| author | haftmann | 
| Sun, 24 May 2009 15:02:22 +0200 | |
| changeset 31247 | 71f163982a21 | 
| parent 30684 | c98a64746c69 | 
| child 31706 | 1db0c8f235fb | 
| permissions | -rw-r--r-- | 
| 30439 | 1  | 
(* Title: HOL/Decision_Procs/Ferrack.thy  | 
| 29789 | 2  | 
Author: Amine Chaieb  | 
3  | 
*)  | 
|
4  | 
||
5  | 
theory Ferrack  | 
|
| 29818 | 6  | 
imports Complex_Main Dense_Linear_Order Efficient_Nat  | 
| 29789 | 7  | 
uses ("ferrack_tac.ML")
 | 
8  | 
begin  | 
|
9  | 
||
10  | 
section {* Quantifier elimination for @{text "\<real> (0, 1, +, <)"} *}
 | 
|
11  | 
||
12  | 
(*********************************************************************************)  | 
|
13  | 
(* SOME GENERAL STUFF< HAS TO BE MOVED IN SOME LIB *)  | 
|
14  | 
(*********************************************************************************)  | 
|
15  | 
||
16  | 
consts alluopairs:: "'a list \<Rightarrow> ('a \<times> 'a) list"
 | 
|
17  | 
primrec  | 
|
18  | 
"alluopairs [] = []"  | 
|
19  | 
"alluopairs (x#xs) = (map (Pair x) (x#xs))@(alluopairs xs)"  | 
|
20  | 
||
21  | 
lemma alluopairs_set1: "set (alluopairs xs) \<le> {(x,y). x\<in> set xs \<and> y\<in> set xs}"
 | 
|
22  | 
by (induct xs, auto)  | 
|
23  | 
||
24  | 
lemma alluopairs_set:  | 
|
25  | 
"\<lbrakk>x\<in> set xs ; y \<in> set xs\<rbrakk> \<Longrightarrow> (x,y) \<in> set (alluopairs xs) \<or> (y,x) \<in> set (alluopairs xs) "  | 
|
26  | 
by (induct xs, auto)  | 
|
27  | 
||
28  | 
lemma alluopairs_ex:  | 
|
29  | 
assumes Pc: "\<forall> x y. P x y = P y x"  | 
|
30  | 
shows "(\<exists> x \<in> set xs. \<exists> y \<in> set xs. P x y) = (\<exists> (x,y) \<in> set (alluopairs xs). P x y)"  | 
|
31  | 
proof  | 
|
32  | 
assume "\<exists>x\<in>set xs. \<exists>y\<in>set xs. P x y"  | 
|
33  | 
then obtain x y where x: "x \<in> set xs" and y:"y \<in> set xs" and P: "P x y" by blast  | 
|
34  | 
from alluopairs_set[OF x y] P Pc show"\<exists>(x, y)\<in>set (alluopairs xs). P x y"  | 
|
35  | 
by auto  | 
|
36  | 
next  | 
|
37  | 
assume "\<exists>(x, y)\<in>set (alluopairs xs). P x y"  | 
|
38  | 
then obtain "x" and "y" where xy:"(x,y) \<in> set (alluopairs xs)" and P: "P x y" by blast+  | 
|
39  | 
from xy have "x \<in> set xs \<and> y\<in> set xs" using alluopairs_set1 by blast  | 
|
40  | 
with P show "\<exists>x\<in>set xs. \<exists>y\<in>set xs. P x y" by blast  | 
|
41  | 
qed  | 
|
42  | 
||
43  | 
lemma nth_pos2: "0 < n \<Longrightarrow> (x#xs) ! n = xs ! (n - 1)"  | 
|
44  | 
using Nat.gr0_conv_Suc  | 
|
45  | 
by clarsimp  | 
|
46  | 
||
47  | 
lemma filter_length: "length (List.filter P xs) < Suc (length xs)"  | 
|
48  | 
apply (induct xs, auto) done  | 
|
49  | 
||
50  | 
consts remdps:: "'a list \<Rightarrow> 'a list"  | 
|
51  | 
||
52  | 
recdef remdps "measure size"  | 
|
53  | 
"remdps [] = []"  | 
|
54  | 
"remdps (x#xs) = (x#(remdps (List.filter (\<lambda> y. y \<noteq> x) xs)))"  | 
|
55  | 
(hints simp add: filter_length[rule_format])  | 
|
56  | 
||
57  | 
lemma remdps_set[simp]: "set (remdps xs) = set xs"  | 
|
58  | 
by (induct xs rule: remdps.induct, auto)  | 
|
59  | 
||
60  | 
||
61  | 
||
62  | 
(*********************************************************************************)  | 
|
63  | 
(**** SHADOW SYNTAX AND SEMANTICS ****)  | 
|
64  | 
(*********************************************************************************)  | 
|
65  | 
||
66  | 
datatype num = C int | Bound nat | CN nat int num | Neg num | Add num num| Sub num num  | 
|
67  | 
| Mul int num  | 
|
68  | 
||
69  | 
(* A size for num to make inductive proofs simpler*)  | 
|
70  | 
consts num_size :: "num \<Rightarrow> nat"  | 
|
71  | 
primrec  | 
|
72  | 
"num_size (C c) = 1"  | 
|
73  | 
"num_size (Bound n) = 1"  | 
|
74  | 
"num_size (Neg a) = 1 + num_size a"  | 
|
75  | 
"num_size (Add a b) = 1 + num_size a + num_size b"  | 
|
76  | 
"num_size (Sub a b) = 3 + num_size a + num_size b"  | 
|
77  | 
"num_size (Mul c a) = 1 + num_size a"  | 
|
78  | 
"num_size (CN n c a) = 3 + num_size a "  | 
|
79  | 
||
80  | 
(* Semantics of numeral terms (num) *)  | 
|
81  | 
consts Inum :: "real list \<Rightarrow> num \<Rightarrow> real"  | 
|
82  | 
primrec  | 
|
83  | 
"Inum bs (C c) = (real c)"  | 
|
84  | 
"Inum bs (Bound n) = bs!n"  | 
|
85  | 
"Inum bs (CN n c a) = (real c) * (bs!n) + (Inum bs a)"  | 
|
86  | 
"Inum bs (Neg a) = -(Inum bs a)"  | 
|
87  | 
"Inum bs (Add a b) = Inum bs a + Inum bs b"  | 
|
88  | 
"Inum bs (Sub a b) = Inum bs a - Inum bs b"  | 
|
89  | 
"Inum bs (Mul c a) = (real c) * Inum bs a"  | 
|
90  | 
(* FORMULAE *)  | 
|
91  | 
datatype fm =  | 
|
92  | 
T| F| Lt num| Le num| Gt num| Ge num| Eq num| NEq num|  | 
|
93  | 
NOT fm| And fm fm| Or fm fm| Imp fm fm| Iff fm fm| E fm| A fm  | 
|
94  | 
||
95  | 
||
96  | 
(* A size for fm *)  | 
|
97  | 
consts fmsize :: "fm \<Rightarrow> nat"  | 
|
98  | 
recdef fmsize "measure size"  | 
|
99  | 
"fmsize (NOT p) = 1 + fmsize p"  | 
|
100  | 
"fmsize (And p q) = 1 + fmsize p + fmsize q"  | 
|
101  | 
"fmsize (Or p q) = 1 + fmsize p + fmsize q"  | 
|
102  | 
"fmsize (Imp p q) = 3 + fmsize p + fmsize q"  | 
|
103  | 
"fmsize (Iff p q) = 3 + 2*(fmsize p + fmsize q)"  | 
|
104  | 
"fmsize (E p) = 1 + fmsize p"  | 
|
105  | 
"fmsize (A p) = 4+ fmsize p"  | 
|
106  | 
"fmsize p = 1"  | 
|
107  | 
(* several lemmas about fmsize *)  | 
|
108  | 
lemma fmsize_pos: "fmsize p > 0"  | 
|
109  | 
by (induct p rule: fmsize.induct) simp_all  | 
|
110  | 
||
111  | 
(* Semantics of formulae (fm) *)  | 
|
112  | 
consts Ifm ::"real list \<Rightarrow> fm \<Rightarrow> bool"  | 
|
113  | 
primrec  | 
|
114  | 
"Ifm bs T = True"  | 
|
115  | 
"Ifm bs F = False"  | 
|
116  | 
"Ifm bs (Lt a) = (Inum bs a < 0)"  | 
|
117  | 
"Ifm bs (Gt a) = (Inum bs a > 0)"  | 
|
118  | 
"Ifm bs (Le a) = (Inum bs a \<le> 0)"  | 
|
119  | 
"Ifm bs (Ge a) = (Inum bs a \<ge> 0)"  | 
|
120  | 
"Ifm bs (Eq a) = (Inum bs a = 0)"  | 
|
121  | 
"Ifm bs (NEq a) = (Inum bs a \<noteq> 0)"  | 
|
122  | 
"Ifm bs (NOT p) = (\<not> (Ifm bs p))"  | 
|
123  | 
"Ifm bs (And p q) = (Ifm bs p \<and> Ifm bs q)"  | 
|
124  | 
"Ifm bs (Or p q) = (Ifm bs p \<or> Ifm bs q)"  | 
|
125  | 
"Ifm bs (Imp p q) = ((Ifm bs p) \<longrightarrow> (Ifm bs q))"  | 
|
126  | 
"Ifm bs (Iff p q) = (Ifm bs p = Ifm bs q)"  | 
|
127  | 
"Ifm bs (E p) = (\<exists> x. Ifm (x#bs) p)"  | 
|
128  | 
"Ifm bs (A p) = (\<forall> x. Ifm (x#bs) p)"  | 
|
129  | 
||
130  | 
lemma IfmLeSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Le (Sub s t)) = (s' \<le> t')"  | 
|
131  | 
apply simp  | 
|
132  | 
done  | 
|
133  | 
||
134  | 
lemma IfmLtSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Lt (Sub s t)) = (s' < t')"  | 
|
135  | 
apply simp  | 
|
136  | 
done  | 
|
137  | 
lemma IfmEqSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Eq (Sub s t)) = (s' = t')"  | 
|
138  | 
apply simp  | 
|
139  | 
done  | 
|
140  | 
lemma IfmNOT: " (Ifm bs p = P) \<Longrightarrow> (Ifm bs (NOT p) = (\<not>P))"  | 
|
141  | 
apply simp  | 
|
142  | 
done  | 
|
143  | 
lemma IfmAnd: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (And p q) = (P \<and> Q))"  | 
|
144  | 
apply simp  | 
|
145  | 
done  | 
|
146  | 
lemma IfmOr: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Or p q) = (P \<or> Q))"  | 
|
147  | 
apply simp  | 
|
148  | 
done  | 
|
149  | 
lemma IfmImp: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Imp p q) = (P \<longrightarrow> Q))"  | 
|
150  | 
apply simp  | 
|
151  | 
done  | 
|
152  | 
lemma IfmIff: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Iff p q) = (P = Q))"  | 
|
153  | 
apply simp  | 
|
154  | 
done  | 
|
155  | 
||
156  | 
lemma IfmE: " (!! x. Ifm (x#bs) p = P x) \<Longrightarrow> (Ifm bs (E p) = (\<exists>x. P x))"  | 
|
157  | 
apply simp  | 
|
158  | 
done  | 
|
159  | 
lemma IfmA: " (!! x. Ifm (x#bs) p = P x) \<Longrightarrow> (Ifm bs (A p) = (\<forall>x. P x))"  | 
|
160  | 
apply simp  | 
|
161  | 
done  | 
|
162  | 
||
163  | 
consts not:: "fm \<Rightarrow> fm"  | 
|
164  | 
recdef not "measure size"  | 
|
165  | 
"not (NOT p) = p"  | 
|
166  | 
"not T = F"  | 
|
167  | 
"not F = T"  | 
|
168  | 
"not p = NOT p"  | 
|
169  | 
lemma not[simp]: "Ifm bs (not p) = Ifm bs (NOT p)"  | 
|
170  | 
by (cases p) auto  | 
|
171  | 
||
172  | 
constdefs conj :: "fm \<Rightarrow> fm \<Rightarrow> fm"  | 
|
173  | 
"conj p q \<equiv> (if (p = F \<or> q=F) then F else if p=T then q else if q=T then p else  | 
|
174  | 
if p = q then p else And p q)"  | 
|
175  | 
lemma conj[simp]: "Ifm bs (conj p q) = Ifm bs (And p q)"  | 
|
176  | 
by (cases "p=F \<or> q=F",simp_all add: conj_def) (cases p,simp_all)  | 
|
177  | 
||
178  | 
constdefs disj :: "fm \<Rightarrow> fm \<Rightarrow> fm"  | 
|
179  | 
"disj p q \<equiv> (if (p = T \<or> q=T) then T else if p=F then q else if q=F then p  | 
|
180  | 
else if p=q then p else Or p q)"  | 
|
181  | 
||
182  | 
lemma disj[simp]: "Ifm bs (disj p q) = Ifm bs (Or p q)"  | 
