem_interval by auto | |
| 2941 | next case True note T = this show ?thesis | |
| 2942 | proof(cases "c $ i \<le> (a $ i + b $ i) / 2") | |
| 2943 | case True show ?thesis unfolding simps if_P[OF T] if_P[OF True] unfolding i | |
| 2944 | using True as(2) di apply-apply rule unfolding T by (auto simp add:field_simps) | |
| 2945 | next case False thus ?thesis unfolding simps if_P[OF T] if_not_P[OF False] unfolding i | |
| 2946 | using True as(2) di apply-apply rule unfolding T by (auto simp add:field_simps) | |
| 2947 | qed qed qed | |
| 2948 |       ultimately show "y \<in> \<Union>(s - {k})" by auto
 | |
| 2949 |     qed qed hence "\<Union>(s - {k}) = {a..b}" unfolding s(6)[THEN sym] by auto
 | |
| 2950 |   hence  "{ka \<in> s - {k}. content ka \<noteq> 0} division_of {a..b}" apply-apply(rule assm(2)[rule_format,OF card refl])
 | |
| 2951 | apply(rule division_ofI) defer apply(rule_tac[1-4] s) using assm(1) by auto | |
| 2952 |   moreover have "{ka \<in> s - {k}. content ka \<noteq> 0} = {k \<in> s. content k \<noteq> 0}" using k by auto ultimately show ?thesis by auto qed
 | |
| 2953 | ||
| 2954 | subsection {* Integrabibility on subintervals. *}
 | |
| 2955 | ||
| 2956 | lemma operative_integrable: fixes f::"real^'n \<Rightarrow> 'a::banach" shows | |
| 2957 | "operative op \<and> (\<lambda>i. f integrable_on i)" | |
| 2958 | unfolding operative_def neutral_and apply safe apply(subst integrable_on_def) | |
| 2959 | unfolding has_integral_null_eq apply(rule,rule refl) apply(rule,assumption)+ | |
| 2960 | unfolding integrable_on_def by(auto intro: has_integral_split) | |
| 2961 | ||
| 2962 | lemma integrable_subinterval: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 2963 |   assumes "f integrable_on {a..b}" "{c..d} \<subseteq> {a..b}" shows "f integrable_on {c..d}" 
 | |
| 2964 |   apply(cases "{c..d} = {}") defer apply(rule partial_division_extend_1[OF assms(2)],assumption)
 | |
| 2965 | using operative_division_and[OF operative_integrable,THEN sym,of _ _ _ f] assms(1) by auto | |
| 2966 | ||
| 2967 | subsection {* Combining adjacent intervals in 1 dimension. *}
 | |
| 2968 | ||
| 2969 | lemma has_integral_combine: assumes "(a::real^1) \<le> c" "c \<le> b" | |
| 2970 |   "(f has_integral i) {a..c}" "(f has_integral (j::'a::banach)) {c..b}"
 | |
| 2971 |   shows "(f has_integral (i + j)) {a..b}"
 | |
| 2972 | proof- note operative_integral[of f, unfolded operative_1_le[OF monoidal_lifted[OF monoidal_monoid]]] | |
| 2973 | note conjunctD2[OF this,rule_format] note * = this(2)[OF conjI[OF assms(1-2)],unfolded if_P[OF assms(3)]] | |
| 2974 |   hence "f integrable_on {a..b}" apply- apply(rule ccontr) apply(subst(asm) if_P) defer
 | |
| 2975 | apply(subst(asm) if_P) using assms(3-) by auto | |
| 2976 | with * show ?thesis apply-apply(subst(asm) if_P) defer apply(subst(asm) if_P) defer apply(subst(asm) if_P) | |
| 2977 | unfolding lifted.simps using assms(3-) by(auto simp add: integrable_on_def integral_unique) qed | |
| 2978 | ||
| 2979 | lemma integral_combine: fixes f::"real^1 \<Rightarrow> 'a::banach" | |
| 2980 |   assumes "a \<le> c" "c \<le> b" "f integrable_on ({a..b})"
 | |
| 2981 |   shows "integral {a..c} f + integral {c..b} f = integral({a..b}) f"
 | |
| 2982 | apply(rule integral_unique[THEN sym]) apply(rule has_integral_combine[OF assms(1-2)]) | |
| 2983 | apply(rule_tac[!] integrable_integral integrable_subinterval[OF assms(3)])+ using assms(1-2) by auto | |
| 2984 | ||
| 2985 | lemma integrable_combine: fixes f::"real^1 \<Rightarrow> 'a::banach" | |
| 2986 |   assumes "a \<le> c" "c \<le> b" "f integrable_on {a..c}" "f integrable_on {c..b}"
 | |
| 2987 |   shows "f integrable_on {a..b}" using assms unfolding integrable_on_def by(fastsimp intro!:has_integral_combine)
 | |
| 2988 | ||
| 2989 | subsection {* Reduce integrability to "local" integrability. *}
 | |
| 2990 | ||
| 2991 | lemma integrable_on_little_subintervals: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 2992 |   assumes "\<forall>x\<in>{a..b}. \<exists>d>0. \<forall>u v. x \<in> {u..v} \<and> {u..v} \<subseteq> ball x d \<and> {u..v} \<subseteq> {a..b} \<longrightarrow> f integrable_on {u..v}"
 | |
| 2993 |   shows "f integrable_on {a..b}"
 | |
| 2994 | proof- have "\<forall>x. \<exists>d. x\<in>{a..b} \<longrightarrow> d>0 \<and> (\<forall>u v. x \<in> {u..v} \<and> {u..v} \<subseteq> ball x d \<and> {u..v} \<subseteq> {a..b} \<longrightarrow> f integrable_on {u..v})"
 | |
| 2995 | using assms by auto note this[unfolded gauge_existence_lemma] from choice[OF this] guess d .. note d=this[rule_format] | |
| 2996 | guess p apply(rule fine_division_exists[OF gauge_ball_dependent,of d a b]) using d by auto note p=this(1-2) | |
| 2997 | note division_of_tagged_division[OF this(1)] note * = operative_division_and[OF operative_integrable,OF this,THEN sym,of f] | |
| 2998 | show ?thesis unfolding * apply safe unfolding snd_conv | |
| 2999 | proof- fix x k assume "(x,k) \<in> p" note tagged_division_ofD(2-4)[OF p(1) this] fineD[OF p(2) this] | |
| 3000 | thus "f integrable_on k" apply safe apply(rule d[THEN conjunct2,rule_format,of x]) by auto qed qed | |
| 3001 | ||
| 3002 | subsection {* Second FCT or existence of antiderivative. *}
 | |
| 3003 | ||
| 3004 | lemma integrable_const[intro]:"(\<lambda>x. c) integrable_on {a..b}"
 | |
| 3005 | unfolding integrable_on_def by(rule,rule has_integral_const) | |
| 3006 | ||
| 3007 | lemma integral_has_vector_derivative: fixes f::"real \<Rightarrow> 'a::banach" | |
| 3008 |   assumes "continuous_on {a..b} f" "x \<in> {a..b}"
 | |
| 3009 |   shows "((\<lambda>u. integral {vec a..vec u} (f o dest_vec1)) has_vector_derivative f(x)) (at x within {a..b})"
 | |
| 3010 | unfolding has_vector_derivative_def has_derivative_within_alt | |
| 3011 | apply safe apply(rule scaleR.bounded_linear_left) | |
| 3012 | proof- fix e::real assume e:"e>0" | |
| 3013 | note compact_uniformly_continuous[OF assms(1) compact_real_interval,unfolded uniformly_continuous_on_def] | |
| 3014 | from this[rule_format,OF e] guess d apply-by(erule conjE exE)+ note d=this[rule_format] | |
| 3015 |   let ?I = "\<lambda>a b. integral {vec1 a..vec1 b} (f \<circ> dest_vec1)"
 | |
| 3016 |   show "\<exists>d>0. \<forall>y\<in>{a..b}. norm (y - x) < d \<longrightarrow> norm (?I a y - ?I a x - (y - x) *\<^sub>R f x) \<le> e * norm (y - x)"
 | |
| 3017 | proof(rule,rule,rule d,safe) case goal1 show ?case proof(cases "y < x") | |
| 3018 |       case False have "f \<circ> dest_vec1 integrable_on {vec1 a..vec1 y}" apply(rule integrable_subinterval,rule integrable_continuous)
 | |
| 3019 | apply(rule continuous_on_o_dest_vec1 assms)+ unfolding not_less using assms(2) goal1 by auto | |
| 3020 | hence *:"?I a y - ?I a x = ?I x y" unfolding group_simps apply(subst eq_commute) apply(rule integral_combine) | |
| 3021 | using False unfolding not_less using assms(2) goal1 by auto | |
| 3022 |       have **:"norm (y - x) = content {vec1 x..vec1 y}" apply(subst content_1) using False unfolding not_less by auto
 | |
| 3023 | show ?thesis unfolding ** apply(rule has_integral_bound[where f="(\<lambda>u. f u - f x) o dest_vec1"]) unfolding * unfolding o_def | |
| 3024 | defer apply(rule has_integral_sub) apply(rule integrable_integral) | |
| 3025 | apply(rule integrable_subinterval,rule integrable_continuous) apply(rule continuous_on_o_dest_vec1[unfolded o_def] assms)+ | |
| 3026 |       proof- show "{vec1 x..vec1 y} \<subseteq> {vec1 a..vec1 b}" using goal1 assms(2) by auto
 | |
| 3027 | have *:"y - x = norm(y - x)" using False by auto | |
| 3028 |         show "((\<lambda>xa. f x) has_integral (y - x) *\<^sub>R f x) {vec1 x..vec1 y}" apply(subst *) unfolding ** by auto
 | |
| 3029 |         show "\<forall>xa\<in>{vec1 x..vec1 y}. norm (f (dest_vec1 xa) - f x) \<le> e" apply safe apply(rule less_imp_le)
 | |
| 3030 | apply(rule d(2)[unfolded vector_dist_norm]) using assms(2) using goal1 by auto | |
| 3031 | qed(insert e,auto) | |
| 3032 |     next case True have "f \<circ> dest_vec1 integrable_on {vec1 a..vec1 x}" apply(rule integrable_subinterval,rule integrable_continuous)
 | |
| 3033 | apply(rule continuous_on_o_dest_vec1 assms)+ unfolding not_less using assms(2) goal1 by auto | |
| 3034 | hence *:"?I a x - ?I a y = ?I y x" unfolding group_simps apply(subst eq_commute) apply(rule integral_combine) | |
| 3035 | using True using assms(2) goal1 by auto | |
| 3036 |       have **:"norm (y - x) = content {vec1 y..vec1 x}" apply(subst content_1) using True unfolding not_less by auto
 | |
| 3037 | have ***:"\<And>fy fx c::'a. fx - fy - (y - x) *\<^sub>R c = -(fy - fx - (x - y) *\<^sub>R c)" unfolding scaleR_left.diff by auto | |
| 3038 | show ?thesis apply(subst ***) unfolding norm_minus_cancel ** | |
| 3039 | apply(rule has_integral_bound[where f="(\<lambda>u. f u - f x) o dest_vec1"]) unfolding * unfolding o_def | |
| 3040 | defer apply(rule has_integral_sub) apply(subst minus_minus[THEN sym]) unfolding minus_minus | |
| 3041 | apply(rule integrable_integral) apply(rule integrable_subinterval,rule integrable_continuous) | |
| 3042 | apply(rule continuous_on_o_dest_vec1[unfolded o_def] assms)+ | |
| 3043 |       proof- show "{vec1 y..vec1 x} \<subseteq> {vec1 a..vec1 b}" using goal1 assms(2) by auto
 | |
| 3044 | have *:"x - y = norm(y - x)" using True by auto | |
| 3045 |         show "((\<lambda>xa. f x) has_integral (x - y) *\<^sub>R f x) {vec1 y..vec1 x}" apply(subst *) unfolding ** by auto
 | |
| 3046 |         show "\<forall>xa\<in>{vec1 y..vec1 x}. norm (f (dest_vec1 xa) - f x) \<le> e" apply safe apply(rule less_imp_le)
 | |
| 3047 | apply(rule d(2)[unfolded vector_dist_norm]) using assms(2) using goal1 by auto | |
| 3048 | qed(insert e,auto) qed qed qed | |
| 3049 | ||
| 3050 | lemma integral_has_vector_derivative': fixes f::"real^1 \<Rightarrow> 'a::banach" | |
| 3051 |   assumes "continuous_on {a..b} f" "x \<in> {a..b}"
 | |
| 3052 |   shows "((\<lambda>u. (integral {a..vec u} f)) has_vector_derivative f x) (at (x$1) within {a$1..b$1})"
 | |
| 3053 | using integral_has_vector_derivative[OF continuous_on_o_vec1[OF assms(1)], of "x$1"] | |
| 3054 | unfolding o_def vec1_dest_vec1 using assms(2) by auto | |
| 3055 | ||
| 3056 | lemma antiderivative_continuous: assumes "continuous_on {a..b::real} f"
 | |
| 3057 |   obtains g where "\<forall>x\<in> {a..b}. (g has_vector_derivative (f(x)::_::banach)) (at x within {a..b})"
 | |
| 3058 | apply(rule that,rule) using integral_has_vector_derivative[OF assms] by auto | |
| 3059 | ||
| 3060 | subsection {* Combined fundamental theorem of calculus. *}
 | |
| 3061 | ||
| 3062 | lemma antiderivative_integral_continuous: fixes f::"real \<Rightarrow> 'a::banach" assumes "continuous_on {a..b} f"
 | |
