| author | wenzelm | 
| Thu, 16 Jan 2020 16:15:25 +0100 | |
| changeset 71388 | 57861bd0a3e1 | 
| parent 69785 | 9e326f6f8a24 | 
| child 72671 | 588c751a5eef | 
| permissions | -rw-r--r-- | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 1 | (* Title: HOL/Number_Theory/Totient.thy | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 2 | Author: Jeremy Avigad | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 3 | Author: Florian Haftmann | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 4 | Author: Manuel Eberl | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 5 | *) | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 6 | |
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 7 | section \<open>Fundamental facts about Euler's totient function\<close> | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 8 | |
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 9 | theory Totient | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 10 | imports | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 11 | Complex_Main | 
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
66305diff
changeset | 12 | "HOL-Computational_Algebra.Primes" | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 13 | "~~/src/HOL/Number_Theory/Cong" | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 14 | begin | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 15 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 16 | definition totatives :: "nat \<Rightarrow> nat set" where | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 17 |   "totatives n = {k \<in> {0<..n}. coprime k n}"
 | 
| 67051 | 18 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 19 | lemma in_totatives_iff: "k \<in> totatives n \<longleftrightarrow> k > 0 \<and> k \<le> n \<and> coprime k n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 20 | by (simp add: totatives_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 21 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 22 | lemma totatives_code [code]: "totatives n = Set.filter (\<lambda>k. coprime k n) {0<..n}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 23 | by (simp add: totatives_def Set.filter_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 24 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 25 | lemma finite_totatives [simp]: "finite (totatives n)" | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 26 | by (simp add: totatives_def) | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 27 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 28 | lemma totatives_subset: "totatives n \<subseteq> {0<..n}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 29 | by (auto simp: totatives_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 30 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 31 | lemma zero_not_in_totatives [simp]: "0 \<notin> totatives n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 32 | by (auto simp: totatives_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 33 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 34 | lemma totatives_le: "x \<in> totatives n \<Longrightarrow> x \<le> n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 35 | by (auto simp: totatives_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 36 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 37 | lemma totatives_less: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 38 | assumes "x \<in> totatives n" "n > 1" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 39 | shows "x < n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 40 | proof - | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 41 | from assms have "x \<noteq> n" by (auto simp: totatives_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 42 | with totatives_le[OF assms(1)] show ?thesis by simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 43 | qed | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 44 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 45 | lemma totatives_0 [simp]: "totatives 0 = {}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 46 | by (auto simp: totatives_def) | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 47 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 48 | lemma totatives_1 [simp]: "totatives 1 = {Suc 0}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 49 | by (auto simp: totatives_def) | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 50 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 51 | lemma totatives_Suc_0 [simp]: "totatives (Suc 0) = {Suc 0}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 52 | by (auto simp: totatives_def) | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 53 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 54 | lemma one_in_totatives [simp]: "n > 0 \<Longrightarrow> Suc 0 \<in> totatives n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 55 | by (auto simp: totatives_def) | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 56 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 57 | lemma totatives_eq_empty_iff [simp]: "totatives n = {} \<longleftrightarrow> n = 0"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 58 | using one_in_totatives[of n] by (auto simp del: one_in_totatives) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 59 | |
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 60 | lemma minus_one_in_totatives: | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 61 | assumes "n \<ge> 2" | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 62 | shows "n - 1 \<in> totatives n" | 
| 67051 | 63 | using assms coprime_diff_one_left_nat [of n] by (simp add: in_totatives_iff) | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 64 | |