|
183  | 
by (cases "p=T \<or> q=T",simp_all add: disj_def) (cases p,simp_all)  | 
|
184  | 
||
185  | 
constdefs imp :: "fm \<Rightarrow> fm \<Rightarrow> fm"  | 
|
186  | 
"imp p q \<equiv> (if (p = F \<or> q=T \<or> p=q) then T else if p=T then q else if q=F then not p  | 
|
187  | 
else Imp p q)"  | 
|
188  | 
lemma imp[simp]: "Ifm bs (imp p q) = Ifm bs (Imp p q)"  | 
|
189  | 
by (cases "p=F \<or> q=T",simp_all add: imp_def)  | 
|
190  | 
||
191  | 
constdefs iff :: "fm \<Rightarrow> fm \<Rightarrow> fm"  | 
|
192  | 
"iff p q \<equiv> (if (p = q) then T else if (p = NOT q \<or> NOT p = q) then F else  | 
|
193  | 
if p=F then not q else if q=F then not p else if p=T then q else if q=T then p else  | 
|
194  | 
Iff p q)"  | 
|
195  | 
lemma iff[simp]: "Ifm bs (iff p q) = Ifm bs (Iff p q)"  | 
|
196  | 
by (unfold iff_def,cases "p=q", simp,cases "p=NOT q", simp) (cases "NOT p= q", auto)  | 
|
197  | 
||
198  | 
lemma conj_simps:  | 
|
199  | 
"conj F Q = F"  | 
|
200  | 
"conj P F = F"  | 
|
201  | 
"conj T Q = Q"  | 
|
202  | 
"conj P T = P"  | 
|
203  | 
"conj P P = P"  | 
|
204  | 
"P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> conj P Q = And P Q"  | 
|
205  | 
by (simp_all add: conj_def)  | 
|
206  | 
||
207  | 
lemma disj_simps:  | 
|
208  | 
"disj T Q = T"  | 
|
209  | 
"disj P T = T"  | 
|
210  | 
"disj F Q = Q"  | 
|
211  | 
"disj P F = P"  | 
|
212  | 
"disj P P = P"  | 
|
213  | 
"P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> disj P Q = Or P Q"  | 
|
214  | 
by (simp_all add: disj_def)  | 
|
215  | 
lemma imp_simps:  | 
|
216  | 
"imp F Q = T"  | 
|
217  | 
"imp P T = T"  | 
|
218  | 
"imp T Q = Q"  | 
|
219  | 
"imp P F = not P"  | 
|
220  | 
"imp P P = T"  | 
|
221  | 
"P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> imp P Q = Imp P Q"  | 
|
222  | 
by (simp_all add: imp_def)  | 
|
223  | 
lemma trivNOT: "p \<noteq> NOT p" "NOT p \<noteq> p"  | 
|
224  | 
apply (induct p, auto)  | 
|
225  | 
done  | 
|
226  | 
||
227  | 
lemma iff_simps:  | 
|
228  | 
"iff p p = T"  | 
|
229  | 
"iff p (NOT p) = F"  | 
|
230  | 
"iff (NOT p) p = F"  | 
|
231  | 
"iff p F = not p"  | 
|
232  | 
"iff F p = not p"  | 
|
233  | 
"p \<noteq> NOT T \<Longrightarrow> iff T p = p"  | 
|
234  | 
"p\<noteq> NOT T \<Longrightarrow> iff p T = p"  | 
|
235  | 
"p\<noteq>q \<Longrightarrow> p\<noteq> NOT q \<Longrightarrow> q\<noteq> NOT p \<Longrightarrow> p\<noteq> F \<Longrightarrow> q\<noteq> F \<Longrightarrow> p \<noteq> T \<Longrightarrow> q \<noteq> T \<Longrightarrow> iff p q = Iff p q"  | 
|
236  | 
using trivNOT  | 
|
237  | 
by (simp_all add: iff_def, cases p, auto)  | 
|
238  | 
(* Quantifier freeness *)  | 
|
239  | 
consts qfree:: "fm \<Rightarrow> bool"  | 
|
240  | 
recdef qfree "measure size"  | 
|
241  | 
"qfree (E p) = False"  | 
|
242  | 
"qfree (A p) = False"  | 
|
243  | 
"qfree (NOT p) = qfree p"  | 
|
244  | 
"qfree (And p q) = (qfree p \<and> qfree q)"  | 
|
245  | 
"qfree (Or p q) = (qfree p \<and> qfree q)"  | 
|
246  | 
"qfree (Imp p q) = (qfree p \<and> qfree q)"  | 
|
247  | 
"qfree (Iff p q) = (qfree p \<and> qfree q)"  | 
|
248  | 
"qfree p = True"  | 
|
249  | 
||
250  | 
(* Boundedness and substitution *)  | 
|
251  | 
consts  | 
|
252  | 
numbound0:: "num \<Rightarrow> bool" (* a num is INDEPENDENT of Bound 0 *)  | 
|
253  | 
bound0:: "fm \<Rightarrow> bool" (* A Formula is independent of Bound 0 *)  | 
|
254  | 
primrec  | 
|
255  | 
"numbound0 (C c) = True"  | 
|
256  | 
"numbound0 (Bound n) = (n>0)"  | 
|
257  | 
"numbound0 (CN n c a) = (n\<noteq>0 \<and> numbound0 a)"  | 
|
258  | 
"numbound0 (Neg a) = numbound0 a"  | 
|
259  | 
"numbound0 (Add a b) = (numbound0 a \<and> numbound0 b)"  | 
|
260  | 
"numbound0 (Sub a b) = (numbound0 a \<and> numbound0 b)"  | 
|
261  | 
"numbound0 (Mul i a) = numbound0 a"  | 
|
262  | 
lemma numbound0_I:  | 
|
263  | 
assumes nb: "numbound0 a"  | 
|
264  | 
shows "Inum (b#bs) a = Inum (b'#bs) a"  | 
|
265  | 
using nb  | 
|
266  | 
by (induct a rule: numbound0.induct,auto simp add: nth_pos2)  | 
|
267  | 
||
268  | 
primrec  | 
|
269  | 
"bound0 T = True"  | 
|
270  | 
"bound0 F = True"  | 
|
271  | 
"bound0 (Lt a) = numbound0 a"  | 
|
272  | 
"bound0 (Le a) = numbound0 a"  | 
|
273  | 
"bound0 (Gt a) = numbound0 a"  | 
|
274  | 
"bound0 (Ge a) = numbound0 a"  | 
|
275  | 
"bound0 (Eq a) = numbound0 a"  | 
|
276  | 
"bound0 (NEq a) = numbound0 a"  | 
|
277  | 
"bound0 (NOT p) = bound0 p"  | 
|
278  | 
"bound0 (And p q) = (bound0 p \<and> bound0 q)"  | 
|
279  | 
"bound0 (Or p q) = (bound0 p \<and> bound0 q)"  | 
|
280  | 
"bound0 (Imp p q) = ((bound0 p) \<and> (bound0 q))"  | 
|
281  | 
"bound0 (Iff p q) = (bound0 p \<and> bound0 q)"  | 
|
282  | 
"bound0 (E p) = False"  | 
|
283  | 
"bound0 (A p) = False"  | 
|
284  | 
||
285  | 
lemma bound0_I:  | 
|
286  | 
assumes bp: "bound0 p"  | 
|
287  | 
shows "Ifm (b#bs) p = Ifm (b'#bs) p"  | 
|
288  | 
using bp numbound0_I[where b="b" and bs="bs" and b'="b'"]  | 
|
289  | 
by (induct p rule: bound0.induct) (auto simp add: nth_pos2)  | 
|
290  | 
||
291  | 
lemma not_qf[simp]: "qfree p \<Longrightarrow> qfree (not p)"  | 
|
292  | 
by (cases p, auto)  | 
|
293  | 
lemma not_bn[simp]: "bound0 p \<Longrightarrow> bound0 (not p)"  | 
|
294  | 
by (cases p, auto)  | 
|
295  | 
||
296  | 
||
297  | 
lemma conj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (conj p q)"  | 
|
298  | 
using conj_def by auto  | 
|
299  | 
lemma conj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (conj p q)"  | 
|
300  | 
using conj_def by auto  | 
|
301  | 
||
302  | 
lemma disj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (disj p q)"  | 
|
303  | 
using disj_def by auto  | 
|
304  | 
lemma disj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (disj p q)"  | 
|
305  | 
using disj_def by auto  | 
|
306  | 
||
307  | 
lemma imp_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (imp p q)"  | 
|
308  | 
using imp_def by (cases "p=F \<or> q=T",simp_all add: imp_def)  | 
|
309  | 
lemma imp_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (imp p q)"  | 
|
310  | 
using imp_def by (cases "p=F \<or> q=T \<or> p=q",simp_all add: imp_def)  | 
|
311  | 
||
312  | 
lemma iff_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (iff p q)"  | 
|
313  | 
by (unfold iff_def,cases "p=q", auto)  | 
|
314  | 
lemma iff_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (iff p q)"  | 
|
315  | 
using iff_def by (unfold iff_def,cases "p=q", auto)  | 
|
316  | 
||
317  | 
consts  | 
|
318  | 
decrnum:: "num \<Rightarrow> num"  | 
|
319  | 
decr :: "fm \<Rightarrow> fm"  | 
|
320  | 
||
321  | 
recdef decrnum "measure size"  | 
|
322  | 
"decrnum (Bound n) = Bound (n - 1)"  | 
|
323  | 
"decrnum (Neg a) = Neg (decrnum a)"  | 
|
324  | 
"decrnum (Add a b) = Add (decrnum a) (decrnum b)"  | 
|
325  | 
"decrnum (Sub a b) = Sub (decrnum a) (decrnum b)"  | 
|
326  | 
"decrnum (Mul c a) = Mul c (decrnum a)"  | 
|
327  | 
"decrnum (CN n c a) = CN (n - 1) c (decrnum a)"  | 
|
328  | 
"decrnum a = a"  | 
|
329  | 
||
330  | 
recdef decr "measure size"  | 
|
331  | 
"decr (Lt a) = Lt (decrnum a)"  | 
|
332  | 
"decr (Le a) = Le (decrnum a)"  | 
|
333  | 
"decr (Gt a) = Gt (decrnum a)"  | 
|
334  | 
"decr (Ge a) = Ge (decrnum a)"  | 
|
335  | 
"decr (Eq a) = Eq (decrnum a)"  | 
|
336  | 
"decr (NEq a) = NEq (decrnum a)"  | 
|
337  | 
"decr (NOT p) = NOT (decr p)"  | 
|
338  | 
"decr (And p q) = conj (decr p) (decr q)"  | 
|
339  | 
"decr (Or p q) = disj (decr p) (decr q)"  | 
|
340  | 
"decr (Imp p q) = imp (decr p) (decr q)"  | 
|
341  | 
"decr (Iff p q) = iff (decr p) (decr q)"  | 
|
342  | 
"decr p = p"  | 
|
343  | 
||
344  | 
lemma decrnum: assumes nb: "numbound0 t"  | 
|
345  | 
shows "Inum (x#bs) t = Inum bs (decrnum t)"  | 
|
346  | 
using nb by (induct t rule: decrnum.induct, simp_all add: nth_pos2)  | 
|
347  | 
||
348  | 
lemma decr: assumes nb: "bound0 p"  | 
|
349  | 
shows "Ifm (x#bs) p = Ifm bs (decr p)"  | 
|
350  | 
using nb  | 
|
351  | 
by (induct p rule: decr.induct, simp_all add: nth_pos2 decrnum)  | 
|
352  | 
||
353  | 
lemma decr_qf: "bound0 p \<Longrightarrow> qfree (decr p)"  | 
|
354  | 
by (induct p, simp_all)  | 
|
355  | 
||
356  | 
consts  | 
|
357  | 
isatom :: "fm \<Rightarrow> bool" (* test for atomicity *)  | 
|
358  | 
recdef isatom "measure size"  | 
|
359  | 
"isatom T = True"  | 
|
360  | 
"isatom F = True"  | 
|
361  | 
"isatom (Lt a) = True"  | 
|
362  | 
"isatom (Le a) = True"  | 
|
363  | 
"isatom (Gt a) = True"  | 
|
364  | 
"isatom (Ge a) = True"  | 
|
365  | 
"isatom (Eq a) = True"  | 
|
366  | 
"isatom (NEq a) = True"  | 
|
367  | 
"isatom p = False"  | 
|
368  | 
||
369  | 
lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p"  | 
|
370  | 
by (induct p, simp_all)  | 
|
371  | 
||
372  | 
constdefs djf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm"
 | 