| 3063 |   obtains g where "\<forall>u\<in>{a..b}. \<forall>v \<in> {a..b}. u \<le> v \<longrightarrow> ((f o dest_vec1) has_integral (g v - g u)) {vec u..vec v}"
 | |
| 3064 | proof- from antiderivative_continuous[OF assms] guess g . note g=this | |
| 3065 | show ?thesis apply(rule that[of g]) | |
| 3066 |   proof safe case goal1 have "\<forall>x\<in>{u..v}. (g has_vector_derivative f x) (at x within {u..v})"
 | |
| 3067 | apply(rule,rule has_vector_derivative_within_subset) apply(rule g[rule_format]) using goal1(1-2) by auto | |
| 3068 | thus ?case using fundamental_theorem_of_calculus[OF goal1(3),of "g o dest_vec1" "f o dest_vec1"] | |
| 3069 | unfolding o_def vec1_dest_vec1 by auto qed qed | |
| 3070 | ||
| 3071 | subsection {* General "twiddling" for interval-to-interval function image. *}
 | |
| 3072 | ||
| 3073 | lemma has_integral_twiddle: | |
| 3074 | assumes "0 < r" "\<forall>x. h(g x) = x" "\<forall>x. g(h x) = x" "\<forall>x. continuous (at x) g" | |
| 3075 |   "\<forall>u v. \<exists>w z. g ` {u..v} = {w..z}"
 | |
| 3076 |   "\<forall>u v. \<exists>w z. h ` {u..v} = {w..z}"
 | |
| 3077 |   "\<forall>u v. content(g ` {u..v}) = r * content {u..v}"
 | |
| 3078 |   "(f has_integral i) {a..b}"
 | |
| 3079 |   shows "((\<lambda>x. f(g x)) has_integral (1 / r) *\<^sub>R i) (h ` {a..b})"
 | |
| 3080 | proof- { presume *:"{a..b} \<noteq> {} \<Longrightarrow> ?thesis"
 | |
| 3081 | show ?thesis apply cases defer apply(rule *,assumption) | |
| 3082 | proof- case goal1 thus ?thesis unfolding goal1 assms(8)[unfolded goal1 has_integral_empty_eq] by auto qed } | |
| 3083 |   assume "{a..b} \<noteq> {}" from assms(6)[rule_format,of a b] guess w z apply-by(erule exE)+ note wz=this
 | |
| 3084 | have inj:"inj g" "inj h" unfolding inj_on_def apply safe apply(rule_tac[!] ccontr) | |
| 3085 | using assms(2) apply(erule_tac x=x in allE) using assms(2) apply(erule_tac x=y in allE) defer | |
| 3086 | using assms(3) apply(erule_tac x=x in allE) using assms(3) apply(erule_tac x=y in allE) by auto | |
| 3087 | show ?thesis unfolding has_integral_def has_integral_compact_interval_def apply(subst if_P) apply(rule,rule,rule wz) | |
| 3088 | proof safe fix e::real assume e:"e>0" hence "e * r > 0" using assms(1) by(rule mult_pos_pos) | |
| 3089 | from assms(8)[unfolded has_integral,rule_format,OF this] guess d apply-by(erule exE conjE)+ note d=this[rule_format] | |
| 3090 |     def d' \<equiv> "\<lambda>x y. d (g x) (g y)" have d':"\<And>x. d' x = {y. g y \<in> (d (g x))}" unfolding d'_def by(auto simp add:mem_def)
 | |
| 3091 |     show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of h ` {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e)"
 | |
| 3092 | proof(rule_tac x=d' in exI,safe) show "gauge d'" using d(1) unfolding gauge_def d' using continuous_open_preimage_univ[OF assms(4)] by auto | |
| 3093 |       fix p assume as:"p tagged_division_of h ` {a..b}" "d' fine p" note p = tagged_division_ofD[OF as(1)] 
 | |
| 3094 |       have "(\<lambda>(x, k). (g x, g ` k)) ` p tagged_division_of {a..b} \<and> d fine (\<lambda>(x, k). (g x, g ` k)) ` p" unfolding tagged_division_of 
 | |
| 3095 | proof safe show "finite ((\<lambda>(x, k). (g x, g ` k)) ` p)" using as by auto | |
| 3096 | show "d fine (\<lambda>(x, k). (g x, g ` k)) ` p" using as(2) unfolding fine_def d' by auto | |
| 3097 | fix x k assume xk[intro]:"(x,k) \<in> p" show "g x \<in> g ` k" using p(2)[OF xk] by auto | |
| 3098 |         show "\<exists>u v. g ` k = {u..v}" using p(4)[OF xk] using assms(5-6) by auto
 | |
| 3099 |         { fix y assume "y \<in> k" thus "g y \<in> {a..b}" "g y \<in> {a..b}" using p(3)[OF xk,unfolded subset_eq,rule_format,of "h (g y)"]
 | |
| 3100 | using assms(2)[rule_format,of y] unfolding inj_image_mem_iff[OF inj(2)] by auto } | |
| 3101 | fix x' k' assume xk':"(x',k') \<in> p" fix z assume "z \<in> interior (g ` k)" "z \<in> interior (g ` k')" | |
| 3102 |         hence *:"interior (g ` k) \<inter> interior (g ` k') \<noteq> {}" by auto
 | |
| 3103 | have same:"(x, k) = (x', k')" apply-apply(rule ccontr,drule p(5)[OF xk xk']) | |
| 3104 |         proof- assume as:"interior k \<inter> interior k' = {}" from nonempty_witness[OF *] guess z .
 | |
| 3105 | hence "z \<in> g ` (interior k \<inter> interior k')" using interior_image_subset[OF assms(4) inj(1)] | |
| 3106 | unfolding image_Int[OF inj(1)] by auto thus False using as by blast | |
| 3107 | qed thus "g x = g x'" by auto | |
| 3108 |         { fix z assume "z \<in> k"  thus  "g z \<in> g ` k'" using same by auto }
 | |
| 3109 |         { fix z assume "z \<in> k'" thus  "g z \<in> g ` k"  using same by auto }
 | |
| 3110 |       next fix x assume "x \<in> {a..b}" hence "h x \<in>  \<Union>{k. \<exists>x. (x, k) \<in> p}" using p(6) by auto
 | |
| 3111 | then guess X unfolding Union_iff .. note X=this from this(1) guess y unfolding mem_Collect_eq .. | |
| 3112 |         thus "x \<in> \<Union>{k. \<exists>x. (x, k) \<in> (\<lambda>(x, k). (g x, g ` k)) ` p}" apply-
 | |
| 3113 | apply(rule_tac X="g ` X" in UnionI) defer apply(rule_tac x="h x" in image_eqI) | |
| 3114 | using X(2) assms(3)[rule_format,of x] by auto | |
| 3115 | qed note ** = d(2)[OF this] have *:"inj_on (\<lambda>(x, k). (g x, g ` k)) p" using inj(1) unfolding inj_on_def by fastsimp | |
| 3116 | have "(\<Sum>(x, k)\<in>(\<lambda>(x, k). (g x, g ` k)) ` p. content k *\<^sub>R f x) - i = r *\<^sub>R (\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - i" (is "?l = _") unfolding group_simps add_left_cancel | |
| 3117 | unfolding setsum_reindex[OF *] apply(subst scaleR_right.setsum) defer apply(rule setsum_cong2) unfolding o_def split_paired_all split_conv | |
| 3118 | apply(drule p(4)) apply safe unfolding assms(7)[rule_format] using p by auto | |
| 3119 | also have "... = r *\<^sub>R ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i)" (is "_ = ?r") unfolding scaleR.diff_right scaleR.scaleR_left[THEN sym] | |
| 3120 | unfolding real_scaleR_def using assms(1) by auto finally have *:"?l = ?r" . | |
| 3121 | show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e" using ** unfolding * unfolding norm_scaleR | |
| 3122 | using assms(1) by(auto simp add:field_simps) qed qed qed | |
| 3123 | ||
| 3124 | subsection {* Special case of a basic affine transformation. *}
 | |
| 3125 | ||
| 3126 | lemma interval_image_affinity_interval: shows "\<exists>u v. (\<lambda>x. m *\<^sub>R (x::real^'n) + c) ` {a..b} = {u..v}"
 | |
| 3127 | unfolding image_affinity_interval by auto | |
| 3128 | ||
| 3129 | lemmas Cart_simps = Cart_nth.add Cart_nth.minus Cart_nth.zero Cart_nth.diff Cart_nth.scaleR real_scaleR_def Cart_lambda_beta | |
| 3130 | Cart_eq vector_le_def vector_less_def | |
| 3131 | ||
| 3132 | lemma setprod_cong2: assumes "\<And>x. x \<in> A \<Longrightarrow> f x = g x" shows "setprod f A = setprod g A" | |
| 3133 | apply(rule setprod_cong) using assms by auto | |
| 3134 | ||
| 3135 | lemma content_image_affinity_interval: | |
| 3136 |  "content((\<lambda>x::real^'n. m *\<^sub>R x + c) ` {a..b}) = (abs m) ^ CARD('n) * content {a..b}" (is "?l = ?r")
 | |
| 3137 | proof- { presume *:"{a..b}\<noteq>{} \<Longrightarrow> ?thesis" show ?thesis apply(cases,rule *,assumption)
 | |
| 3138 | unfolding not_not using content_empty by auto } | |
| 3139 |   assume as:"{a..b}\<noteq>{}" show ?thesis proof(cases "m \<ge> 0")
 | |
| 3140 | case True show ?thesis unfolding image_affinity_interval if_not_P[OF as] if_P[OF True] | |
| 3141 | unfolding content_closed_interval'[OF as] apply(subst content_closed_interval') | |
| 3142 | defer apply(subst setprod_constant[THEN sym]) apply(rule finite_UNIV) unfolding setprod_timesf[THEN sym] | |
| 3143 | apply(rule setprod_cong2) using True as unfolding interval_ne_empty Cart_simps not_le | |
| 3144 | by(auto simp add:field_simps intro:mult_left_mono) | |
| 3145 | next case False show ?thesis unfolding image_affinity_interval if_not_P[OF as] if_not_P[OF False] | |
| 3146 | unfolding content_closed_interval'[OF as] apply(subst content_closed_interval') | |
| 3147 | defer apply(subst setprod_constant[THEN sym]) apply(rule finite_UNIV) unfolding setprod_timesf[THEN sym] | |
| 3148 | apply(rule setprod_cong2) using False as unfolding interval_ne_empty Cart_simps not_le | |
| 3149 | by(auto simp add:field_simps mult_le_cancel_left_neg) qed qed | |
| 3150 | ||
| 3151 | lemma has_integral_affinity: assumes "(f has_integral i) {a..b::real^'n}" "m \<noteq> 0"
 | |
| 3152 |   shows "((\<lambda>x. f(m *\<^sub>R x + c)) has_integral ((1 / (abs(m) ^ CARD('n::finite))) *\<^sub>R i)) ((\<lambda>x. (1 / m) *\<^sub>R x + -((1 / m) *\<^sub>R c)) ` {a..b})"
 | |
| 3153 | apply(rule has_integral_twiddle,safe) unfolding Cart_eq Cart_simps apply(rule zero_less_power) | |
| 3154 | defer apply(insert assms(2), simp add:field_simps) apply(insert assms(2), simp add:field_simps) | |
| 3155 | apply(rule continuous_intros)+ apply(rule interval_image_affinity_interval)+ apply(rule content_image_affinity_interval) using assms by auto | |
| 3156 | ||
| 3157 | lemma integrable_affinity: assumes "f integrable_on {a..b}" "m \<noteq> 0"
 | |
| 3158 |   shows "(\<lambda>x. f(m *\<^sub>R x + c)) integrable_on ((\<lambda>x. (1 / m) *\<^sub>R x + -((1/m) *\<^sub>R c)) ` {a..b})"
 | |
| 3159 | using assms unfolding integrable_on_def apply safe apply(drule has_integral_affinity) by auto | |
| 3160 | ||
| 3161 | subsection {* Special case of stretching coordinate axes separately. *}
 | |
| 3162 | ||
| 3163 | lemma image_stretch_interval: | |
| 3164 |   "(\<lambda>x. \<chi> k. m k * x$k) ` {a..b::real^'n} =
 | |
| 3165 |   (if {a..b} = {} then {} else {(\<chi> k. min (m(k) * a$k) (m(k) * b$k)) ..  (\<chi> k. max (m(k) * a$k) (m(k) * b$k))})" (is "?l = ?r")
 | |
| 3166 | proof(cases "{a..b}={}") case True thus ?thesis unfolding True by auto
 | |
| 3167 | next have *:"\<And>P Q. (\<forall>i. P i) \<and> (\<forall>i. Q i) \<longleftrightarrow> (\<forall>i. P i \<and> Q i)" by auto | |
| 3168 | case False note ab = this[unfolded interval_ne_empty] | |
| 3169 | show ?thesis apply-apply(rule set_ext) | |
| 3170 | proof- fix x::"real^'n" have **:"\<And>P Q. (\<forall>i. P i = Q i) \<Longrightarrow> (\<forall>i. P i) = (\<forall>i. Q i)" by auto | |
| 3171 | show "x \<in> ?l \<longleftrightarrow> x \<in> ?r" unfolding if_not_P[OF False] | |
| 3172 | unfolding image_iff mem_interval Bex_def Cart_simps Cart_eq * | |
| 3173 | unfolding lambda_skolem[THEN sym,of "\<lambda> i xa. (a $ i \<le> xa \<and> xa \<le> b $ i) \<and> x $ i = m i * xa"] | |
| 3174 | proof(rule **,rule) fix i::'n show "(\<exists>xa. (a $ i \<le> xa \<and> xa \<le> b $ i) \<and> x $ i = m i * xa) = | |
| 3175 | (min (m i * a $ i) (m i * b $ i) \<le> x $ i \<and> x $ i \<le> max (m i * a $ i) (m i * b $ i))" | |