| 69785 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 65 | lemma power_in_totatives: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 66 | assumes "m > 1" "coprime m g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 67 | shows "g ^ i mod m \<in> totatives m" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 68 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 69 | have "\<not>m dvd g ^ i" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 70 | proof | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 71 | assume "m dvd g ^ i" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 72 | hence "\<not>coprime m (g ^ i)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 73 | using \<open>m > 1\<close> by (subst coprime_absorb_left) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 74 | with \<open>coprime m g\<close> show False by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 75 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 76 | with assms show ?thesis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 77 | by (auto simp: totatives_def coprime_commute intro!: Nat.gr0I) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 78 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 79 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 80 | lemma totatives_prime_power_Suc: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 81 | assumes "prime p" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 82 |   shows   "totatives (p ^ Suc n) = {0<..p^Suc n} - (\<lambda>m. p * m) ` {0<..p^n}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 83 | proof safe | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 84 |   fix m assume m: "p * m \<in> totatives (p ^ Suc n)" and m: "m \<in> {0<..p^n}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 85 | thus False using assms by (auto simp: totatives_def gcd_mult_left) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 86 | next | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 87 |   fix k assume k: "k \<in> {0<..p^Suc n}" "k \<notin> (\<lambda>m. p * m) ` {0<..p^n}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 88 | from k have "\<not>(p dvd k)" by (auto elim!: dvdE) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 89 | hence "coprime k (p ^ Suc n)" | 
| 67051 | 90 | using prime_imp_coprime [OF assms, of k] | 
| 91 | by (cases "n > 0") (auto simp add: ac_simps) | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 92 | with k show "k \<in> totatives (p ^ Suc n)" by (simp add: totatives_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 93 | qed (auto simp: totatives_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 94 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 95 | lemma totatives_prime: "prime p \<Longrightarrow> totatives p = {0<..<p}"
 | 
| 67118 | 96 | using totatives_prime_power_Suc [of p 0] by auto | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 97 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 98 | lemma bij_betw_totatives: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 99 | assumes "m1 > 1" "m2 > 1" "coprime m1 m2" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 100 | shows "bij_betw (\<lambda>x. (x mod m1, x mod m2)) (totatives (m1 * m2)) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 101 | (totatives m1 \<times> totatives m2)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 102 | unfolding bij_betw_def | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 103 | proof | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 104 | show "inj_on (\<lambda>x. (x mod m1, x mod m2)) (totatives (m1 * m2))" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 105 | proof (intro inj_onI, clarify) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 106 | fix x y assume xy: "x \<in> totatives (m1 * m2)" "y \<in> totatives (m1 * m2)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 107 | "x mod m1 = y mod m1" "x mod m2 = y mod m2" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 108 | have ex: "\<exists>!z. z < m1 * m2 \<and> [z = x] (mod m1) \<and> [z = x] (mod m2)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 109 | by (rule binary_chinese_remainder_unique_nat) (insert assms, simp_all) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 110 | have "x < m1 * m2 \<and> [x = x] (mod m1) \<and> [x = x] (mod m2)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 111 | "y < m1 * m2 \<and> [y = x] (mod m1) \<and> [y = x] (mod m2)" | 
| 66888 | 112 | using xy assms by (simp_all add: totatives_less one_less_mult cong_def) | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 113 | from this[THEN the1_equality[OF ex]] show "x = y" by simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 114 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 115 | next | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 116 | show "(\<lambda>x. (x mod m1, x mod m2)) ` totatives (m1 * m2) = totatives m1 \<times> totatives m2" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 117 | proof safe | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 118 | fix x assume "x \<in> totatives (m1 * m2)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 119 | with assms show "x mod m1 \<in> totatives m1" "x mod m2 \<in> totatives m2" | 
| 67051 | 120 | using coprime_common_divisor [of x m1 m1] coprime_common_divisor [of x m2 m2] | 
| 121 | by (auto simp add: in_totatives_iff mod_greater_zero_iff_not_dvd) | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 122 | next | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 123 | fix a b assume ab: "a \<in> totatives m1" "b \<in> totatives m2" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 124 | with assms have ab': "a < m1" "b < m2" by (auto simp: totatives_less) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 125 | with binary_chinese_remainder_unique_nat[OF assms(3), of a b] obtain x | 
| 66888 | 126 | where x: "x < m1 * m2" "x mod m1 = a" "x mod m2 = b" by (auto simp: cong_def) | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 127 | from x ab assms(3) have "x \<in> totatives (m1 * m2)" | 
| 67051 | 128 | by (auto intro: ccontr simp add: in_totatives_iff) | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 129 | with x show "(a, b) \<in> (\<lambda>x. (x mod m1, x mod m2)) ` totatives (m1*m2)" by blast | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 130 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 131 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 132 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 133 | lemma bij_betw_totatives_gcd_eq: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 134 | fixes n d :: nat | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 135 | assumes "d dvd n" "n > 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 136 |   shows   "bij_betw (\<lambda>k. k * d) (totatives (n div d)) {k\<in>{0<..n}. gcd k n = d}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 137 | unfolding bij_betw_def | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 138 | proof | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 139 | show "inj_on (\<lambda>k. k * d) (totatives (n div d))" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 140 | by (auto simp: inj_on_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 141 | next | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 142 |   show "(\<lambda>k. k * d) ` totatives (n div d) = {k\<in>{0<..n}. gcd k n = d}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 143 | proof (intro equalityI subsetI, goal_cases) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 144 | case (1 k) | 