|
373  | 
"djf f p q \<equiv> (if q=T then T else if q=F then f p else  | 
|
374  | 
(let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q))"  | 
|
375  | 
constdefs evaldjf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm"
 | 
|
376  | 
"evaldjf f ps \<equiv> foldr (djf f) ps F"  | 
|
377  | 
||
378  | 
lemma djf_Or: "Ifm bs (djf f p q) = Ifm bs (Or (f p) q)"  | 
|
379  | 
by (cases "q=T", simp add: djf_def,cases "q=F",simp add: djf_def)  | 
|
380  | 
(cases "f p", simp_all add: Let_def djf_def)  | 
|
381  | 
||
382  | 
||
383  | 
lemma djf_simps:  | 
|
384  | 
"djf f p T = T"  | 
|
385  | 
"djf f p F = f p"  | 
|
386  | 
"q\<noteq>T \<Longrightarrow> q\<noteq>F \<Longrightarrow> djf f p q = (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q)"  | 
|
387  | 
by (simp_all add: djf_def)  | 
|
388  | 
||
389  | 
lemma evaldjf_ex: "Ifm bs (evaldjf f ps) = (\<exists> p \<in> set ps. Ifm bs (f p))"  | 
|
390  | 
by(induct ps, simp_all add: evaldjf_def djf_Or)  | 
|
391  | 
||
392  | 
lemma evaldjf_bound0:  | 
|
393  | 
assumes nb: "\<forall> x\<in> set xs. bound0 (f x)"  | 
|
394  | 
shows "bound0 (evaldjf f xs)"  | 
|
395  | 
using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto)  | 
|
396  | 
||
397  | 
lemma evaldjf_qf:  | 
|
398  | 
assumes nb: "\<forall> x\<in> set xs. qfree (f x)"  | 
|
399  | 
shows "qfree (evaldjf f xs)"  | 
|
400  | 
using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto)  | 
|
401  | 
||
402  | 
consts disjuncts :: "fm \<Rightarrow> fm list"  | 
|
403  | 
recdef disjuncts "measure size"  | 
|
404  | 
"disjuncts (Or p q) = (disjuncts p) @ (disjuncts q)"  | 
|
405  | 
"disjuncts F = []"  | 
|
406  | 
"disjuncts p = [p]"  | 
|
407  | 
||
408  | 
lemma disjuncts: "(\<exists> q\<in> set (disjuncts p). Ifm bs q) = Ifm bs p"  | 
|
409  | 
by(induct p rule: disjuncts.induct, auto)  | 
|
410  | 
||
411  | 
lemma disjuncts_nb: "bound0 p \<Longrightarrow> \<forall> q\<in> set (disjuncts p). bound0 q"  | 
|
412  | 
proof-  | 
|
413  | 
assume nb: "bound0 p"  | 
|
414  | 
hence "list_all bound0 (disjuncts p)" by (induct p rule:disjuncts.induct,auto)  | 
|
415  | 
thus ?thesis by (simp only: list_all_iff)  | 
|
416  | 
qed  | 
|
417  | 
||
418  | 
lemma disjuncts_qf: "qfree p \<Longrightarrow> \<forall> q\<in> set (disjuncts p). qfree q"  | 
|
419  | 
proof-  | 
|
420  | 
assume qf: "qfree p"  | 
|
421  | 
hence "list_all qfree (disjuncts p)"  | 
|
422  | 
by (induct p rule: disjuncts.induct, auto)  | 
|
423  | 
thus ?thesis by (simp only: list_all_iff)  | 
|
424  | 
qed  | 
|
425  | 
||
426  | 
constdefs DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm"  | 
|
427  | 
"DJ f p \<equiv> evaldjf f (disjuncts p)"  | 
|
428  | 
||
429  | 
lemma DJ: assumes fdj: "\<forall> p q. Ifm bs (f (Or p q)) = Ifm bs (Or (f p) (f q))"  | 
|
430  | 
and fF: "f F = F"  | 
|
431  | 
shows "Ifm bs (DJ f p) = Ifm bs (f p)"  | 
|
432  | 
proof-  | 
|
433  | 
have "Ifm bs (DJ f p) = (\<exists> q \<in> set (disjuncts p). Ifm bs (f q))"  | 
|
434  | 
by (simp add: DJ_def evaldjf_ex)  | 
|
435  | 
also have "\<dots> = Ifm bs (f p)" using fdj fF by (induct p rule: disjuncts.induct, auto)  | 
|
436  | 
finally show ?thesis .  | 
|
437  | 
qed  | 
|
438  | 
||
439  | 
lemma DJ_qf: assumes  | 
|
440  | 
fqf: "\<forall> p. qfree p \<longrightarrow> qfree (f p)"  | 
|
441  | 
shows "\<forall>p. qfree p \<longrightarrow> qfree (DJ f p) "  | 
|
442  | 
proof(clarify)  | 
|
443  | 
fix p assume qf: "qfree p"  | 
|
444  | 
have th: "DJ f p = evaldjf f (disjuncts p)" by (simp add: DJ_def)  | 
|
445  | 
from disjuncts_qf[OF qf] have "\<forall> q\<in> set (disjuncts p). qfree q" .  | 
|
446  | 
with fqf have th':"\<forall> q\<in> set (disjuncts p). qfree (f q)" by blast  | 
|
447  | 
||
448  | 
from evaldjf_qf[OF th'] th show "qfree (DJ f p)" by simp  | 
|
449  | 
qed  | 
|
450  | 
||
451  | 
lemma DJ_qe: assumes qe: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))"  | 
|
452  | 
shows "\<forall> bs p. qfree p \<longrightarrow> qfree (DJ qe p) \<and> (Ifm bs ((DJ qe p)) = Ifm bs (E p))"  | 
|
453  | 
proof(clarify)  | 
|
454  | 
fix p::fm and bs  | 
|
455  | 
assume qf: "qfree p"  | 
|
456  | 
from qe have qth: "\<forall> p. qfree p \<longrightarrow> qfree (qe p)" by blast  | 
|
457  | 
from DJ_qf[OF qth] qf have qfth:"qfree (DJ qe p)" by auto  | 
|
458  | 
have "Ifm bs (DJ qe p) = (\<exists> q\<in> set (disjuncts p). Ifm bs (qe q))"  | 
|
459  | 
by (simp add: DJ_def evaldjf_ex)  | 
|
460  | 
also have "\<dots> = (\<exists> q \<in> set(disjuncts p). Ifm bs (E q))" using qe disjuncts_qf[OF qf] by auto  | 
|
461  | 
also have "\<dots> = Ifm bs (E p)" by (induct p rule: disjuncts.induct, auto)  | 
|
462  | 
finally show "qfree (DJ qe p) \<and> Ifm bs (DJ qe p) = Ifm bs (E p)" using qfth by blast  | 
|
463  | 
qed  | 
|
464  | 
(* Simplification *)  | 
|
465  | 
consts  | 
|
466  | 
numgcd :: "num \<Rightarrow> int"  | 
|
467  | 
numgcdh:: "num \<Rightarrow> int \<Rightarrow> int"  | 
|
468  | 
reducecoeffh:: "num \<Rightarrow> int \<Rightarrow> num"  | 
|
469  | 
reducecoeff :: "num \<Rightarrow> num"  | 
|
470  | 
dvdnumcoeff:: "num \<Rightarrow> int \<Rightarrow> bool"  | 
|
471  | 
consts maxcoeff:: "num \<Rightarrow> int"  | 
|
472  | 
recdef maxcoeff "measure size"  | 
|
473  | 
"maxcoeff (C i) = abs i"  | 
|
474  | 
"maxcoeff (CN n c t) = max (abs c) (maxcoeff t)"  | 
|
475  | 
"maxcoeff t = 1"  | 
|
476  | 
||
477  | 
lemma maxcoeff_pos: "maxcoeff t \<ge> 0"  | 
|
478  | 
by (induct t rule: maxcoeff.induct, auto)  | 
|
479  | 
||
480  | 
recdef numgcdh "measure size"  | 
|
481  | 
"numgcdh (C i) = (\<lambda>g. zgcd i g)"  | 
|
482  | 
"numgcdh (CN n c t) = (\<lambda>g. zgcd c (numgcdh t g))"  | 
|
483  | 
"numgcdh t = (\<lambda>g. 1)"  | 
|
484  | 
defs numgcd_def [code]: "numgcd t \<equiv> numgcdh t (maxcoeff t)"  | 
|
485  | 
||
486  | 
recdef reducecoeffh "measure size"  | 
|
487  | 
"reducecoeffh (C i) = (\<lambda> g. C (i div g))"  | 
|
488  | 
"reducecoeffh (CN n c t) = (\<lambda> g. CN n (c div g) (reducecoeffh t g))"  | 
|
489  | 
"reducecoeffh t = (\<lambda>g. t)"  | 
|
490  | 
||
491  | 
defs reducecoeff_def: "reducecoeff t \<equiv>  | 
|
492  | 
(let g = numgcd t in  | 
|
493  | 
if g = 0 then C 0 else if g=1 then t else reducecoeffh t g)"  | 
|
494  | 
||
495  | 
recdef dvdnumcoeff "measure size"  | 
|
496  | 
"dvdnumcoeff (C i) = (\<lambda> g. g dvd i)"  | 
|
497  | 
"dvdnumcoeff (CN n c t) = (\<lambda> g. g dvd c \<and> (dvdnumcoeff t g))"  | 
|
498  | 
"dvdnumcoeff t = (\<lambda>g. False)"  | 
|
499  | 
||
500  | 
lemma dvdnumcoeff_trans:  | 
|
501  | 
assumes gdg: "g dvd g'" and dgt':"dvdnumcoeff t g'"  | 
|
502  | 
shows "dvdnumcoeff t g"  | 
|
503  | 
using dgt' gdg  | 
|
| 30042 | 504  | 
by (induct t rule: dvdnumcoeff.induct, simp_all add: gdg dvd_trans[OF gdg])  | 
| 29789 | 505  | 
|
| 30042 | 506  | 
declare dvd_trans [trans add]  | 
| 29789 | 507  | 
|
508  | 
lemma natabs0: "(nat (abs x) = 0) = (x = 0)"  | 
|
509  | 
by arith  | 
|
510  | 
||
511  | 
lemma numgcd0:  | 
|
512  | 
assumes g0: "numgcd t = 0"  | 
|
513  | 
shows "Inum bs t = 0"  | 
|
514  | 
using g0[simplified numgcd_def]  | 
|
515  | 
by (induct t rule: numgcdh.induct, auto simp add: zgcd_def gcd_zero natabs0 max_def maxcoeff_pos)  | 
|
516  | 
||
517  | 
lemma numgcdh_pos: assumes gp: "g \<ge> 0" shows "numgcdh t g \<ge> 0"  | 
|
518  | 
using gp  | 
|
519  | 
by (induct t rule: numgcdh.induct, auto simp add: zgcd_def)  | 
|
520  | 
||
521  | 
lemma numgcd_pos: "numgcd t \<ge>0"  | 
|
522  | 
by (simp add: numgcd_def numgcdh_pos maxcoeff_pos)  | 
|
523  | 
||
524  | 
lemma reducecoeffh:  | 
|
525  | 
assumes gt: "dvdnumcoeff t g" and gp: "g > 0"  | 
|
526  | 
shows "real g *(Inum bs (reducecoeffh t g)) = Inum bs t"  | 
|
527  | 
using gt  | 
|
528  | 
proof(induct t rule: reducecoeffh.induct)  | 
|
529  | 
case (1 i) hence gd: "g dvd i" by simp  | 
|
530  | 
from gp have gnz: "g \<noteq> 0" by simp  | 
|
531  | 
from prems show ?case by (simp add: real_of_int_div[OF gnz gd])  | 
|
532  | 
next  | 
|
533  | 
case (2 n c t) hence gd: "g dvd c" by simp  | 
|
534  | 
from gp have gnz: "g \<noteq> 0" by simp  | 
|
535  | 
from prems show ?case by (simp add: real_of_int_div[OF gnz gd] algebra_simps)  | 
|
536  | 
qed (auto simp add: numgcd_def gp)  | 
|
537  | 
consts ismaxcoeff:: "num \<Rightarrow> int \<Rightarrow> bool"  | 
|
538  | 
recdef ismaxcoeff "measure size"  | 
|
539  | 
"ismaxcoeff (C i) = (\<lambda> x. abs i \<le> x)"  | 
|
540  | 
"ismaxcoeff (CN n c t) = (\<lambda>x. abs c \<le> x \<and> (ismaxcoeff t x))"  | 
|
541  | 
"ismaxcoeff t = (\<lambda>x. True)"  | 
|
542  | 
||
543  | 
lemma ismaxcoeff_mono: "ismaxcoeff t c \<Longrightarrow> c \<le> c' \<Longrightarrow> ismaxcoeff t c'"  | 
|
544  | 
by (induct t rule: ismaxcoeff.induct, auto)  | 
|
545  | 
||
546  | 
lemma maxcoeff_ismaxcoeff: "ismaxcoeff t (maxcoeff t)"  | 