| 3176 | proof(cases "m i = 0") case True thus ?thesis using ab by auto | |
| 3177 | next case False hence "0 < m i \<or> 0 > m i" by auto thus ?thesis apply- | |
| 3178 | proof(erule disjE) assume as:"0 < m i" hence *:"min (m i * a $ i) (m i * b $ i) = m i * a $ i" | |
| 3179 | "max (m i * a $ i) (m i * b $ i) = m i * b $ i" using ab unfolding min_def max_def by auto | |
| 3180 | show ?thesis unfolding * apply rule defer apply(rule_tac x="1 / m i * x$i" in exI) | |
| 3181 | using as by(auto simp add:field_simps) | |
| 3182 | next assume as:"0 > m i" hence *:"max (m i * a $ i) (m i * b $ i) = m i * a $ i" | |
| 3183 | "min (m i * a $ i) (m i * b $ i) = m i * b $ i" using ab as unfolding min_def max_def | |
| 3184 | by(auto simp add:field_simps mult_le_cancel_left_neg intro:real_le_antisym) | |
| 3185 | show ?thesis unfolding * apply rule defer apply(rule_tac x="1 / m i * x$i" in exI) | |
| 3186 | using as by(auto simp add:field_simps) qed qed qed qed qed | |
| 3187 | ||
| 3188 | lemma interval_image_stretch_interval: "\<exists>u v. (\<lambda>x. \<chi> k. m k * x$k) ` {a..b::real^'n} = {u..v}"
 | |
| 3189 | unfolding image_stretch_interval by auto | |
| 3190 | ||
| 3191 | lemma content_image_stretch_interval: | |
| 3192 |   "content((\<lambda>x::real^'n. \<chi> k. m k * x$k) ` {a..b}) = abs(setprod m UNIV) * content({a..b})"
 | |
| 3193 | proof(cases "{a..b} = {}") case True thus ?thesis
 | |
| 3194 | unfolding content_def image_is_empty image_stretch_interval if_P[OF True] by auto | |
| 3195 | next case False hence "(\<lambda>x. \<chi> k. m k * x $ k) ` {a..b} \<noteq> {}" by auto
 | |
| 3196 | thus ?thesis using False unfolding content_def image_stretch_interval apply- unfolding interval_bounds' if_not_P | |
| 3197 | unfolding abs_setprod setprod_timesf[THEN sym] apply(rule setprod_cong2) unfolding Cart_lambda_beta | |
| 3198 | proof- fix i::'n have "(m i < 0 \<or> m i > 0) \<or> m i = 0" by auto | |
| 3199 | thus "max (m i * a $ i) (m i * b $ i) - min (m i * a $ i) (m i * b $ i) = \<bar>m i\<bar> * (b $ i - a $ i)" | |
| 3200 | apply-apply(erule disjE)+ unfolding min_def max_def using False[unfolded interval_ne_empty,rule_format,of i] | |
| 3201 | by(auto simp add:field_simps not_le mult_le_cancel_left_neg mult_le_cancel_left_pos) qed qed | |
| 3202 | ||
| 3203 | lemma has_integral_stretch: assumes "(f has_integral i) {a..b}" "\<forall>k. ~(m k = 0)"
 | |
| 3204 | shows "((\<lambda>x. f(\<chi> k. m k * x$k)) has_integral | |
| 3205 |              ((1/(abs(setprod m UNIV))) *\<^sub>R i)) ((\<lambda>x. \<chi> k. 1/(m k) * x$k) ` {a..b})"
 | |
| 3206 | apply(rule has_integral_twiddle) unfolding zero_less_abs_iff content_image_stretch_interval | |
| 3207 | unfolding image_stretch_interval empty_as_interval Cart_eq using assms | |
| 3208 | proof- show "\<forall>x. continuous (at x) (\<lambda>x. \<chi> k. m k * x $ k)" | |
| 3209 | apply(rule,rule linear_continuous_at) unfolding linear_linear | |
| 3210 | unfolding linear_def Cart_simps Cart_eq by(auto simp add:field_simps) qed auto | |
| 3211 | ||
| 3212 | lemma integrable_stretch: | |
| 3213 |   assumes "f integrable_on {a..b}" "\<forall>k. ~(m k = 0)"
 | |
| 3214 |   shows "(\<lambda>x. f(\<chi> k. m k * x$k)) integrable_on ((\<lambda>x. \<chi> k. 1/(m k) * x$k) ` {a..b})"
 | |
| 3215 | using assms unfolding integrable_on_def apply-apply(erule exE) apply(drule has_integral_stretch) by auto | |
| 3216 | ||
| 3217 | subsection {* even more special cases. *}
 | |
| 3218 | ||
| 3219 | lemma uminus_interval_vector[simp]:"uminus ` {a..b} = {-b .. -a::real^'n}"
 | |
| 3220 | apply(rule set_ext,rule) defer unfolding image_iff | |
| 3221 | apply(rule_tac x="-x" in bexI) by(auto simp add:vector_le_def minus_le_iff le_minus_iff) | |
| 3222 | ||
| 3223 | lemma has_integral_reflect_lemma[intro]: assumes "(f has_integral i) {a..b}"
 | |
| 3224 |   shows "((\<lambda>x. f(-x)) has_integral i) {-b .. -a}"
 | |
| 3225 | using has_integral_affinity[OF assms, of "-1" 0] by auto | |
| 3226 | ||
| 3227 | lemma has_integral_reflect[simp]: "((\<lambda>x. f(-x)) has_integral i) {-b..-a} \<longleftrightarrow> (f has_integral i) ({a..b})"
 | |
| 3228 | apply rule apply(drule_tac[!] has_integral_reflect_lemma) by auto | |
| 3229 | ||
| 3230 | lemma integrable_reflect[simp]: "(\<lambda>x. f(-x)) integrable_on {-b..-a} \<longleftrightarrow> f integrable_on {a..b}"
 | |
| 3231 | unfolding integrable_on_def by auto | |
| 3232 | ||
| 3233 | lemma integral_reflect[simp]: "integral {-b..-a} (\<lambda>x. f(-x)) = integral ({a..b}) f"
 | |
| 3234 | unfolding integral_def by auto | |
| 3235 | ||
| 3236 | subsection {* Stronger form of FCT; quite a tedious proof. *}
 | |
| 3237 | ||
| 3238 | (** move this **) | |
| 3239 | declare norm_triangle_ineq4[intro] | |
| 3240 | ||
| 3241 | lemma bgauge_existence_lemma: "(\<forall>x\<in>s. \<exists>d::real. 0 < d \<and> q d x) \<longleftrightarrow> (\<forall>x. \<exists>d>0. x\<in>s \<longrightarrow> q d x)" by(meson zero_less_one) | |
| 3242 | ||
| 3243 | lemma additive_tagged_division_1': fixes f::"real \<Rightarrow> 'a::real_normed_vector" | |
| 3244 |   assumes "a \<le> b" "p tagged_division_of {vec1 a..vec1 b}"
 | |
| 3245 | shows "setsum (\<lambda>(x,k). f (dest_vec1 (interval_upperbound k)) - f(dest_vec1 (interval_lowerbound k))) p = f b - f a" | |
| 3246 | using additive_tagged_division_1[OF _ assms(2), of "f o dest_vec1"] | |
| 3247 | unfolding o_def vec1_dest_vec1 using assms(1) by auto | |
| 3248 | ||
| 3249 | lemma split_minus[simp]:"(\<lambda>(x, k). ?f x k) x - (\<lambda>(x, k). ?g x k) x = (\<lambda>(x, k). ?f x k - ?g x k) x" | |
| 3250 | unfolding split_def by(rule refl) | |
| 3251 | ||
| 3252 | lemma norm_triangle_le_sub: "norm x + norm y \<le> e \<Longrightarrow> norm (x - y) \<le> e" | |
| 3253 | apply(subst(asm)(2) norm_minus_cancel[THEN sym]) | |
| 3254 | apply(drule norm_triangle_le) by(auto simp add:group_simps) | |
| 3255 | ||
| 3256 | lemma fundamental_theorem_of_calculus_interior: | |
| 3257 |   assumes"a \<le> b" "continuous_on {a..b} f" "\<forall>x\<in>{a<..<b}. (f has_vector_derivative f'(x)) (at x)"
 | |
| 3258 |   shows "((f' o dest_vec1) has_integral (f b - f a)) {vec a..vec b}"
 | |
| 3259 | proof- { presume *:"a < b \<Longrightarrow> ?thesis" 
 | |
| 3260 | show ?thesis proof(cases,rule *,assumption) | |
| 3261 | assume "\<not> a < b" hence "a = b" using assms(1) by auto | |
| 3262 |       hence *:"{vec a .. vec b} = {vec b}" "f b - f a = 0" apply(auto simp add: Cart_simps) by smt
 | |
| 3263 | show ?thesis unfolding *(2) apply(rule has_integral_null) unfolding content_eq_0_1 using * `a=b` by auto | |
| 3264 | qed } assume ab:"a < b" | |
| 3265 |   let ?P = "\<lambda>e. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {vec1 a..vec1 b} \<and> d fine p \<longrightarrow>
 | |
| 3266 |                    norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f' \<circ> dest_vec1) x) - (f b - f a)) \<le> e * content {vec1 a..vec1 b})"
 | |
| 3267 |   { presume "\<And>e. e>0 \<Longrightarrow> ?P e" thus ?thesis unfolding has_integral_factor_content by auto }
 | |
| 3268 | fix e::real assume e:"e>0" | |
| 3269 | note assms(3)[unfolded has_vector_derivative_def has_derivative_at_alt ball_conj_distrib] | |
| 3270 | note conjunctD2[OF this] note bounded=this(1) and this(2) | |
| 3271 |   from this(2) have "\<forall>x\<in>{a<..<b}. \<exists>d>0. \<forall>y. norm (y - x) < d \<longrightarrow> norm (f y - f x - (y - x) *\<^sub>R f' x) \<le> e/2 * norm (y - x)"
 | |
| 3272 | apply-apply safe apply(erule_tac x=x in ballE,erule_tac x="e/2" in allE) using e by auto note this[unfolded bgauge_existence_lemma] | |
| 3273 | from choice[OF this] guess d .. note conjunctD2[OF this[rule_format]] note d = this[rule_format] | |
| 3274 |   have "bounded (f ` {a..b})" apply(rule compact_imp_bounded compact_continuous_image)+ using compact_real_interval assms by auto
 | |
| 3275 | from this[unfolded bounded_pos] guess B .. note B = this[rule_format] | |
| 3276 | ||
| 3277 |   have "\<exists>da. 0 < da \<and> (\<forall>c. a \<le> c \<and> {a..c} \<subseteq> {a..b} \<and> {a..c} \<subseteq> ball a da
 | |
| 3278 |     \<longrightarrow> norm(content {vec1 a..vec1 c} *\<^sub>R f' a - (f c - f a)) \<le> (e * (b - a)) / 4)"
 | |
| 3279 |   proof- have "a\<in>{a..b}" using ab by auto
 | |
| 3280 | note assms(2)[unfolded continuous_on_eq_continuous_within,rule_format,OF this] | |
| 3281 | note * = this[unfolded continuous_within Lim_within,rule_format] have "(e * (b - a)) / 8 > 0" using e ab by(auto simp add:field_simps) | |
| 3282 | from *[OF this] guess k .. note k = conjunctD2[OF this,rule_format] | |
| 3283 | have "\<exists>l. 0 < l \<and> norm(l *\<^sub>R f' a) \<le> (e * (b - a)) / 8" | |
| 3284 | proof(cases "f' a = 0") case True | |
| 3285 | thus ?thesis apply(rule_tac x=1 in exI) using ab e by(auto intro!:mult_nonneg_nonneg) | |
| 3286 | next case False thus ?thesis | |
| 3287 | apply(rule_tac x="(e * (b - a)) / 8 / norm (f' a)" in exI) | |
| 3288 | using ab e by(auto simp add:field_simps) | |
| 3289 | qed then guess l .. note l = conjunctD2[OF this] | |
| 3290 | show ?thesis apply(rule_tac x="min k l" in exI) apply safe unfolding min_less_iff_conj apply(rule,(rule l k)+) | |
| 3291 |     proof- fix c assume as:"a \<le> c" "{a..c} \<subseteq> {a..b}" "{a..c} \<subseteq> ball a (min k l)" 
 | |
| 3292 | note as' = this[unfolded subset_eq Ball_def mem_ball dist_real_def mem_interval] | |
| 3293 | have "norm ((c - a) *\<^sub>R f' a - (f c - f a)) \<le> norm ((c - a) *\<^sub>R f' a) + norm (f c - f a)" by(rule norm_triangle_ineq4) | |
| 3294 | also have "... \<le> e * (b - a) / 8 + e * (b - a) / 8" | |
| 3295 | proof(rule add_mono) case goal1 have "\<bar>c - a\<bar> \<le> \<bar>l\<bar>" using as' by auto | |
| 3296 | thus ?case apply-apply(rule order_trans[OF _ l(2)]) unfolding norm_scaleR apply(rule mult_right_mono) by auto | |
| 3297 | next case goal2 show ?case apply(rule less_imp_le) apply(cases "a = c") defer | |
| 3298 | apply(rule k(2)[unfolded vector_dist_norm]) using as' e ab by(auto simp add:field_simps) | |
| 3299 |       qed finally show "norm (content {vec1 a..vec1 c} *\<^sub>R f' a - (f c - f a)) \<le> e * (b - a) / 4" unfolding content_1'[OF as(1)] by auto
 | |
| 3300 | qed qed then guess da .. note da=conjunctD2[OF this,rule_format] | |
| 3301 | ||
| 3302 |   have "\<exists>db>0. \<forall>c\<le>b. {c..b} \<subseteq> {a..b} \<and> {c..b} \<subseteq> ball b db \<longrightarrow> norm(content {vec1 c..vec1 b} *\<^sub>R f' b - (f b - f c)) \<le> (e * (b - a)) / 4"
 | |
| 3303 |   proof- have "b\<in>{a..b}" using ab by auto
 | |
| 3304 | note assms(2)[unfolded continuous_on_eq_continuous_within,rule_format,OF this] | |