| 67051 | 145 | then show ?case using assms | 
| 146 | by (auto elim: dvdE simp add: in_totatives_iff ac_simps gcd_mult_right) | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 147 | next | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 148 | case (2 k) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 149 | hence "d dvd k" by auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 150 | then obtain l where k: "k = l * d" by (elim dvdE) auto | 
| 67051 | 151 | from 2 assms show ?case | 
| 152 | using gcd_mult_right [of _ d l] | |
| 153 | by (auto intro: gcd_eq_1_imp_coprime elim!: dvdE simp add: k image_iff in_totatives_iff ac_simps) | |
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 154 | qed | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 155 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 156 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 157 | definition totient :: "nat \<Rightarrow> nat" where | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 158 | "totient n = card (totatives n)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 159 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 160 | primrec totient_naive :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" where | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 161 | "totient_naive 0 acc n = acc" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 162 | | "totient_naive (Suc k) acc n = | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 163 | (if coprime (Suc k) n then totient_naive k (acc + 1) n else totient_naive k acc n)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 164 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 165 | lemma totient_naive: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 166 |   "totient_naive k acc n = card {x \<in> {0<..k}. coprime x n} + acc"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 167 | proof (induction k arbitrary: acc) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 168 | case (Suc k acc) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 169 | have "totient_naive (Suc k) acc n = | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 170 |           (if coprime (Suc k) n then 1 else 0) + card {x \<in> {0<..k}. coprime x n} + acc"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 171 | using Suc by simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 172 | also have "(if coprime (Suc k) n then 1 else 0) = | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 173 |                card (if coprime (Suc k) n then {Suc k} else {})" by auto
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 174 |   also have "\<dots> + card {x \<in> {0<..k}. coprime x n} =
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 175 |                card ((if coprime (Suc k) n then {Suc k} else {}) \<union> {x \<in> {0<..k}. coprime x n})"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 176 | by (intro card_Un_disjoint [symmetric]) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 177 |   also have "((if coprime (Suc k) n then {Suc k} else {}) \<union> {x \<in> {0<..k}. coprime x n}) =
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 178 |                {x \<in> {0<..Suc k}. coprime x n}" by (auto elim: le_SucE)
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 179 | finally show ?case . | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 180 | qed simp_all | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 181 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 182 | lemma totient_code_naive [code]: "totient n = totient_naive n 0 n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 183 | by (subst totient_naive) (simp add: totient_def totatives_def) | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 184 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 185 | lemma totient_le: "totient n \<le> n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 186 | proof - | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 187 |   have "card (totatives n) \<le> card {0<..n}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 188 | by (intro card_mono) (auto simp: totatives_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 189 | thus ?thesis by (simp add: totient_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 190 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 191 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 192 | lemma totient_less: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 193 | assumes "n > 1" | 
| 66305 | 194 | shows "totient n < n" | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 195 | proof - | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 196 |   from assms have "card (totatives n) \<le> card {0<..<n}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 197 | using totatives_less[of _ n] totatives_subset[of n] by (intro card_mono) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 198 | with assms show ?thesis by (simp add: totient_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 199 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 200 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 201 | lemma totient_0 [simp]: "totient 0 = 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 202 | by (simp add: totient_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 203 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 204 | lemma totient_Suc_0 [simp]: "totient (Suc 0) = Suc 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 205 | by (simp add: totient_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 206 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 207 | lemma totient_1 [simp]: "totient 1 = Suc 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 208 | by simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 209 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 210 | lemma totient_0_iff [simp]: "totient n = 0 \<longleftrightarrow> n = 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 211 | by (auto simp: totient_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 212 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 213 | lemma totient_gt_0_iff [simp]: "totient n > 0 \<longleftrightarrow> n > 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 214 | by (auto intro: Nat.gr0I) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 215 | |