|
547  | 
proof (induct t rule: maxcoeff.induct)  | 
|
548  | 
case (2 n c t)  | 
|
549  | 
hence H:"ismaxcoeff t (maxcoeff t)" .  | 
|
550  | 
have thh: "maxcoeff t \<le> max (abs c) (maxcoeff t)" by (simp add: le_maxI2)  | 
|
551  | 
from ismaxcoeff_mono[OF H thh] show ?case by (simp add: le_maxI1)  | 
|
552  | 
qed simp_all  | 
|
553  | 
||
554  | 
lemma zgcd_gt1: "zgcd i j > 1 \<Longrightarrow> ((abs i > 1 \<and> abs j > 1) \<or> (abs i = 0 \<and> abs j > 1) \<or> (abs i > 1 \<and> abs j = 0))"  | 
|
555  | 
apply (cases "abs i = 0", simp_all add: zgcd_def)  | 
|
556  | 
apply (cases "abs j = 0", simp_all)  | 
|
557  | 
apply (cases "abs i = 1", simp_all)  | 
|
558  | 
apply (cases "abs j = 1", simp_all)  | 
|
559  | 
apply auto  | 
|
560  | 
done  | 
|
561  | 
lemma numgcdh0:"numgcdh t m = 0 \<Longrightarrow> m =0"  | 
|
562  | 
by (induct t rule: numgcdh.induct, auto simp add:zgcd0)  | 
|
563  | 
||
564  | 
lemma dvdnumcoeff_aux:  | 
|
565  | 
assumes "ismaxcoeff t m" and mp:"m \<ge> 0" and "numgcdh t m > 1"  | 
|
566  | 
shows "dvdnumcoeff t (numgcdh t m)"  | 
|
567  | 
using prems  | 
|
568  | 
proof(induct t rule: numgcdh.induct)  | 
|
569  | 
case (2 n c t)  | 
|
570  | 
let ?g = "numgcdh t m"  | 
|
571  | 
from prems have th:"zgcd c ?g > 1" by simp  | 
|
572  | 
from zgcd_gt1[OF th] numgcdh_pos[OF mp, where t="t"]  | 
|
573  | 
have "(abs c > 1 \<and> ?g > 1) \<or> (abs c = 0 \<and> ?g > 1) \<or> (abs c > 1 \<and> ?g = 0)" by simp  | 
|
574  | 
  moreover {assume "abs c > 1" and gp: "?g > 1" with prems
 | 
|
575  | 
have th: "dvdnumcoeff t ?g" by simp  | 
|
576  | 
have th': "zgcd c ?g dvd ?g" by (simp add:zgcd_zdvd2)  | 
|
577  | 
from dvdnumcoeff_trans[OF th' th] have ?case by (simp add: zgcd_zdvd1)}  | 
|
578  | 
  moreover {assume "abs c = 0 \<and> ?g > 1"
 | 
|
579  | 
with prems have th: "dvdnumcoeff t ?g" by simp  | 
|
580  | 
have th': "zgcd c ?g dvd ?g" by (simp add:zgcd_zdvd2)  | 
|
581  | 
from dvdnumcoeff_trans[OF th' th] have ?case by (simp add: zgcd_zdvd1)  | 
|
582  | 
hence ?case by simp }  | 
|
583  | 
  moreover {assume "abs c > 1" and g0:"?g = 0" 
 | 
|
584  | 
from numgcdh0[OF g0] have "m=0". with prems have ?case by simp }  | 
|
585  | 
ultimately show ?case by blast  | 
|
586  | 
qed(auto simp add: zgcd_zdvd1)  | 
|
587  | 
||
588  | 
lemma dvdnumcoeff_aux2:  | 
|
589  | 
assumes "numgcd t > 1" shows "dvdnumcoeff t (numgcd t) \<and> numgcd t > 0"  | 
|
590  | 
using prems  | 
|
591  | 
proof (simp add: numgcd_def)  | 
|
592  | 
let ?mc = "maxcoeff t"  | 
|
593  | 
let ?g = "numgcdh t ?mc"  | 
|
594  | 
have th1: "ismaxcoeff t ?mc" by (rule maxcoeff_ismaxcoeff)  | 
|
595  | 
have th2: "?mc \<ge> 0" by (rule maxcoeff_pos)  | 
|
596  | 
assume H: "numgcdh t ?mc > 1"  | 
|
597  | 
from dvdnumcoeff_aux[OF th1 th2 H] show "dvdnumcoeff t ?g" .  | 
|
598  | 
qed  | 
|
599  | 
||
600  | 
lemma reducecoeff: "real (numgcd t) * (Inum bs (reducecoeff t)) = Inum bs t"  | 
|
601  | 
proof-  | 
|
602  | 
let ?g = "numgcd t"  | 
|
603  | 
have "?g \<ge> 0" by (simp add: numgcd_pos)  | 
|
604  | 
hence "?g = 0 \<or> ?g = 1 \<or> ?g > 1" by auto  | 
|
605  | 
  moreover {assume "?g = 0" hence ?thesis by (simp add: numgcd0)} 
 | 
|
606  | 
  moreover {assume "?g = 1" hence ?thesis by (simp add: reducecoeff_def)} 
 | 
|
607  | 
  moreover { assume g1:"?g > 1"
 | 
|
608  | 
from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff t ?g" and g0: "?g > 0" by blast+  | 
|
609  | 
from reducecoeffh[OF th1 g0, where bs="bs"] g1 have ?thesis  | 
|
610  | 
by (simp add: reducecoeff_def Let_def)}  | 
|
611  | 
ultimately show ?thesis by blast  | 
|
612  | 
qed  | 
|
613  | 
||
614  | 
lemma reducecoeffh_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeffh t g)"  | 
|
615  | 
by (induct t rule: reducecoeffh.induct, auto)  | 
|
616  | 
||
617  | 
lemma reducecoeff_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeff t)"  | 
|
618  | 
using reducecoeffh_numbound0 by (simp add: reducecoeff_def Let_def)  | 
|
619  | 
||
620  | 
consts  | 
|
621  | 
simpnum:: "num \<Rightarrow> num"  | 
|
622  | 
numadd:: "num \<times> num \<Rightarrow> num"  | 
|
623  | 
nummul:: "num \<Rightarrow> int \<Rightarrow> num"  | 
|
624  | 
recdef numadd "measure (\<lambda> (t,s). size t + size s)"  | 
|
625  | 
"numadd (CN n1 c1 r1,CN n2 c2 r2) =  | 
|
626  | 
(if n1=n2 then  | 
|
627  | 
(let c = c1 + c2  | 
|
628  | 
in (if c=0 then numadd(r1,r2) else CN n1 c (numadd (r1,r2))))  | 
|
629  | 
else if n1 \<le> n2 then (CN n1 c1 (numadd (r1,CN n2 c2 r2)))  | 
|
630  | 
else (CN n2 c2 (numadd (CN n1 c1 r1,r2))))"  | 
|
631  | 
"numadd (CN n1 c1 r1,t) = CN n1 c1 (numadd (r1, t))"  | 
|
632  | 
"numadd (t,CN n2 c2 r2) = CN n2 c2 (numadd (t,r2))"  | 
|
633  | 
"numadd (C b1, C b2) = C (b1+b2)"  | 
|
634  | 
"numadd (a,b) = Add a b"  | 
|
635  | 
||
636  | 
lemma numadd[simp]: "Inum bs (numadd (t,s)) = Inum bs (Add t s)"  | 
|
637  | 
apply (induct t s rule: numadd.induct, simp_all add: Let_def)  | 
|
638  | 
apply (case_tac "c1+c2 = 0",case_tac "n1 \<le> n2", simp_all)  | 
|
639  | 
apply (case_tac "n1 = n2", simp_all add: algebra_simps)  | 
|
640  | 
by (simp only: left_distrib[symmetric],simp)  | 
|
641  | 
||
642  | 
lemma numadd_nb[simp]: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numadd (t,s))"  | 
|
643  | 
by (induct t s rule: numadd.induct, auto simp add: Let_def)  | 
|
644  | 
||
645  | 
recdef nummul "measure size"  | 
|
646  | 
"nummul (C j) = (\<lambda> i. C (i*j))"  | 
|
647  | 
"nummul (CN n c a) = (\<lambda> i. CN n (i*c) (nummul a i))"  | 
|
648  | 
"nummul t = (\<lambda> i. Mul i t)"  | 
|
649  | 
||
650  | 
lemma nummul[simp]: "\<And> i. Inum bs (nummul t i) = Inum bs (Mul i t)"  | 
|
651  | 
by (induct t rule: nummul.induct, auto simp add: algebra_simps)  | 
|
652  | 
||
653  | 
lemma nummul_nb[simp]: "\<And> i. numbound0 t \<Longrightarrow> numbound0 (nummul t i)"  | 
|
654  | 
by (induct t rule: nummul.induct, auto )  | 
|
655  | 
||
656  | 
constdefs numneg :: "num \<Rightarrow> num"  | 
|
657  | 
"numneg t \<equiv> nummul t (- 1)"  | 
|
658  | 
||
659  | 
constdefs numsub :: "num \<Rightarrow> num \<Rightarrow> num"  | 
|
660  | 
"numsub s t \<equiv> (if s = t then C 0 else numadd (s,numneg t))"  | 
|
661  | 
||
662  | 
lemma numneg[simp]: "Inum bs (numneg t) = Inum bs (Neg t)"  | 
|
663  | 
using numneg_def by simp  | 
|
664  | 
||
665  | 
lemma numneg_nb[simp]: "numbound0 t \<Longrightarrow> numbound0 (numneg t)"  | 
|
666  | 
using numneg_def by simp  | 
|
667  | 
||
668  | 
lemma numsub[simp]: "Inum bs (numsub a b) = Inum bs (Sub a b)"  | 
|
669  | 
using numsub_def by simp  | 
|
670  | 
||
671  | 
lemma numsub_nb[simp]: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numsub t s)"  | 
|
672  | 
using numsub_def by simp  | 
|
673  | 
||
674  | 
recdef simpnum "measure size"  | 
|
675  | 
"simpnum (C j) = C j"  | 
|
676  | 
"simpnum (Bound n) = CN n 1 (C 0)"  | 
|
677  | 
"simpnum (Neg t) = numneg (simpnum t)"  | 
|
678  | 
"simpnum (Add t s) = numadd (simpnum t,simpnum s)"  | 
|
679  | 
"simpnum (Sub t s) = numsub (simpnum t) (simpnum s)"  | 
|
680  | 
"simpnum (Mul i t) = (if i = 0 then (C 0) else nummul (simpnum t) i)"  | 
|
681  | 
"simpnum (CN n c t) = (if c = 0 then simpnum t else numadd (CN n c (C 0),simpnum t))"  | 
|
682  | 
||
683  | 
lemma simpnum_ci[simp]: "Inum bs (simpnum t) = Inum bs t"  | 
|
684  | 
by (induct t rule: simpnum.induct, auto simp add: numneg numadd numsub nummul)  | 
|
685  | 
||
686  | 
lemma simpnum_numbound0[simp]:  | 
|
687  | 
"numbound0 t \<Longrightarrow> numbound0 (simpnum t)"  | 
|
688  | 
by (induct t rule: simpnum.induct, auto)  | 
|
689  | 
||
690  | 
consts nozerocoeff:: "num \<Rightarrow> bool"  | 
|
691  | 
recdef nozerocoeff "measure size"  | 
|
692  | 
"nozerocoeff (C c) = True"  | 
|
693  | 
"nozerocoeff (CN n c t) = (c\<noteq>0 \<and> nozerocoeff t)"  | 
|
694  | 
"nozerocoeff t = True"  | 
|
695  | 
||
696  | 
lemma numadd_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numadd (a,b))"  | 
|
697  | 
by (induct a b rule: numadd.induct,auto simp add: Let_def)  | 
|
698  | 
||
699  | 
lemma nummul_nz : "\<And> i. i\<noteq>0 \<Longrightarrow> nozerocoeff a \<Longrightarrow> nozerocoeff (nummul a i)"  | 
|
700  | 
by (induct a rule: nummul.induct,auto simp add: Let_def numadd_nz)  | 
|
701  | 
||
702  | 
lemma numneg_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff (numneg a)"  | 
|
703  | 
by (simp add: numneg_def nummul_nz)  | 
|
704  | 
||
705  | 
lemma numsub_nz: "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numsub a b)"  | 
|
706  | 
by (simp add: numsub_def numneg_nz numadd_nz)  | 
|
707  | 
||
708  | 
lemma simpnum_nz: "nozerocoeff (simpnum t)"  | 
|
709  | 
by(induct t rule: simpnum.induct, auto simp add: numadd_nz numneg_nz numsub_nz nummul_nz)  | 
|
710  | 
||
711  | 
lemma maxcoeff_nz: "nozerocoeff t \<Longrightarrow> maxcoeff t = 0 \<Longrightarrow> t = C 0"  | 