| 3305 | note * = this[unfolded continuous_within Lim_within,rule_format] have "(e * (b - a)) / 8 > 0" using e ab by(auto simp add:field_simps) | |
| 3306 | from *[OF this] guess k .. note k = conjunctD2[OF this,rule_format] | |
| 3307 | have "\<exists>l. 0 < l \<and> norm(l *\<^sub>R f' b) \<le> (e * (b - a)) / 8" | |
| 3308 | proof(cases "f' b = 0") case True | |
| 3309 | thus ?thesis apply(rule_tac x=1 in exI) using ab e by(auto intro!:mult_nonneg_nonneg) | |
| 3310 | next case False thus ?thesis | |
| 3311 | apply(rule_tac x="(e * (b - a)) / 8 / norm (f' b)" in exI) | |
| 3312 | using ab e by(auto simp add:field_simps) | |
| 3313 | qed then guess l .. note l = conjunctD2[OF this] | |
| 3314 | show ?thesis apply(rule_tac x="min k l" in exI) apply safe unfolding min_less_iff_conj apply(rule,(rule l k)+) | |
| 3315 |     proof- fix c assume as:"c \<le> b" "{c..b} \<subseteq> {a..b}" "{c..b} \<subseteq> ball b (min k l)" 
 | |
| 3316 | note as' = this[unfolded subset_eq Ball_def mem_ball dist_real_def mem_interval] | |
| 3317 | have "norm ((b - c) *\<^sub>R f' b - (f b - f c)) \<le> norm ((b - c) *\<^sub>R f' b) + norm (f b - f c)" by(rule norm_triangle_ineq4) | |
| 3318 | also have "... \<le> e * (b - a) / 8 + e * (b - a) / 8" | |
| 3319 | proof(rule add_mono) case goal1 have "\<bar>c - b\<bar> \<le> \<bar>l\<bar>" using as' by auto | |
| 3320 | thus ?case apply-apply(rule order_trans[OF _ l(2)]) unfolding norm_scaleR apply(rule mult_right_mono) by auto | |
| 3321 | next case goal2 show ?case apply(rule less_imp_le) apply(cases "b = c") defer apply(subst norm_minus_commute) | |
| 3322 | apply(rule k(2)[unfolded vector_dist_norm]) using as' e ab by(auto simp add:field_simps) | |
| 3323 |       qed finally show "norm (content {vec1 c..vec1 b} *\<^sub>R f' b - (f b - f c)) \<le> e * (b - a) / 4" unfolding content_1'[OF as(1)] by auto
 | |
| 3324 | qed qed then guess db .. note db=conjunctD2[OF this,rule_format] | |
| 3325 | ||
| 3326 | let ?d = "(\<lambda>x. ball x (if x=vec1 a then da else if x=vec b then db else d (dest_vec1 x)))" | |
| 3327 | show "?P e" apply(rule_tac x="?d" in exI) | |
| 3328 | proof safe case goal1 show ?case apply(rule gauge_ball_dependent) using ab db(1) da(1) d(1) by auto | |
| 3329 |   next case goal2 note as=this let ?A = "{t. fst t \<in> {vec1 a, vec1 b}}" note p = tagged_division_ofD[OF goal2(1)]
 | |
| 3330 |     have pA:"p = (p \<inter> ?A) \<union> (p - ?A)" "finite (p \<inter> ?A)" "finite (p - ?A)" "(p \<inter> ?A) \<inter> (p - ?A) = {}"  using goal2 by auto
 | |
| 3331 | note * = additive_tagged_division_1'[OF assms(1) goal2(1), THEN sym] | |
| 3332 | have **:"\<And>n1 s1 n2 s2::real. n2 \<le> s2 / 2 \<Longrightarrow> n1 - s1 \<le> s2 / 2 \<Longrightarrow> n1 + n2 \<le> s1 + s2" by arith | |
| 3333 | show ?case unfolding content_1'[OF assms(1)] and *[of "\<lambda>x. x"] *[of f] setsum_subtractf[THEN sym] split_minus | |
| 3334 | unfolding setsum_right_distrib apply(subst(2) pA,subst pA) unfolding setsum_Un_disjoint[OF pA(2-)] | |
| 3335 | proof(rule norm_triangle_le,rule **) | |
| 3336 | case goal1 show ?case apply(rule order_trans,rule setsum_norm_le) apply(rule pA) defer apply(subst divide.setsum) | |
| 3337 | proof(rule order_refl,safe,unfold not_le o_def split_conv fst_conv,rule ccontr) fix x k assume as:"(x,k) \<in> p" | |
| 3338 | "e * (dest_vec1 (interval_upperbound k) - dest_vec1 (interval_lowerbound k)) / 2 | |
| 3339 | < norm (content k *\<^sub>R f' (dest_vec1 x) - (f (dest_vec1 (interval_upperbound k)) - f (dest_vec1 (interval_lowerbound k))))" | |
| 3340 | from p(4)[OF this(1)] guess u v apply-by(erule exE)+ note k=this | |
| 3341 |         hence "\<forall>i. u$i \<le> v$i" and uv:"{u,v}\<subseteq>{u..v}" using p(2)[OF as(1)] by auto note this(1) this(1)[unfolded forall_1]
 | |
| 3342 | note result = as(2)[unfolded k interval_bounds[OF this(1)] content_1[OF this(2)]] | |
| 3343 | ||
| 3344 |         assume as':"x \<noteq> vec1 a" "x \<noteq> vec1 b" hence "x$1 \<in> {a<..<b}" using p(2-3)[OF as(1)] by(auto simp add:Cart_simps) note  * = d(2)[OF this] 
 | |
| 3345 | have "norm ((v$1 - u$1) *\<^sub>R f' (x$1) - (f (v$1) - f (u$1))) = | |
| 3346 | norm ((f (u$1) - f (x$1) - (u$1 - x$1) *\<^sub>R f' (x$1)) - (f (v$1) - f (x$1) - (v$1 - x$1) *\<^sub>R f' (x$1)))" | |
| 3347 | apply(rule arg_cong[of _ _ norm]) unfolding scaleR_left.diff by auto | |
| 3348 | also have "... \<le> e / 2 * norm (u$1 - x$1) + e / 2 * norm (v$1 - x$1)" apply(rule norm_triangle_le_sub) | |
| 3349 | apply(rule add_mono) apply(rule_tac[!] *) using fineD[OF goal2(2) as(1)] as' unfolding k subset_eq | |
| 3350 | apply- apply(erule_tac x=u in ballE,erule_tac[3] x=v in ballE) using uv by(auto simp add:dist_real) | |
| 3351 | also have "... \<le> e / 2 * norm (v$1 - u$1)" using p(2)[OF as(1)] unfolding k by(auto simp add:field_simps) | |
| 3352 | finally have "e * (dest_vec1 v - dest_vec1 u) / 2 < e * (dest_vec1 v - dest_vec1 u) / 2" | |
| 3353 | apply- apply(rule less_le_trans[OF result]) using uv by auto thus False by auto qed | |
| 3354 | ||
| 3355 | next have *:"\<And>x s1 s2::real. 0 \<le> s1 \<Longrightarrow> x \<le> (s1 + s2) / 2 \<Longrightarrow> x - s1 \<le> s2 / 2" by auto | |
| 3356 | case goal2 show ?case apply(rule *) apply(rule setsum_nonneg) apply(rule,unfold split_paired_all split_conv) | |
| 3357 | defer unfolding setsum_Un_disjoint[OF pA(2-),THEN sym] pA(1)[THEN sym] unfolding setsum_right_distrib[THEN sym] | |
| 3358 | apply(subst additive_tagged_division_1[OF _ as(1)]) unfolding vec1_dest_vec1 apply(rule assms) | |
| 3359 |       proof- fix x k assume "(x,k) \<in> p \<inter> {t. fst t \<in> {vec1 a, vec1 b}}" note xk=IntD1[OF this]
 | |
| 3360 | from p(4)[OF this] guess u v apply-by(erule exE)+ note uv=this | |
| 3361 |         with p(2)[OF xk] have "{u..v} \<noteq> {}" by auto
 | |
| 3362 | thus "0 \<le> e * ((interval_upperbound k)$1 - (interval_lowerbound k)$1)" | |
| 3363 | unfolding uv using e by(auto simp add:field_simps) | |
| 3364 | next have *:"\<And>s f t e. setsum f s = setsum f t \<Longrightarrow> norm(setsum f t) \<le> e \<Longrightarrow> norm(setsum f s) \<le> e" by auto | |
| 3365 | show "norm (\<Sum>(x, k)\<in>p \<inter> ?A. content k *\<^sub>R (f' \<circ> dest_vec1) x - | |
| 3366 | (f ((interval_upperbound k)$1) - f ((interval_lowerbound k)$1))) \<le> e * (b - a) / 2" | |
| 3367 |           apply(rule *[where t="p \<inter> {t. fst t \<in> {vec1 a, vec1 b} \<and> content(snd t) \<noteq> 0}"])
 | |
| 3368 | apply(rule setsum_mono_zero_right[OF pA(2)]) defer apply(rule) unfolding split_paired_all split_conv o_def | |
| 3369 |         proof- fix x k assume "(x,k) \<in> p \<inter> {t. fst t \<in> {vec1 a, vec1 b}} - p \<inter> {t. fst t \<in> {vec1 a, vec1 b} \<and> content (snd t) \<noteq> 0}"
 | |
| 3370 | hence xk:"(x,k)\<in>p" "content k = 0" by auto from p(4)[OF xk(1)] guess u v apply-by(erule exE)+ note uv=this | |
| 3371 |           have "k\<noteq>{}" using p(2)[OF xk(1)] by auto hence *:"u = v" using xk unfolding uv content_eq_0_1 interval_eq_empty by auto
 | |
| 3372 | thus "content k *\<^sub>R (f' (x$1)) - (f ((interval_upperbound k)$1) - f ((interval_lowerbound k)$1)) = 0" using xk unfolding uv by auto | |
| 3373 |         next have *:"p \<inter> {t. fst t \<in> {vec1 a, vec1 b} \<and> content(snd t) \<noteq> 0} = 
 | |
| 3374 |             {t. t\<in>p \<and> fst t = vec1 a \<and> content(snd t) \<noteq> 0} \<union> {t. t\<in>p \<and> fst t = vec1 b \<and> content(snd t) \<noteq> 0}" by blast
 | |
| 3375 | have **:"\<And>s f. \<And>e::real. (\<forall>x y. x \<in> s \<and> y \<in> s \<longrightarrow> x = y) \<Longrightarrow> (\<forall>x. x \<in> s \<longrightarrow> norm(f x) \<le> e) \<Longrightarrow> e>0 \<Longrightarrow> norm(setsum f s) \<le> e" | |
| 3376 |           proof(case_tac "s={}") case goal2 then obtain x where "x\<in>s" by auto hence *:"s = {x}" using goal2(1) by auto
 | |
| 3377 | thus ?case using `x\<in>s` goal2(2) by auto | |
| 3378 | qed auto | |
| 3379 | case goal2 show ?case apply(subst *, subst setsum_Un_disjoint) prefer 4 apply(rule order_trans[of _ "e * (b - a)/4 + e * (b - a)/4"]) | |
| 3380 | apply(rule norm_triangle_le,rule add_mono) apply(rule_tac[1-2] **) | |
| 3381 |           proof- let ?B = "\<lambda>x. {t \<in> p. fst t = vec1 x \<and> content (snd t) \<noteq> 0}"
 | |
| 3382 |             have pa:"\<And>k. (vec1 a, k) \<in> p \<Longrightarrow> \<exists>v. k = {vec1 a .. v} \<and> vec1 a \<le> v" 
 | |
| 3383 | proof- case goal1 guess u v using p(4)[OF goal1] apply-by(erule exE)+ note uv=this | |
| 3384 | have *:"u \<le> v" using p(2)[OF goal1] unfolding uv by auto | |
| 3385 |               have u:"u = vec1 a" proof(rule ccontr)  have "u \<in> {u..v}" using p(2-3)[OF goal1(1)] unfolding uv by auto 
 | |
| 3386 | have "u \<ge> vec1 a" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto moreover assume "u\<noteq>vec1 a" ultimately | |
| 3387 | have "u > vec1 a" unfolding Cart_simps by auto | |
| 3388 | thus False using p(2)[OF goal1(1)] unfolding uv by(auto simp add:Cart_simps) | |
| 3389 | qed thus ?case apply(rule_tac x=v in exI) unfolding uv using * by auto | |
| 3390 | qed | |
| 3391 |             have pb:"\<And>k. (vec1 b, k) \<in> p \<Longrightarrow> \<exists>v. k = {v .. vec1 b} \<and> vec1 b \<ge> v" 
 | |
| 3392 | proof- case goal1 guess u v using p(4)[OF goal1] apply-by(erule exE)+ note uv=this | |
| 3393 | have *:"u \<le> v" using p(2)[OF goal1] unfolding uv by auto | |
| 3394 |               have u:"v = vec1 b" proof(rule ccontr)  have "u \<in> {u..v}" using p(2-3)[OF goal1(1)] unfolding uv by auto 
 | |
| 3395 | have "v \<le> vec1 b" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto moreover assume "v\<noteq>vec1 b" ultimately | |
| 3396 | have "v < vec1 b" unfolding Cart_simps by auto | |
| 3397 | thus False using p(2)[OF goal1(1)] unfolding uv by(auto simp add:Cart_simps) | |
| 3398 | qed thus ?case apply(rule_tac x=u in exI) unfolding uv using * by auto | |
| 3399 | qed | |
| 3400 | ||
| 3401 | show "\<forall>x y. x \<in> ?B a \<and> y \<in> ?B a \<longrightarrow> x = y" apply(rule,rule,rule,unfold split_paired_all) | |
| 3402 | unfolding mem_Collect_eq fst_conv snd_conv apply safe | |
| 3403 | proof- fix x k k' assume k:"(vec1 a, k) \<in> p" "(vec1 a, k') \<in> p" "content k \<noteq> 0" "content k' \<noteq> 0" | |
| 3404 | guess v using pa[OF k(1)] .. note v = conjunctD2[OF this] | |
| 3405 | guess v' using pa[OF k(2)] .. note v' = conjunctD2[OF this] let ?v = "vec1 (min (v$1) (v'$1))" | |
| 3406 |               have "{vec1 a <..< ?v} \<subseteq> k \<inter> k'" unfolding v v' by(auto simp add:Cart_simps) note subset_interior[OF this,unfolded interior_inter]
 | |
