author | nipkow |
Fri, 27 Mar 2020 12:28:05 +0100 | |
changeset 71593 | 71579bd59cd4 |
parent 66453 | cc19f7ca2ed6 |
child 80914 | d97fdabd9e2b |
permissions | -rw-r--r-- |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32689
diff
changeset
|
1 |
(* Title: HOL/UNITY/Follows.thy |
6706 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1998 University of Cambridge |
|
13798 | 4 |
*) |
6706 | 5 |
|
63146 | 6 |
section\<open>The Follows Relation of Charpentier and Sivilotte\<close> |
6706 | 7 |
|
41413
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
35416
diff
changeset
|
8 |
theory Follows |
66453
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents:
64267
diff
changeset
|
9 |
imports SubstAx ListOrder "HOL-Library.Multiset" |
41413
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
35416
diff
changeset
|
10 |
begin |
6706 | 11 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35274
diff
changeset
|
12 |
definition Follows :: "['a => 'b::{order}, 'a => 'b::{order}] => 'a program set" (infixl "Fols" 65) where |
13805 | 13 |
"f Fols g == Increasing g \<inter> Increasing f Int |
14 |
Always {s. f s \<le> g s} Int |
|
15 |
(\<Inter>k. {s. k \<le> g s} LeadsTo {s. k \<le> f s})" |
|
6706 | 16 |
|
17 |
||
13796 | 18 |
(*Does this hold for "invariant"?*) |
19 |
lemma mono_Always_o: |
|
13805 | 20 |
"mono h ==> Always {s. f s \<le> g s} \<subseteq> Always {s. h (f s) \<le> h (g s)}" |
13796 | 21 |
apply (simp add: Always_eq_includes_reachable) |
22 |
apply (blast intro: monoD) |
|
23 |
done |
|
24 |
||
25 |
lemma mono_LeadsTo_o: |
|
26 |
"mono (h::'a::order => 'b::order) |
|
13805 | 27 |
==> (\<Inter>j. {s. j \<le> g s} LeadsTo {s. j \<le> f s}) \<subseteq> |
28 |
(\<Inter>k. {s. k \<le> h (g s)} LeadsTo {s. k \<le> h (f s)})" |
|
13796 | 29 |
apply auto |
30 |
apply (rule single_LeadsTo_I) |
|
31 |
apply (drule_tac x = "g s" in spec) |
|
32 |
apply (erule LeadsTo_weaken) |
|
33 |
apply (blast intro: monoD order_trans)+ |
|
34 |
done |
|
35 |
||
13805 | 36 |
lemma Follows_constant [iff]: "F \<in> (%s. c) Fols (%s. c)" |
15102 | 37 |
by (simp add: Follows_def) |
13796 | 38 |
|
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61169
diff
changeset
|
39 |
lemma mono_Follows_o: |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61169
diff
changeset
|
40 |
assumes "mono h" |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61169
diff
changeset
|
41 |
shows "f Fols g \<subseteq> (h o f) Fols (h o g)" |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61169
diff
changeset
|
42 |
proof |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61169
diff
changeset
|
43 |
fix x |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61169
diff
changeset
|
44 |
assume "x \<in> f Fols g" |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61169
diff
changeset
|
45 |
with assms show "x \<in> (h \<circ> f) Fols (h \<circ> g)" |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61169
diff
changeset
|
46 |
by (auto simp add: Follows_def mono_Increasing_o [THEN [2] rev_subsetD] |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61169
diff
changeset
|
47 |
mono_Always_o [THEN [2] rev_subsetD] |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61169
diff
changeset
|
48 |
mono_LeadsTo_o [THEN [2] rev_subsetD, THEN INT_D]) |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61169
diff
changeset
|
49 |
qed |
13796 | 50 |
|
51 |
lemma mono_Follows_apply: |
|
13805 | 52 |
"mono h ==> f Fols g \<subseteq> (%x. h (f x)) Fols (%x. h (g x))" |
13796 | 53 |
apply (drule mono_Follows_o) |