|
712  | 
proof (induct t rule: maxcoeff.induct)  | 
|
713  | 
case (2 n c t)  | 
|
714  | 
hence cnz: "c \<noteq>0" and mx: "max (abs c) (maxcoeff t) = 0" by simp+  | 
|
715  | 
have "max (abs c) (maxcoeff t) \<ge> abs c" by (simp add: le_maxI1)  | 
|
716  | 
with cnz have "max (abs c) (maxcoeff t) > 0" by arith  | 
|
717  | 
with prems show ?case by simp  | 
|
718  | 
qed auto  | 
|
719  | 
||
720  | 
lemma numgcd_nz: assumes nz: "nozerocoeff t" and g0: "numgcd t = 0" shows "t = C 0"  | 
|
721  | 
proof-  | 
|
722  | 
from g0 have th:"numgcdh t (maxcoeff t) = 0" by (simp add: numgcd_def)  | 
|
723  | 
from numgcdh0[OF th] have th:"maxcoeff t = 0" .  | 
|
724  | 
from maxcoeff_nz[OF nz th] show ?thesis .  | 
|
725  | 
qed  | 
|
726  | 
||
727  | 
constdefs simp_num_pair:: "(num \<times> int) \<Rightarrow> num \<times> int"  | 
|
728  | 
"simp_num_pair \<equiv> (\<lambda> (t,n). (if n = 0 then (C 0, 0) else  | 
|
729  | 
(let t' = simpnum t ; g = numgcd t' in  | 
|
730  | 
if g > 1 then (let g' = zgcd n g in  | 
|
731  | 
if g' = 1 then (t',n)  | 
|
732  | 
else (reducecoeffh t' g', n div g'))  | 
|
733  | 
else (t',n))))"  | 
|
734  | 
||
735  | 
lemma simp_num_pair_ci:  | 
|
736  | 
shows "((\<lambda> (t,n). Inum bs t / real n) (simp_num_pair (t,n))) = ((\<lambda> (t,n). Inum bs t / real n) (t,n))"  | 
|
737  | 
(is "?lhs = ?rhs")  | 
|
738  | 
proof-  | 
|
739  | 
let ?t' = "simpnum t"  | 
|
740  | 
let ?g = "numgcd ?t'"  | 
|
741  | 
let ?g' = "zgcd n ?g"  | 
|
742  | 
  {assume nz: "n = 0" hence ?thesis by (simp add: Let_def simp_num_pair_def)}
 | 
|
743  | 
moreover  | 
|
744  | 
  { assume nnz: "n \<noteq> 0"
 | 
|
745  | 
    {assume "\<not> ?g > 1" hence ?thesis by (simp add: Let_def simp_num_pair_def simpnum_ci)}
 | 
|
746  | 
moreover  | 
|
747  | 
    {assume g1:"?g>1" hence g0: "?g > 0" by simp
 | 
|
748  | 
from zgcd0 g1 nnz have gp0: "?g' \<noteq> 0" by simp  | 
|
749  | 
hence g'p: "?g' > 0" using zgcd_pos[where i="n" and j="numgcd ?t'"] by arith  | 
|
750  | 
hence "?g'= 1 \<or> ?g' > 1" by arith  | 
|
751  | 
      moreover {assume "?g'=1" hence ?thesis by (simp add: Let_def simp_num_pair_def simpnum_ci)}
 | 
|
752  | 
      moreover {assume g'1:"?g'>1"
 | 
|
753  | 
from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff ?t' ?g" ..  | 
|
754  | 
let ?tt = "reducecoeffh ?t' ?g'"  | 
|
755  | 
let ?t = "Inum bs ?tt"  | 
|
756  | 
have gpdg: "?g' dvd ?g" by (simp add: zgcd_zdvd2)  | 
|
757  | 
have gpdd: "?g' dvd n" by (simp add: zgcd_zdvd1)  | 
|
758  | 
have gpdgp: "?g' dvd ?g'" by simp  | 
|
759  | 
from reducecoeffh[OF dvdnumcoeff_trans[OF gpdg th1] g'p]  | 
|
760  | 
have th2:"real ?g' * ?t = Inum bs ?t'" by simp  | 
|
761  | 
from prems have "?lhs = ?t / real (n div ?g')" by (simp add: simp_num_pair_def Let_def)  | 
|
762  | 
also have "\<dots> = (real ?g' * ?t) / (real ?g' * (real (n div ?g')))" by simp  | 
|
763  | 
also have "\<dots> = (Inum bs ?t' / real n)"  | 
|
764  | 
using real_of_int_div[OF gp0 gpdd] th2 gp0 by simp  | 
|
765  | 
finally have "?lhs = Inum bs t / real n" by (simp add: simpnum_ci)  | 
|
766  | 
then have ?thesis using prems by (simp add: simp_num_pair_def)}  | 
|
767  | 
ultimately have ?thesis by blast}  | 
|
768  | 
ultimately have ?thesis by blast}  | 
|
769  | 
ultimately show ?thesis by blast  | 
|
770  | 
qed  | 
|
771  | 
||
772  | 
lemma simp_num_pair_l: assumes tnb: "numbound0 t" and np: "n >0" and tn: "simp_num_pair (t,n) = (t',n')"  | 
|
773  | 
shows "numbound0 t' \<and> n' >0"  | 
|
774  | 
proof-  | 
|
775  | 
let ?t' = "simpnum t"  | 
|
776  | 
let ?g = "numgcd ?t'"  | 
|
777  | 
let ?g' = "zgcd n ?g"  | 
|
778  | 
  {assume nz: "n = 0" hence ?thesis using prems by (simp add: Let_def simp_num_pair_def)}
 | 
|
779  | 
moreover  | 
|
780  | 
  { assume nnz: "n \<noteq> 0"
 | 
|
781  | 
    {assume "\<not> ?g > 1" hence ?thesis  using prems by (auto simp add: Let_def simp_num_pair_def simpnum_numbound0)}
 | 
|
782  | 
moreover  | 
|
783  | 
    {assume g1:"?g>1" hence g0: "?g > 0" by simp
 | 
|
784  | 
from zgcd0 g1 nnz have gp0: "?g' \<noteq> 0" by simp  | 
|
785  | 
hence g'p: "?g' > 0" using zgcd_pos[where i="n" and j="numgcd ?t'"] by arith  | 
|
786  | 
hence "?g'= 1 \<or> ?g' > 1" by arith  | 
|
787  | 
      moreover {assume "?g'=1" hence ?thesis using prems 
 | 
|
788  | 
by (auto simp add: Let_def simp_num_pair_def simpnum_numbound0)}  | 
|
789  | 
      moreover {assume g'1:"?g'>1"
 | 
|
790  | 
have gpdg: "?g' dvd ?g" by (simp add: zgcd_zdvd2)  | 
|
791  | 
have gpdd: "?g' dvd n" by (simp add: zgcd_zdvd1)  | 
|
792  | 
have gpdgp: "?g' dvd ?g'" by simp  | 
|
793  | 
from zdvd_imp_le[OF gpdd np] have g'n: "?g' \<le> n" .  | 
|
794  | 
from zdiv_mono1[OF g'n g'p, simplified zdiv_self[OF gp0]]  | 
|
795  | 
have "n div ?g' >0" by simp  | 
|
796  | 
hence ?thesis using prems  | 
|
797  | 
by(auto simp add: simp_num_pair_def Let_def reducecoeffh_numbound0 simpnum_numbound0)}  | 
|
798  | 
ultimately have ?thesis by blast}  | 
|
799  | 
ultimately have ?thesis by blast}  | 
|
800  | 
ultimately show ?thesis by blast  | 
|
801  | 
qed  | 
|
802  | 
||
803  | 
consts simpfm :: "fm \<Rightarrow> fm"  | 
|
804  | 
recdef simpfm "measure fmsize"  | 
|
805  | 
"simpfm (And p q) = conj (simpfm p) (simpfm q)"  | 
|
806  | 
"simpfm (Or p q) = disj (simpfm p) (simpfm q)"  | 
|
807  | 
"simpfm (Imp p q) = imp (simpfm p) (simpfm q)"  | 
|
808  | 
"simpfm (Iff p q) = iff (simpfm p) (simpfm q)"  | 
|
809  | 
"simpfm (NOT p) = not (simpfm p)"  | 
|
810  | 
"simpfm (Lt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v < 0) then T else F  | 
|
811  | 
| _ \<Rightarrow> Lt a')"  | 
|
812  | 
"simpfm (Le a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<le> 0) then T else F | _ \<Rightarrow> Le a')"  | 
|
813  | 
"simpfm (Gt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v > 0) then T else F | _ \<Rightarrow> Gt a')"  | 
|
814  | 
"simpfm (Ge a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<ge> 0) then T else F | _ \<Rightarrow> Ge a')"  | 
|
815  | 
"simpfm (Eq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v = 0) then T else F | _ \<Rightarrow> Eq a')"  | 
|
816  | 
"simpfm (NEq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<noteq> 0) then T else F | _ \<Rightarrow> NEq a')"  | 
|
817  | 
"simpfm p = p"  | 
|
818  | 
lemma simpfm: "Ifm bs (simpfm p) = Ifm bs p"  | 
|
819  | 
proof(induct p rule: simpfm.induct)  | 
|
820  | 
case (6 a) let ?sa = "simpnum a" from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp  | 
|
821  | 
  {fix v assume "?sa = C v" hence ?case using sa by simp }
 | 
|
822  | 
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | 
|
823  | 
by (cases ?sa, simp_all add: Let_def)}  | 
|
824  | 
ultimately show ?case by blast  | 
|
825  | 
next  | 
|
826  | 
case (7 a) let ?sa = "simpnum a"  | 
|
827  | 
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp  | 
|
828  | 
  {fix v assume "?sa = C v" hence ?case using sa by simp }
 | 
|
829  | 
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | 
|
830  | 
by (cases ?sa, simp_all add: Let_def)}  | 
|
831  | 
ultimately show ?case by blast  | 
|
832  | 
next  | 
|
833  | 
case (8 a) let ?sa = "simpnum a"  | 
|
834  | 
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp  | 
|
835  | 
  {fix v assume "?sa = C v" hence ?case using sa by simp }
 | 
|
836  | 
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | 
|
837  | 
by (cases ?sa, simp_all add: Let_def)}  | 
|
838  | 
ultimately show ?case by blast  | 
|
839  | 
next  | 
|
840  | 
case (9 a) let ?sa = "simpnum a"  | 
|
841  | 
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp  | 
|
842  | 
  {fix v assume "?sa = C v" hence ?case using sa by simp }
 | 
|
843  | 
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | 
|
844  | 
by (cases ?sa, simp_all add: Let_def)}  | 
|
845  | 
ultimately show ?case by blast  | 
|
846  | 
next  | 
|
847  | 
case (10 a) let ?sa = "simpnum a"  | 
|
848  | 
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp  | 
|
849  | 
  {fix v assume "?sa = C v" hence ?case using sa by simp }
 | 
|
850  | 
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | 
|
851  | 
by (cases ?sa, simp_all add: Let_def)}  | 
|
852  | 
ultimately show ?case by blast  | 
|
853  | 
next  | 
|
854  | 
case (11 a) let ?sa = "simpnum a"  | 
|
855  | 
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp  | 
|
856  | 
  {fix v assume "?sa = C v" hence ?case using sa by simp }
 | 
|
857  | 
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | 
|
858  | 
by (cases ?sa, simp_all add: Let_def)}  | 
|
859  | 
ultimately show ?case by blast  | 
|
860  | 
qed (induct p rule: simpfm.induct, simp_all add: conj disj imp iff not)  | 
|
861  | 
||
862  | 
||
863  | 
lemma simpfm_bound0: "bound0 p \<Longrightarrow> bound0 (simpfm p)"  | 
|
864  | 
proof(induct p rule: simpfm.induct)  | 
|
865  | 