| 3407 |               moreover have "vec1 ((a + ?v$1)/2) \<in> {vec1 a <..< ?v}" using k(3-) unfolding v v' content_eq_0_1 not_le by(auto simp add:Cart_simps)
 | |
| 3408 | ultimately have "vec1 ((a + ?v$1)/2) \<in> interior k \<inter> interior k'" unfolding interior_open[OF open_interval] by auto | |
| 3409 | hence *:"k = k'" apply- apply(rule ccontr) using p(5)[OF k(1-2)] by auto | |
| 3410 |               { assume "x\<in>k" thus "x\<in>k'" unfolding * . } { assume "x\<in>k'" thus "x\<in>k" unfolding * . }
 | |
| 3411 | qed | |
| 3412 | show "\<forall>x y. x \<in> ?B b \<and> y \<in> ?B b \<longrightarrow> x = y" apply(rule,rule,rule,unfold split_paired_all) | |
| 3413 | unfolding mem_Collect_eq fst_conv snd_conv apply safe | |
| 3414 | proof- fix x k k' assume k:"(vec1 b, k) \<in> p" "(vec1 b, k') \<in> p" "content k \<noteq> 0" "content k' \<noteq> 0" | |
| 3415 | guess v using pb[OF k(1)] .. note v = conjunctD2[OF this] | |
| 3416 | guess v' using pb[OF k(2)] .. note v' = conjunctD2[OF this] let ?v = "vec1 (max (v$1) (v'$1))" | |
| 3417 |               have "{?v <..< vec1 b} \<subseteq> k \<inter> k'" unfolding v v' by(auto simp add:Cart_simps) note subset_interior[OF this,unfolded interior_inter]
 | |
| 3418 |               moreover have "vec1 ((b + ?v$1)/2) \<in> {?v <..< vec1 b}" using k(3-) unfolding v v' content_eq_0_1 not_le by(auto simp add:Cart_simps)
 | |
| 3419 | ultimately have "vec1 ((b + ?v$1)/2) \<in> interior k \<inter> interior k'" unfolding interior_open[OF open_interval] by auto | |
| 3420 | hence *:"k = k'" apply- apply(rule ccontr) using p(5)[OF k(1-2)] by auto | |
| 3421 |               { assume "x\<in>k" thus "x\<in>k'" unfolding * . } { assume "x\<in>k'" thus "x\<in>k" unfolding * . }
 | |
| 3422 | qed | |
| 3423 | ||
| 3424 | let ?a = a and ?b = b (* a is something else while proofing the next theorem. *) | |
| 3425 | show "\<forall>x. x \<in> ?B a \<longrightarrow> norm ((\<lambda>(x, k). content k *\<^sub>R f' (x$1) - (f ((interval_upperbound k)$1) - f ((interval_lowerbound k)$1))) x) | |
| 3426 | \<le> e * (b - a) / 4" apply safe unfolding fst_conv snd_conv apply safe unfolding vec1_dest_vec1 | |
| 3427 | proof- case goal1 guess v using pa[OF goal1(1)] .. note v = conjunctD2[OF this] | |
| 3428 |               have "vec1 ?a\<in>{vec1 ?a..v}" using v(2) by auto hence "dest_vec1 v \<le> ?b" using p(3)[OF goal1(1)] unfolding subset_eq v by auto
 | |
| 3429 |               moreover have "{?a..dest_vec1 v} \<subseteq> ball ?a da" using fineD[OF as(2) goal1(1)]
 | |
| 3430 | apply-apply(subst(asm) if_P,rule refl) unfolding subset_eq apply safe apply(erule_tac x="vec1 x" in ballE) | |
| 3431 | by(auto simp add:Cart_simps subset_eq dist_real v dist_real_def) ultimately | |
| 3432 | show ?case unfolding v unfolding interval_bounds[OF v(2)[unfolded v vector_le_def]] vec1_dest_vec1 apply- | |
| 3433 | apply(rule da(2)[of "v$1",unfolded vec1_dest_vec1]) | |
| 3434 | using goal1 fineD[OF as(2) goal1(1)] unfolding v content_eq_0_1 by auto | |
| 3435 | qed | |
| 3436 | show "\<forall>x. x \<in> ?B b \<longrightarrow> norm ((\<lambda>(x, k). content k *\<^sub>R f' (x$1) - (f ((interval_upperbound k)$1) - f ((interval_lowerbound k)$1))) x) | |
| 3437 | \<le> e * (b - a) / 4" apply safe unfolding fst_conv snd_conv apply safe unfolding vec1_dest_vec1 | |
| 3438 | proof- case goal1 guess v using pb[OF goal1(1)] .. note v = conjunctD2[OF this] | |
| 3439 |               have "vec1 ?b\<in>{v..vec1 ?b}" using v(2) by auto hence "dest_vec1 v \<ge> ?a" using p(3)[OF goal1(1)] unfolding subset_eq v by auto
 | |
| 3440 |               moreover have "{dest_vec1 v..?b} \<subseteq> ball ?b db" using fineD[OF as(2) goal1(1)]
 | |
| 3441 | apply-apply(subst(asm) if_P,rule refl) unfolding subset_eq apply safe apply(erule_tac x="vec1 x" in ballE) using ab | |
| 3442 | by(auto simp add:Cart_simps subset_eq dist_real v dist_real_def) ultimately | |
| 3443 | show ?case unfolding v unfolding interval_bounds[OF v(2)[unfolded v vector_le_def]] vec1_dest_vec1 apply- | |
| 3444 | apply(rule db(2)[of "v$1",unfolded vec1_dest_vec1]) | |
| 3445 | using goal1 fineD[OF as(2) goal1(1)] unfolding v content_eq_0_1 by auto | |
| 3446 | qed | |
| 3447 | qed(insert p(1) ab e, auto simp add:field_simps) qed auto qed qed qed qed | |
| 3448 | ||
| 3449 | subsection {* Stronger form with finite number of exceptional points. *}
 | |
| 3450 | ||
| 3451 | lemma fundamental_theorem_of_calculus_interior_strong: fixes f::"real \<Rightarrow> 'a::banach" | |
| 3452 |   assumes"finite s" "a \<le> b" "continuous_on {a..b} f"
 | |
| 3453 |   "\<forall>x\<in>{a<..<b} - s. (f has_vector_derivative f'(x)) (at x)"
 | |
| 3454 |   shows "((f' o dest_vec1) has_integral (f b - f a)) {vec a..vec b}" using assms apply- 
 | |
| 3455 | proof(induct "card s" arbitrary:s a b) | |
| 3456 | case 0 show ?case apply(rule fundamental_theorem_of_calculus_interior) using 0 by auto | |
| 3457 | next case (Suc n) from this(2) guess c s' apply-apply(subst(asm) eq_commute) unfolding card_Suc_eq | |
| 3458 | apply(subst(asm)(2) eq_commute) by(erule exE conjE)+ note cs = this[rule_format] | |
| 3459 |   show ?case proof(cases "c\<in>{a<..<b}")
 | |
| 3460 | case False thus ?thesis apply- apply(rule Suc(1)[OF cs(3) _ Suc(4,5)]) apply safe defer | |
| 3461 | apply(rule Suc(6)[rule_format]) using Suc(3) unfolding cs by auto | |
| 3462 | next have *:"f b - f a = (f c - f a) + (f b - f c)" by auto | |
| 3463 | case True hence "vec1 a \<le> vec1 c" "vec1 c \<le> vec1 b" by auto | |
| 3464 | thus ?thesis apply(subst *) apply(rule has_integral_combine) apply assumption+ | |
| 3465 | apply(rule_tac[!] Suc(1)[OF cs(3)]) using Suc(3) unfolding cs | |
| 3466 |     proof- show "continuous_on {a..c} f" "continuous_on {c..b} f"
 | |
| 3467 | apply(rule_tac[!] continuous_on_subset[OF Suc(5)]) using True by auto | |
| 3468 |       let ?P = "\<lambda>i j. \<forall>x\<in>{i<..<j} - s'. (f has_vector_derivative f' x) (at x)"
 | |
| 3469 | show "?P a c" "?P c b" apply safe apply(rule_tac[!] Suc(6)[rule_format]) using True unfolding cs by auto | |
| 3470 | qed auto qed qed | |
| 3471 | ||
| 3472 | lemma fundamental_theorem_of_calculus_strong: fixes f::"real \<Rightarrow> 'a::banach" | |
| 3473 |   assumes "finite s" "a \<le> b" "continuous_on {a..b} f"
 | |
| 3474 |   "\<forall>x\<in>{a..b} - s. (f has_vector_derivative f'(x)) (at x)"
 | |
| 3475 |   shows "((f' o dest_vec1) has_integral (f(b) - f(a))) {vec1 a..vec1 b}"
 | |
| 3476 | apply(rule fundamental_theorem_of_calculus_interior_strong[OF assms(1-3), of f']) | |
| 3477 | using assms(4) by auto | |
| 3478 | ||
| 35751 | 3479 | lemma indefinite_integral_continuous_left: fixes f::"real^1 \<Rightarrow> 'a::banach" | 
| 3480 |   assumes "f integrable_on {a..b}" "a < c" "c \<le> b" "0 < e"
 | |
| 3481 |   obtains d where "0 < d" "\<forall>t. c$1 - d < t$1 \<and> t \<le> c \<longrightarrow> norm(integral {a..c} f - integral {a..t} f) < e"
 | |
| 3482 | proof- have "\<exists>w>0. \<forall>t. c$1 - w < t$1 \<and> t < c \<longrightarrow> norm(f c) * norm(c - t) < e / 3" | |
| 3483 | proof(cases "f c = 0") case False hence "0 < e / 3 / norm (f c)" | |
| 3484 | apply-apply(rule divide_pos_pos) using `e>0` by auto | |
| 3485 | thus ?thesis apply-apply(rule,rule,assumption,safe) | |
| 3486 | proof- fix t assume as:"t < c" and "c$1 - e / 3 / norm (f c) < t$(1::1)" | |
| 3487 | hence "c$1 - t$1 < e / 3 / norm (f c)" by auto | |
| 3488 | hence "norm (c - t) < e / 3 / norm (f c)" using as unfolding norm_vector_1 vector_less_def by auto | |
| 3489 | thus "norm (f c) * norm (c - t) < e / 3" using False apply- | |
| 3490 | apply(subst real_mult_commute) apply(subst pos_less_divide_eq[THEN sym]) by auto | |
| 3491 | qed next case True show ?thesis apply(rule_tac x=1 in exI) unfolding True using `e>0` by auto | |
| 3492 | qed then guess w .. note w = conjunctD2[OF this,rule_format] | |
| 3493 | ||
| 3494 | have *:"e / 3 > 0" using assms by auto | |
| 3495 |   have "f integrable_on {a..c}" apply(rule integrable_subinterval[OF assms(1)]) using assms(2-3) by auto
 | |
| 3496 | from integrable_integral[OF this,unfolded has_integral,rule_format,OF *] guess d1 .. | |
| 3497 | note d1 = conjunctD2[OF this,rule_format] def d \<equiv> "\<lambda>x. ball x w \<inter> d1 x" | |
| 3498 | have "gauge d" unfolding d_def using w(1) d1 by auto | |
| 3499 | note this[unfolded gauge_def,rule_format,of c] note conjunctD2[OF this] | |
| 3500 | from this(2)[unfolded open_contains_ball,rule_format,OF this(1)] guess k .. note k=conjunctD2[OF this] | |
| 3501 | ||
| 3502 | let ?d = "min k (c$1 - a$1)/2" show ?thesis apply(rule that[of ?d]) | |
| 3503 | proof safe show "?d > 0" using k(1) using assms(2) unfolding vector_less_def by auto | |
| 3504 |     fix t assume as:"c$1 - ?d < t$1" "t \<le> c" let ?thesis = "norm (integral {a..c} f - integral {a..t} f) < e"
 | |
| 3505 |     { presume *:"t < c \<Longrightarrow> ?thesis"
 | |
| 3506 | show ?thesis apply(cases "t = c") defer apply(rule *) | |
| 3507 | unfolding vector_less_def apply(subst less_le) using `e>0` as(2) by auto } assume "t < c" | |
| 3508 | ||
| 3509 |     have "f integrable_on {a..t}" apply(rule integrable_subinterval[OF assms(1)]) using assms(2-3) as(2) by auto
 | |
| 3510 | from integrable_integral[OF this,unfolded has_integral,rule_format,OF *] guess d2 .. | |
| 3511 | note d2 = conjunctD2[OF this,rule_format] | |
| 3512 | def d3 \<equiv> "\<lambda>x. if x \<le> t then d1 x \<inter> d2 x else d1 x" | |
| 3513 | have "gauge d3" using d2(1) d1(1) unfolding d3_def gauge_def by auto | |
| 3514 | from fine_division_exists[OF this, of a t] guess p . note p=this | |
| 3515 | note p'=tagged_division_ofD[OF this(1)] | |
| 3516 | have pt:"\<forall>(x,k)\<in>p. x$1 \<le> t$1" proof safe case goal1 from p'(2,3)[OF this] show ?case by auto qed | |
| 3517 | with p(2) have "d2 fine p" unfolding fine_def d3_def apply safe apply(erule_tac x="(a,b)" in ballE)+ by auto | |
| 3518 | note d2_fin = d2(2)[OF conjI[OF p(1) this]] | |
| 3519 | ||
| 3520 |     have *:"{a..c} \<inter> {x. x$1 \<le> t$1} = {a..t}" "{a..c} \<inter> {x. x$1 \<ge> t$1} = {t..c}"
 | |
| 3521 | using assms(2-3) as by(auto simp add:field_simps) | |
| 3522 |     have "p \<union> {(c, {t..c})} tagged_division_of {a..c} \<and> d1 fine p \<union> {(c, {t..c})}" apply rule
 | |
| 3523 | apply(rule tagged_division_union_interval[of _ _ _ 1 "t$1"]) unfolding * apply(rule p) | |
| 3524 | apply(rule tagged_division_of_self) unfolding fine_def | |
| 3525 | proof safe fix x k y assume "(x,k)\<in>p" "y\<in>k" thus "y\<in>d1 x" | |
| 3526 | using p(2) pt unfolding fine_def d3_def apply- apply(erule_tac x="(x,k)" in ballE)+ by auto | |
| 3527 |     next fix x assume "x\<in>{t..c}" hence "dist c x < k" unfolding dist_real