| 69785 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 216 | lemma totient_gt_1: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 217 | assumes "n > 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 218 | shows "totient n > 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 219 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 220 |   have "{1, n - 1} \<subseteq> totatives n"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 221 | using assms coprime_diff_one_left_nat[of n] by (auto simp: totatives_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 222 |   hence "card {1, n - 1} \<le> card (totatives n)"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 223 | by (intro card_mono) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 224 | thus ?thesis using assms | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 225 | by (simp add: totient_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 226 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 227 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 228 | lemma card_gcd_eq_totient: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 229 |   "n > 0 \<Longrightarrow> d dvd n \<Longrightarrow> card {k\<in>{0<..n}. gcd k n = d} = totient (n div d)"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 230 | unfolding totient_def by (rule sym, rule bij_betw_same_card[OF bij_betw_totatives_gcd_eq]) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 231 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 232 | lemma totient_divisor_sum: "(\<Sum>d | d dvd n. totient d) = n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 233 | proof (cases "n = 0") | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 234 | case False | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 235 | hence "n > 0" by simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 236 |   define A where "A = (\<lambda>d. {k\<in>{0<..n}. gcd k n = d})"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 237 | have *: "card (A d) = totient (n div d)" if d: "d dvd n" for d | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 238 | using \<open>n > 0\<close> and d unfolding A_def by (rule card_gcd_eq_totient) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 239 |   have "n = card {1..n}" by simp
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 240 |   also have "{1..n} = (\<Union>d\<in>{d. d dvd n}. A d)" by safe (auto simp: A_def)
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 241 | also have "card \<dots> = (\<Sum>d | d dvd n. card (A d))" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 242 | using \<open>n > 0\<close> by (intro card_UN_disjoint) (auto simp: A_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 243 | also have "\<dots> = (\<Sum>d | d dvd n. totient (n div d))" by (intro sum.cong refl *) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 244 | also have "\<dots> = (\<Sum>d | d dvd n. totient d)" using \<open>n > 0\<close> | 
| 67399 | 245 | by (intro sum.reindex_bij_witness[of _ "(div) n" "(div) n"]) (auto elim: dvdE) | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 246 | finally show ?thesis .. | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 247 | qed auto | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 248 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 249 | lemma totient_mult_coprime: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 250 | assumes "coprime m n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 251 | shows "totient (m * n) = totient m * totient n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 252 | proof (cases "m > 1 \<and> n > 1") | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 253 | case True | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 254 | hence mn: "m > 1" "n > 1" by simp_all | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 255 | have "totient (m * n) = card (totatives (m * n))" by (simp add: totient_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 256 | also have "\<dots> = card (totatives m \<times> totatives n)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 257 | using bij_betw_totatives [OF mn \<open>coprime m n\<close>] by (rule bij_betw_same_card) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 258 | also have "\<dots> = totient m * totient n" by (simp add: totient_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 259 | finally show ?thesis . | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 260 | next | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 261 | case False | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 262 | with assms show ?thesis by (cases m; cases n) auto | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 263 | qed | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 264 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 265 | lemma totient_prime_power_Suc: | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 266 | assumes "prime p" | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 267 | shows "totient (p ^ Suc n) = p ^ n * (p - 1)" | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 268 | proof - | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67399diff
changeset | 269 |   from assms have "totient (p ^ Suc n) = card ({0<..p ^ Suc n} - (*) p ` {0<..p ^ n})"
 | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 270 | unfolding totient_def by (subst totatives_prime_power_Suc) simp_all | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67399diff
changeset | 271 |   also from assms have "\<dots> = p ^ Suc n - card ((*) p ` {0<..p^n})"
 | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 272 | by (subst card_Diff_subset) (auto intro: prime_gt_0_nat) | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67399diff
changeset | 273 |   also from assms have "card ((*) p ` {0<..p^n}) = p ^ n"
 | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 274 | by (subst card_image) (auto simp: inj_on_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 275 | also have "p ^ Suc n - p ^ n = p ^ n * (p - 1)" by (simp add: algebra_simps) | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 276 | finally show ?thesis . | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 277 | qed | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 278 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 279 | lemma totient_prime_power: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 280 | assumes "prime p" "n > 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 281 | shows "totient (p ^ n) = p ^ (n - 1) * (p - 1)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 282 | using totient_prime_power_Suc[of p "n - 1"] assms by simp | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 283 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 284 | lemma totient_imp_prime: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 285 | assumes "totient p = p - 1" "p > 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 286 | shows "prime p" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 287 | proof (cases "p = 1") | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 288 | case True | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 289 | with assms show ?thesis by auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 290 | next | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 291 | case False | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 292 | with assms have p: "p > 1" by simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 293 |   have "x \<in> {0<..<p}" if "x \<in> totatives p" for x
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 294 | using that and p by (cases "x = p") (auto simp: totatives_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 295 |   with assms have *: "totatives p = {0<..<p}"
 | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 296 | by (intro card_subset_eq) (auto simp: totient_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 297 | have **: False if "x \<noteq> 1" "x \<noteq> p" "x dvd p" for x | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 298 | proof - | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 299 | from that have nz: "x \<noteq> 0" by (auto intro!: Nat.gr0I) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 300 | from that and p have le: "x \<le> p" by (intro dvd_imp_le) auto | 
| 67051 | 301 | from that and nz have "\<not>coprime x p" | 
| 302 | by (auto elim: dvdE) | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 303 | hence "x \<notin> totatives p" by (simp add: totatives_def) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 304 | also note * | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 305 | finally show False using that and le by auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 306 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 307 | hence "(\<forall>m. m dvd p \<longrightarrow> m = 1 \<or> m = p)" by blast | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 308 | with p show ?thesis by (subst prime_nat_iff) (auto dest: **) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 309 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 310 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 311 | lemma totient_prime: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 312 | assumes "prime p" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 313 | shows "totient p = p - 1" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 314 | using totient_prime_power_Suc[of p 0] assms by simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 315 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 316 | lemma totient_2 [simp]: "totient 2 = 1" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 317 | and totient_3 [simp]: "totient 3 = 2" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 318 | and totient_5 [simp]: "totient 5 = 4" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 319 | and totient_7 [simp]: "totient 7 = 6" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 320 | by (subst totient_prime; simp)+ | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 321 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 322 | lemma totient_4 [simp]: "totient 4 = 2" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 323 | and totient_8 [simp]: "totient 8 = 4" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 324 | and totient_9 [simp]: "totient 9 = 6" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 325 | using totient_prime_power[of 2 2] totient_prime_power[of 2 3] totient_prime_power[of 3 2] | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 326 | by simp_all | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 327 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 328 | lemma totient_6 [simp]: "totient 6 = 2" | 
| 67051 | 329 | using totient_mult_coprime [of 2 3] coprime_add_one_right [of 2] | 
| 330 | by simp | |
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 331 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 332 | lemma totient_even: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 333 | assumes "n > 2" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 334 | shows "even (totient n)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 335 | proof (cases "\<exists>p. prime p \<and> p \<noteq> 2 \<and> p dvd n") | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 336 | case True | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 337 | then obtain p where p: "prime p" "p \<noteq> 2" "p dvd n" by auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 338 | from \<open>p \<noteq> 2\<close> have "p = 0 \<or> p = 1 \<or> p > 2" by auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 339 | with p(1) have "odd p" using prime_odd_nat[of p] by auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 340 | define k where "k = multiplicity p n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 341 | from p assms have k_pos: "k > 0" unfolding k_def by (subst multiplicity_gt_zero_iff) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 342 | have "p ^ k dvd n" unfolding k_def by (simp add: multiplicity_dvd) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 343 | then obtain m where m: "n = p ^ k * m" by (elim dvdE) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 344 | with assms have m_pos: "m > 0" by (auto intro!: Nat.gr0I) | 
| 67051 | 345 | from k_def m_pos p have "\<not> p dvd m" | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 346 | by (subst (asm) m) (auto intro!: Nat.gr0I simp: prime_elem_multiplicity_mult_distrib | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 347 | prime_elem_multiplicity_eq_zero_iff) | 
| 67051 | 348 | with \<open>prime p\<close> have "coprime p m" | 
| 349 | by (rule prime_imp_coprime) | |
| 350 | with \<open>k > 0\<close> have "coprime (p ^ k) m" | |
| 351 | by simp | |