54 |
apply (force simp add: o_def) |
|
55 |
done |
|
56 |
||
57 |
lemma Follows_trans: |
|
13805 | 58 |
"[| F \<in> f Fols g; F \<in> g Fols h |] ==> F \<in> f Fols h" |
15102 | 59 |
apply (simp add: Follows_def) |
13796 | 60 |
apply (simp add: Always_eq_includes_reachable) |
61 |
apply (blast intro: order_trans LeadsTo_Trans) |
|
62 |
done |
|
63 |
||
64 |
||
63146 | 65 |
subsection\<open>Destruction rules\<close> |
13796 | 66 |
|
13805 | 67 |
lemma Follows_Increasing1: "F \<in> f Fols g ==> F \<in> Increasing f" |
15102 | 68 |
by (simp add: Follows_def) |
13796 | 69 |
|
13805 | 70 |
lemma Follows_Increasing2: "F \<in> f Fols g ==> F \<in> Increasing g" |
15102 | 71 |
by (simp add: Follows_def) |
13796 | 72 |
|
21710 | 73 |
lemma Follows_Bounded: "F \<in> f Fols g ==> F \<in> Always {s. f s \<le> g s}" |
15102 | 74 |
by (simp add: Follows_def) |
13796 | 75 |
|
76 |
lemma Follows_LeadsTo: |
|
13805 | 77 |
"F \<in> f Fols g ==> F \<in> {s. k \<le> g s} LeadsTo {s. k \<le> f s}" |
15102 | 78 |
by (simp add: Follows_def) |
13796 | 79 |
|
80 |
lemma Follows_LeadsTo_pfixLe: |
|
13805 | 81 |
"F \<in> f Fols g ==> F \<in> {s. k pfixLe g s} LeadsTo {s. k pfixLe f s}" |
13796 | 82 |
apply (rule single_LeadsTo_I, clarify) |
83 |
apply (drule_tac k="g s" in Follows_LeadsTo) |
|
84 |
apply (erule LeadsTo_weaken) |
|
85 |
apply blast |
|
86 |
apply (blast intro: pfixLe_trans prefix_imp_pfixLe) |
|
87 |
done |
|
88 |
||
89 |
lemma Follows_LeadsTo_pfixGe: |
|
13805 | 90 |
"F \<in> f Fols g ==> F \<in> {s. k pfixGe g s} LeadsTo {s. k pfixGe f s}" |
13796 | 91 |
apply (rule single_LeadsTo_I, clarify) |
92 |
apply (drule_tac k="g s" in Follows_LeadsTo) |
|
93 |
apply (erule LeadsTo_weaken) |
|
94 |
apply blast |
|
95 |
apply (blast intro: pfixGe_trans prefix_imp_pfixGe) |
|
96 |
done |
|
97 |
||
98 |
||
99 |
lemma Always_Follows1: |
|
13805 | 100 |
"[| F \<in> Always {s. f s = f' s}; F \<in> f Fols g |] ==> F \<in> f' Fols g" |
13796 | 101 |
|
15102 | 102 |
apply (simp add: Follows_def Increasing_def Stable_def, auto) |
13796 | 103 |
apply (erule_tac [3] Always_LeadsTo_weaken) |
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
104 |
apply (erule_tac A = "{s. x \<le> f s}" and A' = "{s. x \<le> f s}" |
13798 | 105 |
in Always_Constrains_weaken, auto) |
13796 | 106 |
apply (drule Always_Int_I, assumption) |
107 |
apply (force intro: Always_weaken) |
|
108 |
done |
|
109 |
||
110 |
lemma Always_Follows2: |
|
13805 | 111 |
"[| F \<in> Always {s. g s = g' s}; F \<in> f Fols g |] ==> F \<in> f Fols g'" |
15102 | 112 |
apply (simp add: Follows_def Increasing_def Stable_def, auto) |
13796 | 113 |
apply (erule_tac [3] Always_LeadsTo_weaken) |
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
114 |
apply (erule_tac A = "{s. x \<le> g s}" and A' = "{s. x \<le> g s}" |
13798 | 115 |
in Always_Constrains_weaken, auto) |
13796 | 116 |
apply (drule Always_Int_I, assumption) |
117 |
apply (force intro: Always_weaken) |
|
118 |
done |
|
119 |
||
120 |
||
63146 | 121 |
subsection\<open>Union properties (with the subset ordering)\<close> |
13796 | 122 |
|
123 |
(*Can replace "Un" by any sup. But existing max only works for linorders.*) |
|
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
124 |
|
13796 | 125 |
lemma increasing_Un: |
13805 | 126 |
"[| F \<in> increasing f; F \<in> increasing g |] |
127 |
==> F \<in> increasing (%s. (f s) \<union> (g s))" |
|
15102 | 128 |
apply (simp add: increasing_def stable_def constrains_def, auto) |
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
129 |