 | |
| 3528 | using as(1) by(auto simp add:field_simps) | |
| 3529 | thus "x \<in> d1 c" using k(2) unfolding d_def by auto | |
| 3530 | qed(insert as(2), auto) note d1_fin = d1(2)[OF this] | |
| 3531 | ||
| 3532 |     have *:"integral{a..c} f - integral {a..t} f = -(((c$1 - t$1) *\<^sub>R f c + (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)) -
 | |
| 3533 |         integral {a..c} f) + ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - integral {a..t} f) + (c$1 - t$1) *\<^sub>R f c" 
 | |
| 3534 | "e = (e/3 + e/3) + e/3" by auto | |
| 3535 |     have **:"(\<Sum>(x, k)\<in>p \<union> {(c, {t..c})}. content k *\<^sub>R f x) = (c$1 - t$1) *\<^sub>R f c + (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)"
 | |
| 3536 |     proof- have **:"\<And>x F. F \<union> {x} = insert x F" by auto
 | |
| 3537 |       have "(c, {t..c}) \<notin> p" proof safe case goal1 from p'(2-3)[OF this]
 | |
| 3538 |         have "c \<in> {a..t}" by auto thus False using `t<c` unfolding vector_less_def by auto
 | |
| 3539 | qed thus ?thesis unfolding ** apply- apply(subst setsum_insert) apply(rule p') | |
| 3540 | unfolding split_conv defer apply(subst content_1) using as(2) by auto qed | |
| 3541 | ||
| 3542 | have ***:"c$1 - w < t$1 \<and> t < c" | |
| 3543 | proof- have "c$1 - k < t$1" using `k>0` as(1) by(auto simp add:field_simps) | |
| 3544 | moreover have "k \<le> w" apply(rule ccontr) using k(2) | |
| 3545 | unfolding subset_eq apply(erule_tac x="c + vec ((k + w)/2)" in ballE) | |
| 3546 | unfolding d_def using `k>0` `w>0` by(auto simp add:field_simps not_le not_less dist_real) | |
| 3547 | ultimately show ?thesis using `t<c` by(auto simp add:field_simps) qed | |
| 3548 | ||
| 3549 | show ?thesis unfolding *(1) apply(subst *(2)) apply(rule norm_triangle_lt add_strict_mono)+ | |
| 3550 | unfolding norm_minus_cancel apply(rule d1_fin[unfolded **]) apply(rule d2_fin) | |
| 3551 | using w(2)[OF ***] unfolding norm_scaleR norm_real by(auto simp add:field_simps) qed qed | |
| 3552 | ||
| 3553 | lemma indefinite_integral_continuous_right: fixes f::"real^1 \<Rightarrow> 'a::banach" | |
| 3554 |   assumes "f integrable_on {a..b}" "a \<le> c" "c < b" "0 < e"
 | |
| 3555 |   obtains d where "0 < d" "\<forall>t. c \<le> t \<and> t$1 < c$1 + d \<longrightarrow> norm(integral{a..c} f - integral{a..t} f) < e"
 | |
| 3556 | proof- have *:"(\<lambda>x. f (- x)) integrable_on {- b..- a}" "- b < - c" "- c \<le> - a"
 | |
| 3557 | using assms unfolding Cart_simps by auto | |
| 3558 | from indefinite_integral_continuous_left[OF * `e>0`] guess d . note d = this let ?d = "min d (b$1 - c$1)" | |
| 3559 | show ?thesis apply(rule that[of "?d"]) | |
| 3560 | proof safe show "0 < ?d" using d(1) assms(3) unfolding Cart_simps by auto | |
| 3561 | fix t::"_^1" assume as:"c \<le> t" "t$1 < c$1 + ?d" | |
| 3562 |     have *:"integral{a..c} f = integral{a..b} f - integral{c..b} f"
 | |
| 3563 |       "integral{a..t} f = integral{a..b} f - integral{t..b} f" unfolding group_simps
 | |
| 3564 | apply(rule_tac[!] integral_combine) using assms as unfolding Cart_simps by auto | |
| 3565 | have "(- c)$1 - d < (- t)$1 \<and> - t \<le> - c" using as by auto note d(2)[rule_format,OF this] | |
| 3566 |     thus "norm (integral {a..c} f - integral {a..t} f) < e" unfolding * 
 | |
| 3567 | unfolding integral_reflect apply-apply(subst norm_minus_commute) by(auto simp add:group_simps) qed qed | |
| 3568 | ||
| 3569 | declare dest_vec1_eq[simp del] not_less[simp] not_le[simp] | |
| 3570 | ||
| 3571 | lemma indefinite_integral_continuous: fixes f::"real^1 \<Rightarrow> 'a::banach" | |
| 3572 |   assumes "f integrable_on {a..b}" shows  "continuous_on {a..b} (\<lambda>x. integral {a..x} f)"
 | |
| 3573 | proof(unfold continuous_on_def, safe)  fix x e assume as:"x\<in>{a..b}" "0<(e::real)"
 | |
| 3574 |   let ?thesis = "\<exists>d>0. \<forall>x'\<in>{a..b}. dist x' x < d \<longrightarrow> dist (integral {a..x'} f) (integral {a..x} f) < e"
 | |
| 3575 |   { presume *:"a<b \<Longrightarrow> ?thesis"
 | |
| 3576 | show ?thesis apply(cases,rule *,assumption) | |
| 3577 |     proof- case goal1 hence "{a..b} = {x}" using as(1) unfolding Cart_simps  
 | |
| 3578 | by(auto simp only:field_simps not_less Cart_eq forall_1 mem_interval) | |
| 3579 | thus ?case using `e>0` by auto | |
| 3580 | qed } assume "a<b" | |
| 3581 | have "(x=a \<or> x=b) \<or> (a<x \<and> x<b)" using as(1) by (auto simp add: Cart_simps) | |
| 3582 | thus ?thesis apply-apply(erule disjE)+ | |
| 3583 | proof- assume "x=a" have "a \<le> a" by auto | |
| 3584 | from indefinite_integral_continuous_right[OF assms(1) this `a<b` `e>0`] guess d . note d=this | |
| 3585 | show ?thesis apply(rule,rule,rule d,safe) apply(subst dist_commute) | |
| 3586 | unfolding `x=a` vector_dist_norm apply(rule d(2)[rule_format]) unfolding norm_real by auto | |
| 3587 | next assume "x=b" have "b \<le> b" by auto | |
| 3588 | from indefinite_integral_continuous_left[OF assms(1) `a<b` this `e>0`] guess d . note d=this | |
| 3589 | show ?thesis apply(rule,rule,rule d,safe) apply(subst dist_commute) | |
| 3590 | unfolding `x=b` vector_dist_norm apply(rule d(2)[rule_format]) unfolding norm_real by auto | |
| 3591 | next assume "a<x \<and> x<b" hence xl:"a<x" "x\<le>b" and xr:"a\<le>x" "x<b" by(auto simp add:Cart_simps) | |
| 3592 | from indefinite_integral_continuous_left [OF assms(1) xl `e>0`] guess d1 . note d1=this | |
| 3593 | from indefinite_integral_continuous_right[OF assms(1) xr `e>0`] guess d2 . note d2=this | |
| 3594 | show ?thesis apply(rule_tac x="min d1 d2" in exI) | |
| 3595 | proof safe show "0 < min d1 d2" using d1 d2 by auto | |
| 3596 |       fix y assume "y\<in>{a..b}" "dist y x < min d1 d2"
 | |
| 3597 |       thus "dist (integral {a..y} f) (integral {a..x} f) < e" apply-apply(subst dist_commute)
 | |
| 3598 | apply(cases "y < x") unfolding vector_dist_norm apply(rule d1(2)[rule_format]) defer | |
| 3599 | apply(rule d2(2)[rule_format]) unfolding Cart_simps not_less norm_real by(auto simp add:field_simps) | |
| 3600 | qed qed qed | |
| 3601 | ||
| 3602 | subsection {* This doesn't directly involve integration, but that gives an easy proof. *}
 | |
| 3603 | ||
| 3604 | lemma has_derivative_zero_unique_strong_interval: fixes f::"real \<Rightarrow> 'a::banach" | |
| 3605 |   assumes "finite k" "continuous_on {a..b} f" "f a = y"
 | |
| 3606 |   "\<forall>x\<in>({a..b} - k). (f has_derivative (\<lambda>h. 0)) (at x within {a..b})" "x \<in> {a..b}"
 | |
| 3607 | shows "f x = y" | |
| 3608 | proof- have ab:"a\<le>b" using assms by auto | |
| 3609 | have *:"(\<lambda>x. 0\<Colon>'a) \<circ> dest_vec1 = (\<lambda>x. 0)" unfolding o_def by auto have **:"a \<le> x" using assms by auto | |
| 3610 |   have "((\<lambda>x. 0\<Colon>'a) \<circ> dest_vec1 has_integral f x - f a) {vec1 a..vec1 x}"
 | |
| 3611 | apply(rule fundamental_theorem_of_calculus_interior_strong[OF assms(1) ** ]) | |
| 3612 | apply(rule continuous_on_subset[OF assms(2)]) defer | |
| 3613 | apply safe unfolding has_vector_derivative_def apply(subst has_derivative_within_open[THEN sym]) | |
| 3614 |     apply assumption apply(rule open_interval_real) apply(rule has_derivative_within_subset[where s="{a..b}"])
 | |
| 3615 | using assms(4) assms(5) by auto note this[unfolded *] | |
| 3616 | note has_integral_unique[OF has_integral_0 this] | |
| 3617 | thus ?thesis unfolding assms by auto qed | |
| 3618 | ||
| 3619 | subsection {* Generalize a bit to any convex set. *}
 | |
| 3620 | ||
| 3621 | lemmas scaleR_simps = scaleR_zero_left scaleR_minus_left scaleR_left_diff_distrib | |
| 3622 | scaleR_zero_right scaleR_minus_right scaleR_right_diff_distrib scaleR_eq_0_iff | |
| 3623 | scaleR_cancel_left scaleR_cancel_right scaleR.add_right scaleR.add_left real_vector_class.scaleR_one | |
| 3624 | ||
| 3625 | lemma has_derivative_zero_unique_strong_convex: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3626 | assumes "convex s" "finite k" "continuous_on s f" "c \<in> s" "f c = y" | |
| 3627 | "\<forall>x\<in>(s - k). (f has_derivative (\<lambda>h. 0)) (at x within s)" "x \<in> s" | |
| 3628 | shows "f x = y" | |
| 3629 | proof- { presume *:"x \<noteq> c \<Longrightarrow> ?thesis" show ?thesis apply(cases,rule *,assumption)
 | |
| 3630 | unfolding assms(5)[THEN sym] by auto } assume "x\<noteq>c" | |
| 3631 | note conv = assms(1)[unfolded convex_alt,rule_format] | |
| 3632 |   have as1:"continuous_on {0..1} (f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x))"
 | |
| 3633 | apply(rule continuous_on_intros)+ apply(rule continuous_on_subset[OF assms(3)]) | |
| 3634 | apply safe apply(rule conv) using assms(4,7) by auto | |
| 3635 | have *:"\<And>t xa. (1 - t) *\<^sub>R c + t *\<^sub>R x = (1 - xa) *\<^sub>R c + xa *\<^sub>R x \<Longrightarrow> t = xa" | |
| 3636 | proof- case goal1 hence "(t - xa) *\<^sub>R x = (t - xa) *\<^sub>R c" | |
| 3637 | unfolding scaleR_simps by(auto simp add:group_simps) | |
| 3638 | thus ?case using `x\<noteq>c` by auto qed | |
| 3639 |   have as2:"finite {t. ((1 - t) *\<^sub>R c + t *\<^sub>R x) \<in> k}" using assms(2) 
 | |
| 3640 | apply(rule finite_surj[where f="\<lambda>z. SOME t. (1-t) *\<^sub>R c + t *\<^sub>R x = z"]) | |
| 3641 | apply safe unfolding image_iff apply rule defer apply assumption | |
| 3642 | apply(rule sym) apply(rule some_equality) defer apply(drule *) by auto | |
| 3643 | have "(f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x)) 1 = y" | |
| 3644 | apply(rule has_derivative_zero_unique_strong_interval[OF as2 as1, of ]) | |
| 3645 | unfolding o_def using assms(5) defer apply-apply(rule) | |
| 3646 |   proof- fix t assume as:"t\<in>{0..1} - {t. (1 - t) *\<^sub>R c + t *\<^sub>R x \<in> k}"
 | |
| 3647 | have *:"c - t *\<^sub>R c + t *\<^sub>R x \<in> s - k" apply safe apply(rule conv[unfolded scaleR_simps]) | |
| 3648 | using `x\<in>s` `c\<in>s` as by(auto simp add:scaleR_simps) | |
| 3649 |     have "(f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x) has_derivative (\<lambda>x. 0) \<circ> (\<lambda>z. (0 - z *\<^sub>R c) + z *\<^sub>R x)) (at t within {0..1})"
 | |
| 3650 | apply(rule diff_chain_within) apply(rule has_derivative_add) | |
| 3651 | unfolding scaleR_simps apply(rule has_derivative_sub) apply(rule has_derivative_const) | |
| 3652 | apply(rule has_derivative_vmul_within,rule has_derivative_id)+ | |
| 3653 | apply(rule has_derivative_within_subset,rule assms(6)[rule_format]) | |
| 3654 | apply(rule *) apply safe apply(rule conv[unfolded scaleR_simps]) using `x\<in>s` `c\<in>s` by auto | |
| 3655 |     thus "((\<lambda>xa. f ((1 - xa) *\<^sub>R c + xa *\<^sub>R x)) has_derivative (\<lambda>h. 0)) (at t within {0..1})" unfolding o_def .