| 352 | then show ?thesis using p k_pos \<open>odd p\<close> | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 353 | by (auto simp add: m totient_mult_coprime totient_prime_power) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 354 | next | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 355 | case False | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 356 | from assms have "n = (\<Prod>p\<in>prime_factors n. p ^ multiplicity p n)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 357 | by (intro Primes.prime_factorization_nat) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 358 | also from False have "\<dots> = (\<Prod>p\<in>prime_factors n. if p = 2 then 2 ^ multiplicity 2 n else 1)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 359 | by (intro prod.cong refl) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 360 | also have "\<dots> = 2 ^ multiplicity 2 n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 361 | by (subst prod.delta[OF finite_set_mset]) (auto simp: prime_factors_multiplicity) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 362 | finally have n: "n = 2 ^ multiplicity 2 n" . | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 363 | have "multiplicity 2 n = 0 \<or> multiplicity 2 n = 1 \<or> multiplicity 2 n > 1" by force | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 364 | with n assms have "multiplicity 2 n > 1" by auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 365 | thus ?thesis by (subst n) (simp add: totient_prime_power) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 366 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 367 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 368 | lemma totient_prod_coprime: | 
| 66803 | 369 | assumes "pairwise coprime (f ` A)" "inj_on f A" | 
| 370 | shows "totient (prod f A) = (\<Prod>a\<in>A. totient (f a))" | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 371 | using assms | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 372 | proof (induction A rule: infinite_finite_induct) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 373 | case (insert x A) | 
| 66803 | 374 | have *: "coprime (prod f A) (f x)" | 
| 67051 | 375 | proof (rule prod_coprime_left) | 
| 66803 | 376 | fix y | 
| 377 | assume "y \<in> A" | |
| 378 | with \<open>x \<notin> A\<close> have "y \<noteq> x" | |
| 379 | by auto | |
| 380 | with \<open>x \<notin> A\<close> \<open>y \<in> A\<close> \<open>inj_on f (insert x A)\<close> have "f y \<noteq> f x" | |
| 381 | using inj_onD [of f "insert x A" y x] | |
| 382 | by auto | |
| 383 | with \<open>y \<in> A\<close> show "coprime (f y) (f x)" | |
| 384 | using pairwiseD [OF \<open>pairwise coprime (f ` insert x A)\<close>] | |
| 385 | by auto | |
| 386 | qed | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 387 | from insert.hyps have "prod f (insert x A) = prod f A * f x" by simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 388 | also have "totient \<dots> = totient (prod f A) * totient (f x)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 389 | using insert.hyps insert.prems by (intro totient_mult_coprime *) | 
| 66803 | 390 | also have "totient (prod f A) = (\<Prod>a\<in>A. totient (f a))" | 
| 391 | using insert.prems by (intro insert.IH) (auto dest: pairwise_subset) | |
| 392 | also from insert.hyps have "\<dots> * totient (f x) = (\<Prod>a\<in>insert x A. totient (f a))" by simp | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 393 | finally show ?case . | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 394 | qed simp_all | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 395 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 396 | (* TODO Move *) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 397 | lemma prime_power_eq_imp_eq: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 398 | fixes p q :: "'a :: factorial_semiring" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 399 | assumes "prime p" "prime q" "m > 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 400 | assumes "p ^ m = q ^ n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 401 | shows "p = q" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 402 | proof (rule ccontr) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 403 | assume pq: "p \<noteq> q" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 404 | from assms have "m = multiplicity p (p ^ m)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 405 | by (subst multiplicity_prime_power) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 406 | also note \<open>p ^ m = q ^ n\<close> | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 407 | also from assms pq have "multiplicity p (q ^ n) = 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 408 | by (subst multiplicity_distinct_prime_power) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 409 | finally show False using \<open>m > 0\<close> by simp | 
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 410 | qed | 
| 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 411 | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 412 | lemma totient_formula1: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 413 | assumes "n > 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 414 | shows "totient n = (\<Prod>p\<in>prime_factors n. p ^ (multiplicity p n - 1) * (p - 1))" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 415 | proof - | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 416 | from assms have "n = (\<Prod>p\<in>prime_factors n. p ^ multiplicity p n)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 417 | by (rule prime_factorization_nat) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 418 | also have "totient \<dots> = (\<Prod>x\<in>prime_factors n. totient (x ^ multiplicity x n))" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 419 | proof (rule totient_prod_coprime) | 
| 66803 | 420 | show "pairwise coprime ((\<lambda>p. p ^ multiplicity p n) ` prime_factors n)" | 
| 421 | proof (rule pairwiseI, clarify) | |
| 67051 | 422 | fix p q assume *: "p \<in># prime_factorization n" "q \<in># prime_factorization n" | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 423 | "p ^ multiplicity p n \<noteq> q ^ multiplicity q n" | 
| 67051 | 424 | then have "multiplicity p n > 0" "multiplicity q n > 0" | 
| 425 | by (simp_all add: prime_factors_multiplicity) | |
| 426 | with * primes_coprime [of p q] show "coprime (p ^ multiplicity p n) (q ^ multiplicity q n)" | |