apply (drule_tac x = "f xb" in spec) |
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
130 |
apply (drule_tac x = "g xb" in spec) |
13796 | 131 |
apply (blast dest!: bspec) |
132 |
done |
|
133 |
||
134 |
lemma Increasing_Un: |
|
13805 | 135 |
"[| F \<in> Increasing f; F \<in> Increasing g |] |
136 |
==> F \<in> Increasing (%s. (f s) \<union> (g s))" |
|
13798 | 137 |
apply (auto simp add: Increasing_def Stable_def Constrains_def |
138 |
stable_def constrains_def) |
|
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
139 |
apply (drule_tac x = "f xb" in spec) |
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
140 |
apply (drule_tac x = "g xb" in spec) |
13796 | 141 |
apply (blast dest!: bspec) |
142 |
done |
|
143 |
||
144 |
||
145 |
lemma Always_Un: |
|
13805 | 146 |
"[| F \<in> Always {s. f' s \<le> f s}; F \<in> Always {s. g' s \<le> g s} |] |
147 |
==> F \<in> Always {s. f' s \<union> g' s \<le> f s \<union> g s}" |
|
13798 | 148 |
by (simp add: Always_eq_includes_reachable, blast) |
13796 | 149 |
|
150 |
(*Lemma to re-use the argument that one variable increases (progress) |
|
151 |
while the other variable doesn't decrease (safety)*) |
|
152 |
lemma Follows_Un_lemma: |
|
13805 | 153 |
"[| F \<in> Increasing f; F \<in> Increasing g; |
154 |
F \<in> Increasing g'; F \<in> Always {s. f' s \<le> f s}; |
|
155 |
\<forall>k. F \<in> {s. k \<le> f s} LeadsTo {s. k \<le> f' s} |] |
|
156 |
==> F \<in> {s. k \<le> f s \<union> g s} LeadsTo {s. k \<le> f' s \<union> g s}" |
|
13796 | 157 |
apply (rule single_LeadsTo_I) |
158 |
apply (drule_tac x = "f s" in IncreasingD) |
|
159 |
apply (drule_tac x = "g s" in IncreasingD) |
|
160 |
apply (rule LeadsTo_weaken) |
|
161 |
apply (rule PSP_Stable) |
|
162 |
apply (erule_tac x = "f s" in spec) |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
163 |
apply (erule Stable_Int, assumption, blast+) |
13796 | 164 |
done |
165 |
||
166 |
lemma Follows_Un: |
|
13805 | 167 |
"[| F \<in> f' Fols f; F \<in> g' Fols g |] |
168 |
==> F \<in> (%s. (f' s) \<union> (g' s)) Fols (%s. (f s) \<union> (g s))" |
|
54859 | 169 |
apply (simp add: Follows_def Increasing_Un Always_Un del: Un_subset_iff sup.bounded_iff, auto) |
13796 | 170 |
apply (rule LeadsTo_Trans) |
171 |
apply (blast intro: Follows_Un_lemma) |
|
172 |
(*Weakening is used to exchange Un's arguments*) |
|
173 |
apply (blast intro: Follows_Un_lemma [THEN LeadsTo_weaken]) |
|
174 |
done |
|
175 |
||
176 |
||
63146 | 177 |
subsection\<open>Multiset union properties (with the multiset ordering)\<close> |
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
178 |
|
13796 | 179 |
|
180 |
lemma increasing_union: |
|
13805 | 181 |
"[| F \<in> increasing f; F \<in> increasing g |] |
182 |
==> F \<in> increasing (%s. (f s) + (g s :: ('a::order) multiset))" |
|
15102 | 183 |
apply (simp add: increasing_def stable_def constrains_def, auto) |
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
184 |
apply (drule_tac x = "f xb" in spec) |
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
185 |
apply (drule_tac x = "g xb" in spec) |
13796 | 186 |
apply (drule bspec, assumption) |
35274 | 187 |
apply (blast intro: add_mono order_trans) |
13796 | 188 |
done |
189 |
||
190 |
lemma Increasing_union: |
|
13805 | 191 |
"[| F \<in> Increasing f; F \<in> Increasing g |] |
192 |
==> F \<in> Increasing (%s. (f s) + (g s :: ('a::order) multiset))" |
|
13798 | 193 |
apply (auto simp add: Increasing_def Stable_def Constrains_def |
194 |
stable_def constrains_def) |
|
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