 | |
| 3656 | qed auto thus ?thesis by auto qed | |
| 3657 | ||
| 3658 | subsection {* Also to any open connected set with finite set of exceptions. Could 
 | |
| 3659 | generalize to locally convex set with limpt-free set of exceptions. *} | |
| 3660 | ||
| 3661 | lemma has_derivative_zero_unique_strong_connected: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3662 | assumes "connected s" "open s" "finite k" "continuous_on s f" "c \<in> s" "f c = y" | |
| 3663 | "\<forall>x\<in>(s - k). (f has_derivative (\<lambda>h. 0)) (at x within s)" "x\<in>s" | |
| 3664 | shows "f x = y" | |
| 3665 | proof- have "{x \<in> s. f x \<in> {y}} = {} \<or> {x \<in> s. f x \<in> {y}} = s"
 | |
| 3666 | apply(rule assms(1)[unfolded connected_clopen,rule_format]) apply rule defer | |
| 3667 | apply(rule continuous_closed_in_preimage[OF assms(4) closed_sing]) | |
| 3668 | apply(rule open_openin_trans[OF assms(2)]) unfolding open_contains_ball | |
| 3669 | proof safe fix x assume "x\<in>s" | |
| 3670 | from assms(2)[unfolded open_contains_ball,rule_format,OF this] guess e .. note e=conjunctD2[OF this] | |
| 3671 |     show "\<exists>e>0. ball x e \<subseteq> {xa \<in> s. f xa \<in> {f x}}" apply(rule,rule,rule e)
 | |
| 3672 | proof safe fix y assume y:"y \<in> ball x e" thus "y\<in>s" using e by auto | |
| 3673 | show "f y = f x" apply(rule has_derivative_zero_unique_strong_convex[OF convex_ball]) | |
| 3674 | apply(rule assms) apply(rule continuous_on_subset,rule assms) apply(rule e)+ | |
| 3675 | apply(subst centre_in_ball,rule e,rule) apply safe | |
| 3676 | apply(rule has_derivative_within_subset) apply(rule assms(7)[rule_format]) | |
| 3677 | using y e by auto qed qed | |
| 3678 | thus ?thesis using `x\<in>s` `f c = y` `c\<in>s` by auto qed | |
| 3679 | ||
| 3680 | subsection {* Integrating characteristic function of an interval. *}
 | |
| 3681 | ||
| 3682 | lemma has_integral_restrict_open_subinterval: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3683 |   assumes "(f has_integral i) {c..d}" "{c..d} \<subseteq> {a..b}"
 | |
| 3684 |   shows "((\<lambda>x. if x \<in> {c<..<d} then f x else 0) has_integral i) {a..b}"
 | |
| 3685 | proof- def g \<equiv> "\<lambda>x. if x \<in>{c<..<d} then f x else 0"
 | |
| 3686 |   { presume *:"{c..d}\<noteq>{} \<Longrightarrow> ?thesis"
 | |
| 3687 | show ?thesis apply(cases,rule *,assumption) | |
| 3688 |     proof- case goal1 hence *:"{c<..<d} = {}" using interval_open_subset_closed by auto 
 | |
| 3689 | show ?thesis using assms(1) unfolding * using goal1 by auto | |
| 3690 |     qed } assume "{c..d}\<noteq>{}"
 | |
| 3691 | from partial_division_extend_1[OF assms(2) this] guess p . note p=this | |
| 3692 | note mon = monoidal_lifted[OF monoidal_monoid] | |
| 3693 | note operat = operative_division[OF this operative_integral p(1), THEN sym] | |
| 3694 |   let ?P = "(if g integrable_on {a..b} then Some (integral {a..b} g) else None) = Some i"
 | |
| 3695 |   { presume "?P" hence "g integrable_on {a..b} \<and> integral {a..b} g = i"
 | |
| 3696 | apply- apply(cases,subst(asm) if_P,assumption) by auto | |
| 3697 | thus ?thesis using integrable_integral unfolding g_def by auto } | |
| 3698 | ||
| 3699 | note iterate_eq_neutral[OF mon,unfolded neutral_lifted[OF monoidal_monoid]] | |
| 3700 | note * = this[unfolded neutral_monoid] | |
| 3701 |   have iterate:"iterate (lifted op +) (p - {{c..d}})
 | |
| 3702 | (\<lambda>i. if g integrable_on i then Some (integral i g) else None) = Some 0" | |
| 3703 | proof(rule *,rule) case goal1 hence "x\<in>p" by auto note div = division_ofD(2-5)[OF p(1) this] | |
| 3704 | from div(3) guess u v apply-by(erule exE)+ note uv=this | |
| 3705 |     have "interior x \<inter> interior {c..d} = {}" using div(4)[OF p(2)] goal1 by auto
 | |
| 3706 | hence "(g has_integral 0) x" unfolding uv apply-apply(rule has_integral_spike_interior[where f="\<lambda>x. 0"]) | |
| 3707 | unfolding g_def interior_closed_interval by auto thus ?case by auto | |
| 3708 | qed | |
| 3709 | ||
| 3710 |   have *:"p = insert {c..d} (p - {{c..d}})" using p by auto
 | |
| 3711 |   have **:"g integrable_on {c..d}" apply(rule integrable_spike_interior[where f=f])
 | |
| 3712 | unfolding g_def defer apply(rule has_integral_integrable) using assms(1) by auto | |
| 3713 |   moreover have "integral {c..d} g = i" apply(rule has_integral_unique[OF _ assms(1)])
 | |
| 3714 | apply(rule has_integral_spike_interior[where f=g]) defer | |
| 3715 | apply(rule integrable_integral[OF **]) unfolding g_def by auto | |
| 3716 | ultimately show ?P unfolding operat apply- apply(subst *) apply(subst iterate_insert) apply rule+ | |
| 3717 | unfolding iterate defer apply(subst if_not_P) defer using p by auto qed | |
| 3718 | ||
| 3719 | lemma has_integral_restrict_closed_subinterval: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3720 |   assumes "(f has_integral i) ({c..d})" "{c..d} \<subseteq> {a..b}" 
 | |
| 3721 |   shows "((\<lambda>x. if x \<in> {c..d} then f x else 0) has_integral i) {a..b}"
 | |
| 3722 | proof- note has_integral_restrict_open_subinterval[OF assms] | |
| 3723 | note * = has_integral_spike[OF negligible_frontier_interval _ this] | |
| 3724 | show ?thesis apply(rule *[of c d]) using interval_open_subset_closed[of c d] by auto qed | |
| 3725 | ||
| 3726 | lemma has_integral_restrict_closed_subintervals_eq: fixes f::"real^'n \<Rightarrow> 'a::banach" assumes "{c..d} \<subseteq> {a..b}" 
 | |
| 3727 |   shows "((\<lambda>x. if x \<in> {c..d} then f x else 0) has_integral i) {a..b} \<longleftrightarrow> (f has_integral i) {c..d}" (is "?l = ?r")
 | |
| 3728 | proof(cases "{c..d} = {}") case False let ?g = "\<lambda>x. if x \<in> {c..d} then f x else 0"
 | |
| 3729 | show ?thesis apply rule defer apply(rule has_integral_restrict_closed_subinterval[OF _ assms]) | |
| 3730 |   proof assumption assume ?l hence "?g integrable_on {c..d}"
 | |
| 3731 | apply-apply(rule integrable_subinterval[OF _ assms]) by auto | |
| 3732 |     hence *:"f integrable_on {c..d}"apply-apply(rule integrable_eq) by auto
 | |
| 3733 |     hence "i = integral {c..d} f" apply-apply(rule has_integral_unique)
 | |
| 3734 | apply(rule `?l`) apply(rule has_integral_restrict_closed_subinterval[OF _ assms]) by auto | |
| 3735 | thus ?r using * by auto qed qed auto | |
| 3736 | ||
| 3737 | subsection {* Hence we can apply the limit process uniformly to all integrals. *}
 | |
| 3738 | ||
| 3739 | lemma has_integral': fixes f::"real^'n \<Rightarrow> 'a::banach" shows | |
| 3740 |  "(f has_integral i) s \<longleftrightarrow> (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
 | |
| 3741 |   \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> s then f(x) else 0) has_integral z) {a..b} \<and> norm(z - i) < e))" (is "?l \<longleftrightarrow> (\<forall>e>0. ?r e)")
 | |
| 3742 | proof- { presume *:"\<exists>a b. s = {a..b} \<Longrightarrow> ?thesis"
 | |
| 3743 | show ?thesis apply(cases,rule *,assumption) | |
| 3744 | apply(subst has_integral_alt) by auto } | |
| 3745 |   assume "\<exists>a b. s = {a..b}" then guess a b apply-by(erule exE)+ note s=this
 | |
| 3746 | from bounded_interval[of a b, THEN conjunct1, unfolded bounded_pos] guess B .. | |
| 3747 | note B = conjunctD2[OF this,rule_format] show ?thesis apply safe | |
| 3748 | proof- fix e assume ?l "e>(0::real)" | |
| 3749 | show "?r e" apply(rule_tac x="B+1" in exI) apply safe defer apply(rule_tac x=i in exI) | |
| 3750 |     proof fix c d assume as:"ball 0 (B+1) \<subseteq> {c..d::real^'n}"
 | |
| 3751 |       thus "((\<lambda>x. if x \<in> s then f x else 0) has_integral i) {c..d}" unfolding s
 | |
| 3752 | apply-apply(rule has_integral_restrict_closed_subinterval) apply(rule `?l`[unfolded s]) | |
| 3753 | apply safe apply(drule B(2)[rule_format]) unfolding subset_eq apply(erule_tac x=x in ballE) | |
| 3754 | by(auto simp add:vector_dist_norm) | |
| 3755 | qed(insert B `e>0`, auto) | |
| 3756 | next assume as:"\<forall>e>0. ?r e" | |
| 3757 | from this[rule_format,OF zero_less_one] guess C .. note C=conjunctD2[OF this,rule_format] | |
| 3758 | def c \<equiv> "(\<chi> i. - max B C)::real^'n" and d \<equiv> "(\<chi> i. max B C)::real^'n" | |
| 3759 |     have c_d:"{a..b} \<subseteq> {c..d}" apply safe apply(drule B(2)) unfolding mem_interval
 | |
| 3760 | proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def | |
| 3761 | by(auto simp add:field_simps) qed | |
| 3762 |     have "ball 0 C \<subseteq> {c..d}" apply safe unfolding mem_interval mem_ball vector_dist_norm 
 | |
| 3763 | proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto qed | |
| 3764 |     from C(2)[OF this] have "\<exists>y. (f has_integral y) {a..b}"
 | |
| 3765 | unfolding has_integral_restrict_closed_subintervals_eq[OF c_d,THEN sym] unfolding s by auto | |
| 3766 | then guess y .. note y=this | |
| 3767 | ||
| 3768 | have "y = i" proof(rule ccontr) assume "y\<noteq>i" hence "0 < norm (y - i)" by auto | |
| 3769 | from as[rule_format,OF this] guess C .. note C=conjunctD2[OF this,rule_format] | |
| 3770 | def c \<equiv> "(\<chi> i. - max B C)::real^'n" and d \<equiv> "(\<chi> i. max B C)::real^'n" | |
| 3771 |       have c_d:"{a..b} \<subseteq> {c..d}" apply safe apply(drule B(2)) unfolding mem_interval
 | |
| 3772 | proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def | |
| 3773 | by(auto simp add:field_simps) qed | |
| 3774 |       have "ball 0 C \<subseteq> {c..d}" apply safe unfolding mem_interval mem_ball vector_dist_norm 
 | |
| 3775 | proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto qed | |
| 3776 | note C(2)[OF this] then guess z .. note z = conjunctD2[OF this, unfolded s] | |