| 427 | by auto | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 428 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 429 | next | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 430 | show "inj_on (\<lambda>p. p ^ multiplicity p n) (prime_factors n)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 431 | proof | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 432 | fix p q assume pq: "p \<in># prime_factorization n" "q \<in># prime_factorization n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 433 | "p ^ multiplicity p n = q ^ multiplicity q n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 434 | from assms and pq have "prime p" "prime q" "multiplicity p n > 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 435 | by (simp_all add: prime_factors_multiplicity) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 436 | from prime_power_eq_imp_eq[OF this pq(3)] show "p = q" . | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 437 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 438 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 439 | also have "\<dots> = (\<Prod>p\<in>prime_factors n. p ^ (multiplicity p n - 1) * (p - 1))" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 440 | by (intro prod.cong refl totient_prime_power) (auto simp: prime_factors_multiplicity) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 441 | finally show ?thesis . | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 442 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 443 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 444 | lemma totient_dvd: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 445 | assumes "m dvd n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 446 | shows "totient m dvd totient n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 447 | proof (cases "m = 0 \<or> n = 0") | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 448 | case False | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 449 | let ?M = "\<lambda>p m :: nat. multiplicity p m - 1" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 450 | have "(\<Prod>p\<in>prime_factors m. p ^ ?M p m * (p - 1)) dvd | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 451 | (\<Prod>p\<in>prime_factors n. p ^ ?M p n * (p - 1))" using assms False | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 452 | by (intro prod_dvd_prod_subset2 mult_dvd_mono dvd_refl le_imp_power_dvd diff_le_mono | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 453 | dvd_prime_factors dvd_imp_multiplicity_le) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 454 | with False show ?thesis by (simp add: totient_formula1) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 455 | qed (insert assms, auto) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 456 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 457 | lemma totient_dvd_mono: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 458 | assumes "m dvd n" "n > 0" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 459 | shows "totient m \<le> totient n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 460 | by (cases "m = 0") (insert assms, auto intro: dvd_imp_le totient_dvd) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 461 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 462 | (* TODO Move *) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 463 | lemma prime_factors_power: "n > 0 \<Longrightarrow> prime_factors (x ^ n) = prime_factors x" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 464 | by (cases "x = 0"; cases "n = 0") | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 465 | (auto simp: prime_factors_multiplicity prime_elem_multiplicity_power_distrib zero_power) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 466 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 467 | lemma totient_formula2: | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 468 | "real (totient n) = real n * (\<Prod>p\<in>prime_factors n. 1 - 1 / real p)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 469 | proof (cases "n = 0") | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 470 | case False | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 471 | have "real (totient n) = (\<Prod>p\<in>prime_factors n. real | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 472 | (p ^ (multiplicity p n - 1) * (p - 1)))" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 473 | using False by (subst totient_formula1) simp_all | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 474 | also have "\<dots> = (\<Prod>p\<in>prime_factors n. real (p ^ multiplicity p n) * (1 - 1 / real p))" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 475 | by (intro prod.cong refl) (auto simp add: field_simps prime_factors_multiplicity | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 476 | prime_ge_Suc_0_nat of_nat_diff power_Suc [symmetric] simp del: power_Suc) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 477 | also have "\<dots> = real (\<Prod>p\<in>prime_factors n. p ^ multiplicity p n) * | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 478 | (\<Prod>p\<in>prime_factors n. 1 - 1 / real p)" by (subst prod.distrib) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 479 | also have "(\<Prod>p\<in>prime_factors n. p ^ multiplicity p n) = n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 480 | using False by (intro Primes.prime_factorization_nat [symmetric]) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 481 | finally show ?thesis . | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 482 | qed auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 483 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 484 | lemma totient_gcd: "totient (a * b) * totient (gcd a b) = totient a * totient b * gcd a b" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 485 | proof (cases "a = 0 \<or> b = 0") | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 486 | case False | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 487 | let ?P = "prime_factors :: nat \<Rightarrow> nat set" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 488 | have "real (totient a * totient b * gcd a b) = real (a * b * gcd a b) * | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 489 | ((\<Prod>p\<in>?P a. 1 - 1 / real p) * (\<Prod>p\<in>?P b. 1 - 1 / real p))" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 490 | by (simp add: totient_formula2) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 491 | also have "?P a = (?P a - ?P b) \<union> (?P a \<inter> ?P b)" by auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 492 | also have "(\<Prod>p\<in>\<dots>. 