case (6 a) hence nb: "numbound0 a" by simp  | 
|
866  | 
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])  | 
|
867  | 
thus ?case by (cases "simpnum a", auto simp add: Let_def)  | 
|
868  | 
next  | 
|
869  | 
case (7 a) hence nb: "numbound0 a" by simp  | 
|
870  | 
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])  | 
|
871  | 
thus ?case by (cases "simpnum a", auto simp add: Let_def)  | 
|
872  | 
next  | 
|
873  | 
case (8 a) hence nb: "numbound0 a" by simp  | 
|
874  | 
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])  | 
|
875  | 
thus ?case by (cases "simpnum a", auto simp add: Let_def)  | 
|
876  | 
next  | 
|
877  | 
case (9 a) hence nb: "numbound0 a" by simp  | 
|
878  | 
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])  | 
|
879  | 
thus ?case by (cases "simpnum a", auto simp add: Let_def)  | 
|
880  | 
next  | 
|
881  | 
case (10 a) hence nb: "numbound0 a" by simp  | 
|
882  | 
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])  | 
|
883  | 
thus ?case by (cases "simpnum a", auto simp add: Let_def)  | 
|
884  | 
next  | 
|
885  | 
case (11 a) hence nb: "numbound0 a" by simp  | 
|
886  | 
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])  | 
|
887  | 
thus ?case by (cases "simpnum a", auto simp add: Let_def)  | 
|
888  | 
qed(auto simp add: disj_def imp_def iff_def conj_def not_bn)  | 
|
889  | 
||
890  | 
lemma simpfm_qf: "qfree p \<Longrightarrow> qfree (simpfm p)"  | 
|
891  | 
by (induct p rule: simpfm.induct, auto simp add: disj_qf imp_qf iff_qf conj_qf not_qf Let_def)  | 
|
892  | 
(case_tac "simpnum a",auto)+  | 
|
893  | 
||
894  | 
consts prep :: "fm \<Rightarrow> fm"  | 
|
895  | 
recdef prep "measure fmsize"  | 
|
896  | 
"prep (E T) = T"  | 
|
897  | 
"prep (E F) = F"  | 
|
898  | 
"prep (E (Or p q)) = disj (prep (E p)) (prep (E q))"  | 
|
899  | 
"prep (E (Imp p q)) = disj (prep (E (NOT p))) (prep (E q))"  | 
|
900  | 
"prep (E (Iff p q)) = disj (prep (E (And p q))) (prep (E (And (NOT p) (NOT q))))"  | 
|
901  | 
"prep (E (NOT (And p q))) = disj (prep (E (NOT p))) (prep (E(NOT q)))"  | 
|
902  | 
"prep (E (NOT (Imp p q))) = prep (E (And p (NOT q)))"  | 
|
903  | 
"prep (E (NOT (Iff p q))) = disj (prep (E (And p (NOT q)))) (prep (E(And (NOT p) q)))"  | 
|
904  | 
"prep (E p) = E (prep p)"  | 
|
905  | 
"prep (A (And p q)) = conj (prep (A p)) (prep (A q))"  | 
|
906  | 
"prep (A p) = prep (NOT (E (NOT p)))"  | 
|
907  | 
"prep (NOT (NOT p)) = prep p"  | 
|
908  | 
"prep (NOT (And p q)) = disj (prep (NOT p)) (prep (NOT q))"  | 
|
909  | 
"prep (NOT (A p)) = prep (E (NOT p))"  | 
|
910  | 
"prep (NOT (Or p q)) = conj (prep (NOT p)) (prep (NOT q))"  | 
|
911  | 
"prep (NOT (Imp p q)) = conj (prep p) (prep (NOT q))"  | 
|
912  | 
"prep (NOT (Iff p q)) = disj (prep (And p (NOT q))) (prep (And (NOT p) q))"  | 
|
913  | 
"prep (NOT p) = not (prep p)"  | 
|
914  | 
"prep (Or p q) = disj (prep p) (prep q)"  | 
|
915  | 
"prep (And p q) = conj (prep p) (prep q)"  | 
|
916  | 
"prep (Imp p q) = prep (Or (NOT p) q)"  | 
|
917  | 
"prep (Iff p q) = disj (prep (And p q)) (prep (And (NOT p) (NOT q)))"  | 
|
918  | 
"prep p = p"  | 
|
919  | 
(hints simp add: fmsize_pos)  | 
|
920  | 
lemma prep: "\<And> bs. Ifm bs (prep p) = Ifm bs p"  | 
|
921  | 
by (induct p rule: prep.induct, auto)  | 
|
922  | 
||
923  | 
(* Generic quantifier elimination *)  | 
|
924  | 
consts qelim :: "fm \<Rightarrow> (fm \<Rightarrow> fm) \<Rightarrow> fm"  | 
|
925  | 
recdef qelim "measure fmsize"  | 
|
926  | 
"qelim (E p) = (\<lambda> qe. DJ qe (qelim p qe))"  | 
|
927  | 
"qelim (A p) = (\<lambda> qe. not (qe ((qelim (NOT p) qe))))"  | 
|
928  | 
"qelim (NOT p) = (\<lambda> qe. not (qelim p qe))"  | 
|
929  | 
"qelim (And p q) = (\<lambda> qe. conj (qelim p qe) (qelim q qe))"  | 
|
930  | 
"qelim (Or p q) = (\<lambda> qe. disj (qelim p qe) (qelim q qe))"  | 
|
931  | 
"qelim (Imp p q) = (\<lambda> qe. imp (qelim p qe) (qelim q qe))"  | 
|
932  | 
"qelim (Iff p q) = (\<lambda> qe. iff (qelim p qe) (qelim q qe))"  | 
|
933  | 
"qelim p = (\<lambda> y. simpfm p)"  | 
|
934  | 
||
935  | 
lemma qelim_ci:  | 
|
936  | 
assumes qe_inv: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))"  | 
|
937  | 
shows "\<And> bs. qfree (qelim p qe) \<and> (Ifm bs (qelim p qe) = Ifm bs p)"  | 
|
938  | 
using qe_inv DJ_qe[OF qe_inv]  | 
|
939  | 
by(induct p rule: qelim.induct)  | 
|
940  | 
(auto simp add: not disj conj iff imp not_qf disj_qf conj_qf imp_qf iff_qf  | 
|
941  | 
simpfm simpfm_qf simp del: simpfm.simps)  | 
|
942  | 
||
943  | 
consts  | 
|
944  | 
plusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of +\<infinity>*)  | 
|
945  | 
minusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of -\<infinity>*)  | 
|
946  | 
recdef minusinf "measure size"  | 
|
947  | 
"minusinf (And p q) = conj (minusinf p) (minusinf q)"  | 
|
948  | 
"minusinf (Or p q) = disj (minusinf p) (minusinf q)"  | 
|
949  | 
"minusinf (Eq (CN 0 c e)) = F"  | 
|
950  | 
"minusinf (NEq (CN 0 c e)) = T"  | 
|
951  | 
"minusinf (Lt (CN 0 c e)) = T"  | 
|
952  | 
"minusinf (Le (CN 0 c e)) = T"  | 
|
953  | 
"minusinf (Gt (CN 0 c e)) = F"  | 
|
954  | 
"minusinf (Ge (CN 0 c e)) = F"  | 
|
955  | 
"minusinf p = p"  | 
|
956  | 
||
957  | 
recdef plusinf "measure size"  | 
|
958  | 
"plusinf (And p q) = conj (plusinf p) (plusinf q)"  | 
|
959  | 
"plusinf (Or p q) = disj (plusinf p) (plusinf q)"  | 
|
960  | 
"plusinf (Eq (CN 0 c e)) = F"  | 
|
961  | 
"plusinf (NEq (CN 0 c e)) = T"  | 
|
962  | 
"plusinf (Lt (CN 0 c e)) = F"  | 
|
963  | 
"plusinf (Le (CN 0 c e)) = F"  | 
|
964  | 
"plusinf (Gt (CN 0 c e)) = T"  | 
|
965  | 
"plusinf (Ge (CN 0 c e)) = T"  | 
|
966  | 
"plusinf p = p"  | 
|
967  | 
||
968  | 
consts  | 
|
969  | 
isrlfm :: "fm \<Rightarrow> bool" (* Linearity test for fm *)  | 
|
970  | 
recdef isrlfm "measure size"  | 
|
971  | 
"isrlfm (And p q) = (isrlfm p \<and> isrlfm q)"  | 
|
972  | 
"isrlfm (Or p q) = (isrlfm p \<and> isrlfm q)"  | 
|
973  | 
"isrlfm (Eq (CN 0 c e)) = (c>0 \<and> numbound0 e)"  | 
|
974  | 
"isrlfm (NEq (CN 0 c e)) = (c>0 \<and> numbound0 e)"  | 
|
975  | 
"isrlfm (Lt (CN 0 c e)) = (c>0 \<and> numbound0 e)"  | 
|
976  | 
"isrlfm (Le (CN 0 c e)) = (c>0 \<and> numbound0 e)"  | 
|
977  | 
"isrlfm (Gt (CN 0 c e)) = (c>0 \<and> numbound0 e)"  | 
|
978  | 
"isrlfm (Ge (CN 0 c e)) = (c>0 \<and> numbound0 e)"  | 
|
979  | 
"isrlfm p = (isatom p \<and> (bound0 p))"  | 
|
980  | 
||
981  | 
(* splits the bounded from the unbounded part*)  | 
|
982  | 
consts rsplit0 :: "num \<Rightarrow> int \<times> num"  | 
|
983  | 
recdef rsplit0 "measure num_size"  | 
|
984  | 
"rsplit0 (Bound 0) = (1,C 0)"  | 
|
985  | 
"rsplit0 (Add a b) = (let (ca,ta) = rsplit0 a ; (cb,tb) = rsplit0 b  | 
|
986  | 
in (ca+cb, Add ta tb))"  | 
|
987  | 
"rsplit0 (Sub a b) = rsplit0 (Add a (Neg b))"  | 
|
988  | 
"rsplit0 (Neg a) = (let (c,t) = rsplit0 a in (-c,Neg t))"  | 
|
989  | 
"rsplit0 (Mul c a) = (let (ca,ta) = rsplit0 a in (c*ca,Mul c ta))"  | 
|
990  | 
"rsplit0 (CN 0 c a) = (let (ca,ta) = rsplit0 a in (c+ca,ta))"  | 
|
991  | 
"rsplit0 (CN n c a) = (let (ca,ta) = rsplit0 a in (ca,CN n c ta))"  | 
|
992  | 
"rsplit0 t = (0,t)"  | 
|
993  | 
lemma rsplit0:  | 
|
994  | 
shows "Inum bs ((split (CN 0)) (rsplit0 t)) = Inum bs t \<and> numbound0 (snd (rsplit0 t))"  | 
|
995  | 
proof (induct t rule: rsplit0.induct)  | 
|
996  | 
case (2 a b)  | 
|
997  | 
let ?sa = "rsplit0 a" let ?sb = "rsplit0 b"  | 
|
998  | 
let ?ca = "fst ?sa" let ?cb = "fst ?sb"  | 
|
999  | 
let ?ta = "snd ?sa" let ?tb = "snd ?sb"  | 
|
1000  | 
from prems have nb: "numbound0 (snd(rsplit0 (Add a b)))"  | 
|
1001  | 
by(cases "rsplit0 a",auto simp add: Let_def split_def)  | 
|
1002  | 
have "Inum bs ((split (CN 0)) (rsplit0 (Add a b))) =  | 
|
1003  | 
Inum bs ((split (CN 0)) ?sa)+Inum bs ((split (CN 0)) ?sb)"  | 
|
1004  | 
by (simp add: Let_def split_def algebra_simps)  | 
|
1005  | 
also have "\<dots> = Inum bs a + Inum bs b" using prems by (cases "rsplit0 a", simp_all)  | 
|
1006  | 
finally show ?case using nb by simp  | 
|
1007  | 
qed(auto simp add: Let_def split_def algebra_simps , simp add: right_distrib[symmetric])  | 
|
1008  | 
||
1009  | 
(* Linearize a formula*)  | 
|
1010  | 
definition  | 
|
1011  | 
lt :: "int \<Rightarrow> num \<Rightarrow> fm"  | 
|
1012  | 
where  | 
|
1013  | 
"lt c t = (if c = 0 then (Lt t) else if c > 0 then (Lt (CN 0 c t))  | 
|
1014  | 
else (Gt (CN 0 (-c) (Neg t))))"  | 
|
1015  | 
||
1016  | 
definition  | 
|
1017  | 
le :: "int \<Rightarrow> num \<Rightarrow> fm"  | 
|
1018  | 
where  | 
|
1019  | 
"le c t = (if c = 0 then (Le t) else if c > 0 then (Le (CN 0 c t))  | 
|
1020  | 
else (Ge (CN 0 (-c) (Neg t))))"  | 
|
1021  | 
||
1022  | 
definition  | 
|
1023  | 
gt :: "int \<Rightarrow> num \<Rightarrow> fm"  | 
|
1024  | 
where  | 
|
1025  | 
"gt c t = (if c = 0 then (Gt t) else if c > 0 then (Gt (CN 0 c t))  | 
|
1026  | 