195 |
apply (drule_tac x = "f xb" in spec) |
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
196 |
apply (drule_tac x = "g xb" in spec) |
13796 | 197 |
apply (drule bspec, assumption) |
35274 | 198 |
apply (blast intro: add_mono order_trans) |
13796 | 199 |
done |
200 |
||
201 |
lemma Always_union: |
|
13805 | 202 |
"[| F \<in> Always {s. f' s \<le> f s}; F \<in> Always {s. g' s \<le> g s} |] |
203 |
==> F \<in> Always {s. f' s + g' s \<le> f s + (g s :: ('a::order) multiset)}" |
|
13796 | 204 |
apply (simp add: Always_eq_includes_reachable) |
35274 | 205 |
apply (blast intro: add_mono) |
13796 | 206 |
done |
207 |
||
208 |
(*Except the last line, IDENTICAL to the proof script for Follows_Un_lemma*) |
|
209 |
lemma Follows_union_lemma: |
|
13805 | 210 |
"[| F \<in> Increasing f; F \<in> Increasing g; |
211 |
F \<in> Increasing g'; F \<in> Always {s. f' s \<le> f s}; |
|
212 |
\<forall>k::('a::order) multiset. |
|
213 |
F \<in> {s. k \<le> f s} LeadsTo {s. k \<le> f' s} |] |
|
214 |
==> F \<in> {s. k \<le> f s + g s} LeadsTo {s. k \<le> f' s + g s}" |
|
13796 | 215 |
apply (rule single_LeadsTo_I) |
216 |
apply (drule_tac x = "f s" in IncreasingD) |
|
217 |
apply (drule_tac x = "g s" in IncreasingD) |
|
218 |
apply (rule LeadsTo_weaken) |
|
219 |
apply (rule PSP_Stable) |
|
220 |
apply (erule_tac x = "f s" in spec) |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
221 |
apply (erule Stable_Int, assumption, blast) |
35274 | 222 |
apply (blast intro: add_mono order_trans) |
13796 | 223 |
done |
224 |
||
225 |
(*The !! is there to influence to effect of permutative rewriting at the end*) |
|
226 |
lemma Follows_union: |
|
227 |
"!!g g' ::'b => ('a::order) multiset. |
|
13805 | 228 |
[| F \<in> f' Fols f; F \<in> g' Fols g |] |
229 |
==> F \<in> (%s. (f' s) + (g' s)) Fols (%s. (f s) + (g s))" |
|
15102 | 230 |
apply (simp add: Follows_def) |
13796 | 231 |
apply (simp add: Increasing_union Always_union, auto) |
232 |
apply (rule LeadsTo_Trans) |
|
233 |
apply (blast intro: Follows_union_lemma) |
|
234 |
(*now exchange union's arguments*) |
|
235 |
apply (simp add: union_commute) |
|
236 |
apply (blast intro: Follows_union_lemma) |
|
237 |
done |
|
238 |
||
64267 | 239 |
lemma Follows_sum: |
13796 | 240 |
"!!f ::['c,'b] => ('a::order) multiset. |
13805 | 241 |
[| \<forall>i \<in> I. F \<in> f' i Fols f i; finite I |] |
242 |
==> F \<in> (%s. \<Sum>i \<in> I. f' i s) Fols (%s. \<Sum>i \<in> I. f i s)" |
|
13796 | 243 |
apply (erule rev_mp) |
244 |
apply (erule finite_induct, simp) |
|
245 |
apply (simp add: Follows_union) |
|
246 |
done |
|
247 |
||
248 |
||
249 |
(*Currently UNUSED, but possibly of interest*) |
|
250 |
lemma Increasing_imp_Stable_pfixGe: |
|
13805 | 251 |
"F \<in> Increasing func ==> F \<in> Stable {s. h pfixGe (func s)}" |
13796 | 252 |
apply (simp add: Increasing_def Stable_def Constrains_def constrains_def) |
253 |
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] |
|
254 |
prefix_imp_pfixGe) |
|
255 |
done |
|
256 |
||
257 |
(*Currently UNUSED, but possibly of interest*) |
|
258 |
lemma LeadsTo_le_imp_pfixGe: |
|
13805 | 259 |
"\<forall>z. F \<in> {s. z \<le> f s} LeadsTo {s. z \<le> g s} |
260 |
==> F \<in> {s. z pfixGe f s} LeadsTo {s. z pfixGe g s}" |
|
13796 | 261 |
apply (rule single_LeadsTo_I) |
262 |
apply (drule_tac x = "f s" in spec) |
|
263 |
apply (erule LeadsTo_weaken) |
|
264 |
prefer 2 |
|
265 |
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] |
|
266 |
prefix_imp_pfixGe, blast) |
|
267 |
done |
|
268 |
||
6706 | 269 |
end |