1 - 1 / real p) = | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 493 | (\<Prod>p\<in>?P a - ?P b. 1 - 1 / real p) * (\<Prod>p\<in>?P a \<inter> ?P b. 1 - 1 / real p)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 494 | by (rule prod.union_disjoint) blast+ | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 495 | also have "\<dots> * (\<Prod>p\<in>?P b. 1 - 1 / real p) = (\<Prod>p\<in>?P a - ?P b. 1 - 1 / real p) * | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 496 | (\<Prod>p\<in>?P b. 1 - 1 / real p) * (\<Prod>p\<in>?P a \<inter> ?P b. 1 - 1 / real p)" (is "_ = ?A * _") | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 497 | by (simp only: mult_ac) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 498 | also have "?A = (\<Prod>p\<in>?P a - ?P b \<union> ?P b. 1 - 1 / real p)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 499 | by (rule prod.union_disjoint [symmetric]) blast+ | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 500 | also have "?P a - ?P b \<union> ?P b = ?P a \<union> ?P b" by blast | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 501 | also have "real (a * b * gcd a b) * ((\<Prod>p\<in>\<dots>. 1 - 1 / real p) * | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 502 | (\<Prod>p\<in>?P a \<inter> ?P b. 1 - 1 / real p)) = real (totient (a * b) * totient (gcd a b))" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 503 | using False by (simp add: totient_formula2 prime_factors_product prime_factorization_gcd) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 504 | finally show ?thesis by (simp only: of_nat_eq_iff) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 505 | qed auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 506 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 507 | lemma totient_mult: "totient (a * b) = totient a * totient b * gcd a b div totient (gcd a b)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 508 | by (subst totient_gcd [symmetric]) simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 509 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 510 | lemma of_nat_eq_1_iff: "of_nat x = (1 :: 'a :: {semiring_1, semiring_char_0}) \<longleftrightarrow> x = 1"
 | 
| 67051 | 511 | by (fact of_nat_eq_1_iff) | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 512 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 513 | (* TODO Move *) | 
| 67051 | 514 | lemma odd_imp_coprime_nat: | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 515 | assumes "odd (n::nat)" | 
| 67051 | 516 | shows "coprime n 2" | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 517 | proof - | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 518 | from assms obtain k where n: "n = Suc (2 * k)" by (auto elim!: oddE) | 
| 67051 | 519 | have "coprime (Suc (2 * k)) (2 * k)" | 
| 520 | by (fact coprime_Suc_left_nat) | |
| 521 | then show ?thesis using n | |
| 522 | by simp | |
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 523 | qed | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 524 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 525 | lemma totient_double: "totient (2 * n) = (if even n then 2 * totient n else totient n)" | 
| 67051 | 526 | by (simp add: totient_mult ac_simps odd_imp_coprime_nat) | 
| 65726 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 527 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 528 | lemma totient_power_Suc: "totient (n ^ Suc m) = n ^ m * totient n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 529 | proof (induction m arbitrary: n) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 530 | case (Suc m n) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 531 | have "totient (n ^ Suc (Suc m)) = totient (n * n ^ Suc m)" by simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 532 | also have "\<dots> = n ^ Suc m * totient n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 533 | using Suc.IH by (subst totient_mult) simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 534 | finally show ?case . | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 535 | qed simp_all | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 536 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 537 | lemma totient_power: "m > 0 \<Longrightarrow> totient (n ^ m) = n ^ (m - 1) * totient n" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 538 | using totient_power_Suc[of n "m - 1"] by (cases m) simp_all | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 539 | |
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 540 | lemma totient_gcd_lcm: "totient (gcd a b) * totient (lcm a b) = totient a * totient b" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 541 | proof (cases "a = 0 \<or> b = 0") | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 542 | case False | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 543 | let ?P = "prime_factors :: nat \<Rightarrow> nat set" and ?f = "\<lambda>p::nat. 1 - 1 / real p" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 544 | have "real (totient (gcd a b) * totient (lcm a b)) = real (gcd a b * lcm a b) * | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 545 | (prod ?f (?P a \<inter> ?P b) * prod ?f (?P a \<union> ?P b))" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 546 | using False unfolding of_nat_mult | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 547 | by (simp add: totient_formula2 prime_factorization_gcd prime_factorization_lcm) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 548 | also have "gcd a b * lcm a b = a * b" by simp | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 549 | also have "?P a \<union> ?P b = (?P a - ?P a \<inter> ?P b) \<union> ?P b" by blast | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 550 | also have "prod ?f \<dots> = prod ?f (?P a - ?P a \<inter> ?P b) * prod ?f (?P b)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 551 | by (rule prod.union_disjoint) blast+ | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 552 | also have "prod ?f (?P a \<inter> ?P b) * \<dots> = | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 553 | prod ?f (?P a \<inter> ?P b \<union> (?P a - ?P a \<inter> ?P b)) * prod ?f (?P b)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 554 | by (subst prod.union_disjoint) auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 555 | also have "?P a \<inter> ?P b \<union> (?P a - ?P a \<inter> ?P b) = ?P a" by blast | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 556 | also have "real (a * b) * (prod ?f (?P a) * prod ?f (?P b)) = real (totient a * totient b)" | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 557 | using False by (simp add: totient_formula2) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 558 | finally show ?thesis by (simp only: of_nat_eq_iff) | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 559 | qed auto | 
| 
f5d64d094efe
More material on totient function
 eberlm <eberlm@in.tum.de> parents: 
65465diff
changeset | 560 | |
| 65465 
067210a08a22
more fundamental euler's totient function on nat rather than int;
 haftmann parents: diff
changeset | 561 | end |