| 3777 | note this[unfolded has_integral_restrict_closed_subintervals_eq[OF c_d]] | |
| 3778 | hence "z = y" "norm (z - i) < norm (y - i)" apply- apply(rule has_integral_unique[OF _ y(1)]) . | |
| 3779 | thus False by auto qed | |
| 3780 | thus ?l using y unfolding s by auto qed qed | |
| 3781 | ||
| 3782 | subsection {* Hence a general restriction property. *}
 | |
| 3783 | ||
| 3784 | lemma has_integral_restrict[simp]: assumes "s \<subseteq> t" shows | |
| 3785 | "((\<lambda>x. if x \<in> s then f x else (0::'a::banach)) has_integral i) t \<longleftrightarrow> (f has_integral i) s" | |
| 3786 | proof- have *:"\<And>x. (if x \<in> t then if x \<in> s then f x else 0 else 0) = (if x\<in>s then f x else 0)" using assms by auto | |
| 3787 | show ?thesis apply(subst(2) has_integral') apply(subst has_integral') unfolding * by rule qed | |
| 3788 | ||
| 3789 | lemma has_integral_restrict_univ: fixes f::"real^'n \<Rightarrow> 'a::banach" shows | |
| 3790 | "((\<lambda>x. if x \<in> s then f x else 0) has_integral i) UNIV \<longleftrightarrow> (f has_integral i) s" by auto | |
| 3791 | ||
| 3792 | lemma has_integral_on_superset: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3793 | assumes "\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0" "s \<subseteq> t" "(f has_integral i) s" | |
| 3794 | shows "(f has_integral i) t" | |
| 3795 | proof- have "(\<lambda>x. if x \<in> s then f x else 0) = (\<lambda>x. if x \<in> t then f x else 0)" | |
| 3796 | apply(rule) using assms(1-2) by auto | |
| 3797 | thus ?thesis apply- using assms(3) apply(subst has_integral_restrict_univ[THEN sym]) | |
| 3798 | apply- apply(subst(asm) has_integral_restrict_univ[THEN sym]) by auto qed | |
| 3799 | ||
| 3800 | lemma integrable_on_superset: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3801 | assumes "\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0" "s \<subseteq> t" "f integrable_on s" | |
| 3802 | shows "f integrable_on t" | |
| 3803 | using assms unfolding integrable_on_def by(auto intro:has_integral_on_superset) | |
| 3804 | ||
| 3805 | lemma integral_restrict_univ[intro]: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3806 | shows "f integrable_on s \<Longrightarrow> integral UNIV (\<lambda>x. if x \<in> s then f x else 0) = integral s f" | |
| 3807 | apply(rule integral_unique) unfolding has_integral_restrict_univ by auto | |
| 3808 | ||
| 3809 | lemma integrable_restrict_univ: fixes f::"real^'n \<Rightarrow> 'a::banach" shows | |
| 3810 | "(\<lambda>x. if x \<in> s then f x else 0) integrable_on UNIV \<longleftrightarrow> f integrable_on s" | |
| 3811 | unfolding integrable_on_def by auto | |
| 3812 | ||
| 3813 | lemma negligible_on_intervals: "negligible s \<longleftrightarrow> (\<forall>a b. negligible(s \<inter> {a..b}))" (is "?l = ?r")
 | |
| 3814 | proof assume ?r show ?l unfolding negligible_def | |
| 3815 | proof safe case goal1 show ?case apply(rule has_integral_negligible[OF `?r`[rule_format,of a b]]) | |
| 3816 | unfolding indicator_def by auto qed qed auto | |
| 3817 | ||
| 3818 | lemma has_integral_spike_set_eq: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3819 | assumes "negligible((s - t) \<union> (t - s))" shows "((f has_integral y) s \<longleftrightarrow> (f has_integral y) t)" | |
| 3820 | unfolding has_integral_restrict_univ[THEN sym,of f] apply(rule has_integral_spike_eq[OF assms]) by auto | |
| 3821 | ||
| 3822 | lemma has_integral_spike_set[dest]: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3823 | assumes "negligible((s - t) \<union> (t - s))" "(f has_integral y) s" | |
| 3824 | shows "(f has_integral y) t" | |
| 3825 | using assms has_integral_spike_set_eq by auto | |
| 3826 | ||
| 3827 | lemma integrable_spike_set[dest]: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3828 | assumes "negligible((s - t) \<union> (t - s))" "f integrable_on s" | |
| 3829 | shows "f integrable_on t" using assms(2) unfolding integrable_on_def | |
| 3830 | unfolding has_integral_spike_set_eq[OF assms(1)] . | |
| 3831 | ||
| 3832 | lemma integrable_spike_set_eq: fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3833 | assumes "negligible((s - t) \<union> (t - s))" | |
| 3834 | shows "(f integrable_on s \<longleftrightarrow> f integrable_on t)" | |
| 3835 | apply(rule,rule_tac[!] integrable_spike_set) using assms by auto | |
| 3836 | ||
| 3837 | (*lemma integral_spike_set: | |
| 3838 | "\<forall>f:real^M->real^N g s t. | |
| 3839 | negligible(s DIFF t \<union> t DIFF s) | |
| 3840 | \<longrightarrow> integral s f = integral t f" | |
| 3841 | qed REPEAT STRIP_TAC THEN REWRITE_TAC[integral] THEN | |
| 3842 | AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN | |
| 3843 | ASM_MESON_TAC[]);; | |
| 3844 | ||
| 3845 | lemma has_integral_interior: | |
| 3846 | "\<forall>f:real^M->real^N y s. | |
| 3847 | negligible(frontier s) | |
| 3848 | \<longrightarrow> ((f has_integral y) (interior s) \<longleftrightarrow> (f has_integral y) s)" | |
| 3849 | qed REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN | |
| 3850 | FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] | |
| 3851 | NEGLIGIBLE_SUBSET)) THEN | |
| 3852 | REWRITE_TAC[frontier] THEN | |
| 3853 | MP_TAC(ISPEC `s:real^M->bool` INTERIOR_SUBSET) THEN | |
| 3854 | MP_TAC(ISPEC `s:real^M->bool` CLOSURE_SUBSET) THEN | |
| 3855 | SET_TAC[]);; | |
| 3856 | ||
| 3857 | lemma has_integral_closure: | |
| 3858 | "\<forall>f:real^M->real^N y s. | |
| 3859 | negligible(frontier s) | |
| 3860 | \<longrightarrow> ((f has_integral y) (closure s) \<longleftrightarrow> (f has_integral y) s)" | |
| 3861 | qed REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN | |
| 3862 | FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] | |
| 3863 | NEGLIGIBLE_SUBSET)) THEN | |
| 3864 | REWRITE_TAC[frontier] THEN | |
| 3865 | MP_TAC(ISPEC `s:real^M->bool` INTERIOR_SUBSET) THEN | |
| 3866 | MP_TAC(ISPEC `s:real^M->bool` CLOSURE_SUBSET) THEN | |
| 3867 | SET_TAC[]);;*) | |
| 3868 | ||
| 3869 | subsection {* More lemmas that are useful later. *}
 | |
| 3870 | ||
| 3871 | lemma has_integral_subset_component_le: fixes f::"real^'n \<Rightarrow> real^'m" | |
| 3872 | assumes "s \<subseteq> t" "(f has_integral i) s" "(f has_integral j) t" "\<forall>x\<in>t. 0 \<le> f(x)$k" | |
| 3873 | shows "i$k \<le> j$k" | |
| 3874 | proof- note has_integral_restrict_univ[THEN sym, of f] | |
| 3875 | note assms(2-3)[unfolded this] note * = has_integral_component_le[OF this] | |
| 3876 | show ?thesis apply(rule *) using assms(1,4) by auto qed | |
| 3877 | ||
| 3878 | lemma integral_subset_component_le: fixes f::"real^'n \<Rightarrow> real^'m" | |
| 3879 | assumes "s \<subseteq> t" "f integrable_on s" "f integrable_on t" "\<forall>x \<in> t. 0 \<le> f(x)$k" | |
| 3880 | shows "(integral s f)$k \<le> (integral t f)$k" | |
| 3881 | apply(rule has_integral_subset_component_le) using assms by auto | |
| 3882 | ||
| 3883 | lemma has_integral_alt': fixes f::"real^'n \<Rightarrow> 'a::banach" | |
| 3884 |   shows "(f has_integral i) s \<longleftrightarrow> (\<forall>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}) \<and>
 | |
| 3885 |   (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> norm(integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - i) < e)" (is "?l = ?r")
 | |
| 3886 | proof assume ?r | |
| 3887 | show ?l apply- apply(subst has_integral') | |
| 3888 | proof safe case goal1 from `?r`[THEN conjunct2,rule_format,OF this] guess B .. note B=conjunctD2[OF this] | |
| 3889 | show ?case apply(rule,rule,rule B,safe) | |
| 3890 |       apply(rule_tac x="integral {a..b} (\<lambda>x. if x \<in> s then f x else 0)" in exI)
 | |
| 3891 | apply(drule B(2)[rule_format]) using integrable_integral[OF `?r`[THEN conjunct1,rule_format]] by auto | |
| 3892 | qed next | |
| 3893 | assume ?l note as = this[unfolded has_integral'[of f],rule_format] | |
| 3894 | let ?f = "\<lambda>x. if x \<in> s then f x else 0" | |
| 3895 | show ?r proof safe fix a b::"real^'n" | |
| 3896 | from as[OF zero_less_one] guess B .. note B=conjunctD2[OF this,rule_format] | |
| 3897 | let ?a = "(\<chi> i. min (a$i) (-B))::real^'n" and ?b = "(\<chi> i. max (b$i) B)::real^'n" | |
| 3898 |     show "?f integrable_on {a..b}" apply(rule integrable_subinterval[of _ ?a ?b])
 | |
| 3899 |     proof- have "ball 0 B \<subseteq> {?a..?b}" apply safe unfolding mem_ball mem_interval vector_dist_norm
 | |
| 3900 | proof case goal1 thus ?case using component_le_norm[of x i] by(auto simp add:field_simps) qed | |
| 3901 | from B(2)[OF this] guess z .. note conjunct1[OF this] | |
| 3902 |       thus "?f integrable_on {?a..?b}" unfolding integrable_on_def by auto
 | |
| 3903 |       show "{a..b} \<subseteq> {?a..?b}" apply safe unfolding mem_interval apply(rule,erule_tac x=i in allE) by auto qed
 | |
| 3904 | ||
| 3905 | fix e::real assume "e>0" from as[OF this] guess B .. note B=conjunctD2[OF this,rule_format] | |
| 3906 |     show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow>
 | |
| 3907 |                     norm (integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - i) < e"
 | |
| 3908 | proof(rule,rule,rule B,safe) case goal1 from B(2)[OF this] guess z .. note z=conjunctD2[OF this] | |
| 3909 | from integral_unique[OF this(1)] show ?case using z(2) by auto qed qed qed | |
| 3910 | ||
| 35752 | 3911 | |
| 3912 | ||
| 3913 | declare [[smt_certificates=""]] | |
| 3914 | ||
| 35173 
9b24bfca8044
Renamed Multivariate-Analysis/Integration to Multivariate-Analysis/Integration_MV to avoid name clash with Integration.
 hoelzl parents: 
35172diff
changeset | 3915 | end |