else (Lt (CN 0 (-c) (Neg t))))"  | 
|
1027  | 
||
1028  | 
definition  | 
|
1029  | 
ge :: "int \<Rightarrow> num \<Rightarrow> fm"  | 
|
1030  | 
where  | 
|
1031  | 
"ge c t = (if c = 0 then (Ge t) else if c > 0 then (Ge (CN 0 c t))  | 
|
1032  | 
else (Le (CN 0 (-c) (Neg t))))"  | 
|
1033  | 
||
1034  | 
definition  | 
|
1035  | 
eq :: "int \<Rightarrow> num \<Rightarrow> fm"  | 
|
1036  | 
where  | 
|
1037  | 
"eq c t = (if c = 0 then (Eq t) else if c > 0 then (Eq (CN 0 c t))  | 
|
1038  | 
else (Eq (CN 0 (-c) (Neg t))))"  | 
|
1039  | 
||
1040  | 
definition  | 
|
1041  | 
neq :: "int \<Rightarrow> num \<Rightarrow> fm"  | 
|
1042  | 
where  | 
|
1043  | 
"neq c t = (if c = 0 then (NEq t) else if c > 0 then (NEq (CN 0 c t))  | 
|
1044  | 
else (NEq (CN 0 (-c) (Neg t))))"  | 
|
1045  | 
||
1046  | 
lemma lt: "numnoabs t \<Longrightarrow> Ifm bs (split lt (rsplit0 t)) = Ifm bs (Lt t) \<and> isrlfm (split lt (rsplit0 t))"  | 
|
1047  | 
using rsplit0[where bs = "bs" and t="t"]  | 
|
1048  | 
by (auto simp add: lt_def split_def,cases "snd(rsplit0 t)",auto,case_tac "nat",auto)  | 
|
1049  | 
||
1050  | 
lemma le: "numnoabs t \<Longrightarrow> Ifm bs (split le (rsplit0 t)) = Ifm bs (Le t) \<and> isrlfm (split le (rsplit0 t))"  | 
|
1051  | 
using rsplit0[where bs = "bs" and t="t"]  | 
|
1052  | 
by (auto simp add: le_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto)  | 
|
1053  | 
||
1054  | 
lemma gt: "numnoabs t \<Longrightarrow> Ifm bs (split gt (rsplit0 t)) = Ifm bs (Gt t) \<and> isrlfm (split gt (rsplit0 t))"  | 
|
1055  | 
using rsplit0[where bs = "bs" and t="t"]  | 
|
1056  | 
by (auto simp add: gt_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto)  | 
|
1057  | 
||
1058  | 
lemma ge: "numnoabs t \<Longrightarrow> Ifm bs (split ge (rsplit0 t)) = Ifm bs (Ge t) \<and> isrlfm (split ge (rsplit0 t))"  | 
|
1059  | 
using rsplit0[where bs = "bs" and t="t"]  | 
|
1060  | 
by (auto simp add: ge_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto)  | 
|
1061  | 
||
1062  | 
lemma eq: "numnoabs t \<Longrightarrow> Ifm bs (split eq (rsplit0 t)) = Ifm bs (Eq t) \<and> isrlfm (split eq (rsplit0 t))"  | 
|
1063  | 
using rsplit0[where bs = "bs" and t="t"]  | 
|
1064  | 
by (auto simp add: eq_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto)  | 
|
1065  | 
||
1066  | 
lemma neq: "numnoabs t \<Longrightarrow> Ifm bs (split neq (rsplit0 t)) = Ifm bs (NEq t) \<and> isrlfm (split neq (rsplit0 t))"  | 
|
1067  | 
using rsplit0[where bs = "bs" and t="t"]  | 
|
1068  | 
by (auto simp add: neq_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto)  | 
|
1069  | 
||
1070  | 
lemma conj_lin: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (conj p q)"  | 
|
1071  | 
by (auto simp add: conj_def)  | 
|
1072  | 
lemma disj_lin: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (disj p q)"  | 
|
1073  | 
by (auto simp add: disj_def)  | 
|
1074  | 
||
1075  | 
consts rlfm :: "fm \<Rightarrow> fm"  | 
|
1076  | 
recdef rlfm "measure fmsize"  | 
|
1077  | 
"rlfm (And p q) = conj (rlfm p) (rlfm q)"  | 
|
1078  | 
"rlfm (Or p q) = disj (rlfm p) (rlfm q)"  | 
|
1079  | 
"rlfm (Imp p q) = disj (rlfm (NOT p)) (rlfm q)"  | 
|
1080  | 
"rlfm (Iff p q) = disj (conj (rlfm p) (rlfm q)) (conj (rlfm (NOT p)) (rlfm (NOT q)))"  | 
|
1081  | 
"rlfm (Lt a) = split lt (rsplit0 a)"  | 
|
1082  | 
"rlfm (Le a) = split le (rsplit0 a)"  | 
|
1083  | 
"rlfm (Gt a) = split gt (rsplit0 a)"  | 
|
1084  | 
"rlfm (Ge a) = split ge (rsplit0 a)"  | 
|
1085  | 
"rlfm (Eq a) = split eq (rsplit0 a)"  | 
|
1086  | 
"rlfm (NEq a) = split neq (rsplit0 a)"  | 
|
1087  | 
"rlfm (NOT (And p q)) = disj (rlfm (NOT p)) (rlfm (NOT q))"  | 
|
1088  | 
"rlfm (NOT (Or p q)) = conj (rlfm (NOT p)) (rlfm (NOT q))"  | 
|
1089  | 
"rlfm (NOT (Imp p q)) = conj (rlfm p) (rlfm (NOT q))"  | 
|
1090  | 
"rlfm (NOT (Iff p q)) = disj (conj(rlfm p) (rlfm(NOT q))) (conj(rlfm(NOT p)) (rlfm q))"  | 
|
1091  | 
"rlfm (NOT (NOT p)) = rlfm p"  | 
|
1092  | 
"rlfm (NOT T) = F"  | 
|
1093  | 
"rlfm (NOT F) = T"  | 
|
1094  | 
"rlfm (NOT (Lt a)) = rlfm (Ge a)"  | 
|
1095  | 
"rlfm (NOT (Le a)) = rlfm (Gt a)"  | 
|
1096  | 
"rlfm (NOT (Gt a)) = rlfm (Le a)"  | 
|
1097  | 
"rlfm (NOT (Ge a)) = rlfm (Lt a)"  | 
|
1098  | 
"rlfm (NOT (Eq a)) = rlfm (NEq a)"  | 
|
1099  | 
"rlfm (NOT (NEq a)) = rlfm (Eq a)"  | 
|
1100  | 
"rlfm p = p" (hints simp add: fmsize_pos)  | 
|
1101  | 
||
1102  | 
lemma rlfm_I:  | 
|
1103  | 
assumes qfp: "qfree p"  | 
|
1104  | 
shows "(Ifm bs (rlfm p) = Ifm bs p) \<and> isrlfm (rlfm p)"  | 
|
1105  | 
using qfp  | 
|
1106  | 
by (induct p rule: rlfm.induct, auto simp add: lt le gt ge eq neq conj disj conj_lin disj_lin)  | 
|
1107  | 
||
1108  | 
(* Operations needed for Ferrante and Rackoff *)  | 
|
1109  | 
lemma rminusinf_inf:  | 
|
1110  | 
assumes lp: "isrlfm p"  | 
|
1111  | 
shows "\<exists> z. \<forall> x < z. Ifm (x#bs) (minusinf p) = Ifm (x#bs) p" (is "\<exists> z. \<forall> x. ?P z x p")  | 
|
1112  | 
using lp  | 
|
1113  | 
proof (induct p rule: minusinf.induct)  | 
|
1114  | 
case (1 p q) thus ?case by (auto,rule_tac x= "min z za" in exI) auto  | 
|
1115  | 
next  | 
|
1116  | 
case (2 p q) thus ?case by (auto,rule_tac x= "min z za" in exI) auto  | 
|
1117  | 
next  | 
|
1118  | 
case (3 c e)  | 
|
1119  | 
from prems have nb: "numbound0 e" by simp  | 
|
1120  | 
from prems have cp: "real c > 0" by simp  | 
|
1121  | 
fix a  | 
|
1122  | 
let ?e="Inum (a#bs) e"  | 
|
1123  | 
let ?z = "(- ?e) / real c"  | 
|
1124  | 
  {fix x
 | 
|
1125  | 
assume xz: "x < ?z"  | 
|
1126  | 
hence "(real c * x < - ?e)"  | 
|
1127  | 
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac)  | 
|
1128  | 
hence "real c * x + ?e < 0" by arith  | 
|
1129  | 
hence "real c * x + ?e \<noteq> 0" by simp  | 
|
1130  | 
with xz have "?P ?z x (Eq (CN 0 c e))"  | 
|
1131  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1132  | 
hence "\<forall> x < ?z. ?P ?z x (Eq (CN 0 c e))" by simp  | 
|
1133  | 
thus ?case by blast  | 
|
1134  | 
next  | 
|
1135  | 
case (4 c e)  | 
|
1136  | 
from prems have nb: "numbound0 e" by simp  | 
|
1137  | 
from prems have cp: "real c > 0" by simp  | 
|
1138  | 
fix a  | 
|
1139  | 
let ?e="Inum (a#bs) e"  | 
|
1140  | 
let ?z = "(- ?e) / real c"  | 
|
1141  | 
  {fix x
 | 
|
1142  | 
assume xz: "x < ?z"  | 
|
1143  | 
hence "(real c * x < - ?e)"  | 
|
1144  | 
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac)  | 
|
1145  | 
hence "real c * x + ?e < 0" by arith  | 
|
1146  | 
hence "real c * x + ?e \<noteq> 0" by simp  | 
|
1147  | 
with xz have "?P ?z x (NEq (CN 0 c e))"  | 
|
1148  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1149  | 
hence "\<forall> x < ?z. ?P ?z x (NEq (CN 0 c e))" by simp  | 
|
1150  | 
thus ?case by blast  | 
|
1151  | 
next  | 
|
1152  | 
case (5 c e)  | 
|
1153  | 
from prems have nb: "numbound0 e" by simp  | 
|
1154  | 
from prems have cp: "real c > 0" by simp  | 
|
1155  | 
fix a  | 
|
1156  | 
let ?e="Inum (a#bs) e"  | 
|
1157  | 
let ?z = "(- ?e) / real c"  | 
|
1158  | 
  {fix x
 | 
|
1159  | 
assume xz: "x < ?z"  | 
|
1160  | 
hence "(real c * x < - ?e)"  | 
|
1161  | 
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac)  | 
|
1162  | 
hence "real c * x + ?e < 0" by arith  | 
|
1163  | 
with xz have "?P ?z x (Lt (CN 0 c e))"  | 
|
1164  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1165  | 
hence "\<forall> x < ?z. ?P ?z x (Lt (CN 0 c e))" by simp  | 
|
1166  | 
thus ?case by blast  | 
|
1167  | 
next  | 
|
1168  | 
case (6 c e)  | 
|
1169  | 
from prems have nb: "numbound0 e" by simp  | 
|
1170  | 
from prems have cp: "real c > 0" by simp  | 
|
1171  | 
fix a  | 
|
1172  | 
let ?e="Inum (a#bs) e"  | 
|
1173  | 
let ?z = "(- ?e) / real c"  | 
|
1174  | 
  {fix x
 | 
|
1175  | 
assume xz: "x < ?z"  | 
|
1176  | 
hence "(real c * x < - ?e)"  | 
|
1177  | 
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac)  | 
|
1178  | 
hence "real c * x + ?e < 0" by arith  | 
|
1179  | 
with xz have "?P ?z x (Le (CN 0 c e))"  | 
|
1180  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1181  | 
hence "\<forall> x < ?z. ?P ?z x (Le (CN 0 c e))" by simp  | 
|
1182  | 
thus ?case by blast  | 
|
1183  | 
next  | 
|
1184  | 
case (7 c e)  | 
|
1185  | 
from prems have nb: "numbound0 e" by simp  | 
|
1186  | 
from prems have cp: "real c > 0" by simp  | 
|
1187  | 
fix a  | 
|
1188  | 
let ?e="Inum (a#bs) e"  | 
|
1189  | 
let ?z = "(- ?e) / real c"  | 
|
1190  | 
  {fix x
 | 
|
1191  | 
assume xz: "x < ?z"  | 
|
1192  | 
hence "(real c * x < - ?e)"  | 
|
1193  | 
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac)  | 
|
1194  | 
hence "real c * x + ?e < 0" by arith  | 
|
1195  | 
with xz have "?P ?z x (Gt (CN 0 c e))"  | 
|
1196  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1197  | 
hence "\<forall> x < ?z. ?P ?z x (Gt (CN 0 c e))" by simp  | 
|
1198  | 
thus ?case by blast  | 
|
1199  | 
next  | 
|
1200  | 
case (8 c e)  | 
|
1201  | 
from prems have nb: "numbound0 e" by simp  | 
|
1202  | 
from prems have cp: "real c > 0" by simp  | 
|
1203  | 
fix a  | 
|
1204  | 
let ?e="Inum (a#bs) e"  | 
|
1205  | 
let ?z = "(- ?e) / real c"  | 
|
1206  | 
  {fix x
 | 
|
1207  | 
assume xz: "x < ?z"  | 
|
1208  | 
hence "(real c * x < - ?e)"  | 
|
1209  | 
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac)  | 
|
1210  | 
hence "real c * x + ?e < 0" by arith  | 
|
1211  | 
with xz have "?P ?z x (Ge (CN 0 c e))"  | 
|
1212  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1213  | 
hence "\<forall> x < ?z. ?P ?z x (Ge (CN 0 c e))" by simp  | 
|
1214  | 
thus ?case by blast  | 
|
1215  | 
qed simp_all  | 
|
1216  | 
||
1217  | 
lemma rplusinf_inf:  | 
|
1218  | 
assumes lp: "isrlfm p"  | 
|
1219  | 
shows "\<exists> z. \<forall> x > z. Ifm (x#bs) (plusinf p) = Ifm (x#bs) p" (is "\<exists> z. \<forall> x. ?P z x p")  | 
|
1220  | 
using lp  | 
|
1221  | 
proof (induct p rule: isrlfm.induct)  | 
|
1222  | 
case (1 p q) thus ?case by (auto,rule_tac x= "max z za" in exI) auto  | 
|
1223  | 
next  | 
|
1224  | 
case (2 p q) thus ?case by (auto,rule_tac x= "max z za" in exI) auto  | 
|
1225  | 
next  | 
|
1226  | 
case (3 c e)  | 
|
1227  | 
from prems have nb: "numbound0 e" by simp  | 
|
1228  | 
from prems have cp: "real c > 0" by simp  | 
|
1229  | 
fix a  | 
|
1230  | 
let ?e="Inum (a#bs) e"  | 
|
1231  | 
let ?z = "(- ?e) / real c"  | 
|
1232  | 
  {fix x
 | 
|
1233  | 
assume xz: "x > ?z"  | 
|
1234  | 
with mult_strict_right_mono [OF xz cp] cp  | 
|
1235  | 
have "(real c * x > - ?e)" by (simp add: mult_ac)  | 
|
1236  | 
hence "real c * x + ?e > 0" by arith  | 
|
1237  | 
hence "real c * x + ?e \<noteq> 0" by simp  | 
|
1238  | 
with xz have "?P ?z x (Eq (CN 0 c e))"  | 
|
1239  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1240  | 
hence "\<forall> x > ?z. ?P ?z x (Eq (CN 0 c e))" by simp  | 
|
1241  | 
thus ?case by blast  | 
|
1242  | 
next  | 
|
1243  | 
case (4 c e)  | 
|
1244  | 
from prems have nb: "numbound0 e" by simp  | 
|
1245  | 
from prems have cp: "real c > 0" by simp  | 
|
1246  | 
fix a  | 
|
1247  | 
let ?e="Inum (a#bs) e"  | 
|
1248  | 
let ?z = "(- ?e) / real c"  | 
|
1249  | 
  {fix x
 | 
|
1250  | 
assume xz: "x > ?z"  | 
|
1251  | 
with mult_strict_right_mono [OF xz cp] cp  | 
|
1252  | 
have "(real c * x > - ?e)" by (simp add: mult_ac)  | 
|
1253  | 
hence "real c * x + ?e > 0" by arith  | 
|
1254  | 
hence "real c * x + ?e \<noteq> 0" by simp  | 
|
1255  | 
with xz have "?P ?z x (NEq (CN 0 c e))"  | 
|
1256  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1257  | 
hence "\<forall> x > ?z. ?P ?z x (NEq (CN 0 c e))" by simp  | 
|
1258  | 
thus ?case by blast  | 
|
1259  | 
next  | 
|
1260  | 
case (5 c e)  | 
|
1261  | 
from prems have nb: "numbound0 e" by simp  | 
|
1262  | 
from prems have cp: "real c > 0" by simp  | 
|
1263  | 
fix a  | 
|
1264  | 
let ?e="Inum (a#bs) e"  | 
|
1265  | 
let ?z = "(- ?e) / real c"  | 
|
1266  | 
  {fix x
 | 
|
1267  | 
assume xz: "x > ?z"  | 
|
1268  | 
with mult_strict_right_mono [OF xz cp] cp  | 
|
1269  | 
have "(real c * x > - ?e)" by (simp add: mult_ac)  | 
|
1270  | 
hence "real c * x + ?e > 0" by arith  | 
|
1271  | 
with xz have "?P ?z x (Lt (CN 0 c e))"  | 
|
1272  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1273  | 
hence "\<forall> x > ?z. ?P ?z x (Lt (CN 0 c e))" by simp  | 
|
1274  | 
thus ?case by blast  | 
|
1275  | 
next  | 
|
1276  | 
case (6 c e)  | 
|
1277  | 
from prems have nb: "numbound0 e" by simp  | 
|
1278  | 
from prems have cp: "real c > 0" by simp  | 
|
1279  | 
fix a  | 
|
1280  | 
let ?e="Inum (a#bs) e"  | 
|
1281  | 
let ?z = "(- ?e) / real c"  | 
|
1282  | 
  {fix x
 | 
|
1283  | 
assume xz: "x > ?z"  | 
|
1284  | 
with mult_strict_right_mono [OF xz cp] cp  | 
|
1285  | 
have "(real c * x > - ?e)" by (simp add: mult_ac)  | 
|
1286  | 
hence "real c * x + ?e > 0" by arith  | 
|
1287  | 
with xz have "?P ?z x (Le (CN 0 c e))"  | 
|
1288  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1289  | 
hence "\<forall> x > ?z. ?P ?z x (Le (CN 0 c e))" by simp  | 
|
1290  | 
thus ?case by blast  | 
|
1291  | 
next  | 
|
1292  | 
case (7 c e)  | 
|
1293  | 
from prems have nb: "numbound0 e" by simp  | 
|
1294  | 
from prems have cp: "real c > 0" by simp  | 
|
1295  | 
fix a  | 
|
1296  | 
let ?e="Inum (a#bs) e"  | 
|
1297  | 
let ?z = "(- ?e) / real c"  | 
|
1298  | 
  {fix x
 | 
|
1299  | 
assume xz: "x > ?z"  | 
|
1300  | 
with mult_strict_right_mono [OF xz cp] cp  | 
|
1301  | 
have "(real c * x > - ?e)" by (simp add: mult_ac)  | 
|
1302  | 
hence "real c * x + ?e > 0" by arith  | 
|
1303  | 
with xz have "?P ?z x (Gt (CN 0 c e))"  | 
|
1304  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1305  | 
hence "\<forall> x > ?z. ?P ?z x (Gt (CN 0 c e))" by simp  | 
|
1306  | 
thus ?case by blast  | 
|
1307  | 
next  | 
|
1308  | 
case (8 c e)  | 
|
1309  | 
from prems have nb: "numbound0 e" by simp  | 
|
1310  | 
from prems have cp: "real c > 0" by simp  | 
|
1311  | 
fix a  | 
|
1312  | 
let ?e="Inum (a#bs) e"  | 
|
1313  | 
let ?z = "(- ?e) / real c"  | 
|
1314  | 
  {fix x
 | 
|
1315  | 
assume xz: "x > ?z"  | 
|
1316  | 
with mult_strict_right_mono [OF xz cp] cp  | 
|
1317  | 
have "(real c * x > - ?e)" by (simp add: mult_ac)  | 
|
1318  | 
hence "real c * x + ?e > 0" by arith  | 
|
1319  | 
with xz have "?P ?z x (Ge (CN 0 c e))"  | 
|
1320  | 
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }  | 
|
1321  | 
hence "\<forall> x > ?z. ?P ?z x (Ge (CN 0 c e))" by simp  | 
|
1322  | 
thus ?case by blast  | 
|
1323  | 
qed simp_all  | 
|
1324  | 
||
1325  | 
lemma rminusinf_bound0:  | 
|
1326  | 
assumes lp: "isrlfm p"  | 
|
1327  | 
shows "bound0 (minusinf p)"  | 
|
1328  | 
using lp  | 
|
1329  | 
by (induct p rule: minusinf.induct) simp_all  | 
|
1330  | 
||
1331  | 
lemma rplusinf_bound0:  | 
|
1332  | 
assumes lp: "isrlfm p"  | 
|
1333  | 
shows "bound0 (plusinf p)"  | 
|
1334  | 
using lp  | 
|
1335  | 
by (induct p rule: plusinf.induct) simp_all  | 
|
1336  | 
||
1337  | 
lemma rminusinf_ex:  | 
|
1338  | 
assumes lp: "isrlfm p"  | 
|
1339  | 
and ex: "Ifm (a#bs) (minusinf p)"  | 
|
1340  | 
shows "\<exists> x. Ifm (x#bs) p"  | 
|
1341  | 
proof-  | 
|
1342  | 
from bound0_I [OF rminusinf_bound0[OF lp], where b="a" and bs ="bs"] ex  | 
|
1343  | 
have th: "\<forall> x. Ifm (x#bs) (minusinf p)" by auto  | 
|
1344  | 
from rminusinf_inf[OF lp, where bs="bs"]  | 
|
1345  | 
obtain z where z_def: "\<forall>x<z. Ifm (x # bs) (minusinf p) = Ifm (x # bs) p" by blast  | 
|
1346  | 
from th have "Ifm ((z - 1)#bs) (minusinf p)" by simp  | 
|
1347  | 
moreover have "z - 1 < z" by simp  | 
|
1348  | 
ultimately show ?thesis using z_def by auto  | 
|
1349  | 
qed  | 
|
1350  | 
||
1351  | 
lemma rplusinf_ex:  | 
|
1352  | 
assumes lp: "isrlfm p"  | 
|
1353  | 
and ex: "Ifm (a#bs) (plusinf p)"  | 
|
1354  | 
shows "\<exists> x. Ifm (x#bs) p"  | 
|
1355  | 
proof-  | 
|
1356  | 
from bound0_I [OF rplusinf_bound0[OF lp], where b="a" and bs ="bs"] ex  | 
|
1357  | 
have th: "\<forall> x. Ifm (x#bs) (plusinf p)" by auto  | 
|
1358  | 
from rplusinf_inf[OF lp, where bs="bs"]  | 
|
1359  | 
obtain z where z_def: "\<forall>x>z. Ifm (x # bs) (plusinf p) = Ifm (x # bs) p" by blast  | 
|
1360  | 
from th have "Ifm ((z + 1)#bs) (plusinf p)" by simp  | 
|
1361  | 
moreover have "z + 1 > z" by simp  | 
|
1362  | 
ultimately show ?thesis using z_def by auto  | 
|
1363  | 
qed  | 
|
1364  | 
||
1365  | 
consts  | 
|
1366  | 
uset:: "fm \<Rightarrow> (num \<times> int) list"  | 
|
1367  | 
usubst :: "fm \<Rightarrow> (num \<times> int) \<Rightarrow> fm "  | 
|
1368  | 
recdef uset "measure size"  | 
|
1369  | 
"uset (And p q) = (uset p @ uset q)"  | 
|
1370  | 
"uset (Or p q) = (uset p @ uset q)"  | 
|
1371  | 
"uset (Eq (CN 0 c e)) = [(Neg e,c)]"  | 
|
1372  | 
"uset (NEq (CN 0 c e)) = [(Neg e,c)]"  | 
|
1373  | 
"uset (Lt (CN 0 c e)) = [(Neg e,c)]"  | 
|
1374  | 
"uset (Le (CN 0 c e)) = [(Neg e,c)]"  | 
|
1375  | 
"uset (Gt (CN 0 c e)) = [(Neg e,c)]"  | 
|
1376  | 
"uset (Ge (CN 0 c e)) = [(Neg e,c)]"  | 
|
1377  | 
"uset p = []"  | 
|
1378  | 
recdef usubst "measure size"  | 
|
1379  | 
"usubst (And p q) = (\<lambda> (t,n). And (usubst p (t,n)) (usubst q (t,n)))"  | 
|
1380  | 
"usubst (Or p q) = (\<lambda> (t,n). Or (usubst p (t,n)) (usubst q (t,n)))"  | 
|
1381  | 
"usubst (Eq (CN 0 c e)) = (\<lambda> (t,n). Eq (Add (Mul c t) (Mul n e)))"  | 
|
1382  | 
"usubst (NEq (CN 0 c e)) = (\<lambda> (t,n). NEq (Add (Mul c t) (Mul n e)))"  | 
|
1383  | 
"usubst (Lt (CN 0 c e)) = (\<lambda> (t,n). Lt (Add (Mul c t) (Mul n e)))"  | 
|
1384  | 
"usubst (Le (CN 0 c e)) = (\<lambda> (t,n). Le (Add (Mul c t) (Mul n e)))"  | 
|
1385  | 
"usubst (Gt (CN 0 c e)) = (\<lambda> (t,n). Gt (Add (Mul c t) (Mul n e)))"  | 
|
1386  | 
"usubst (Ge (CN 0 c e)) = (\<lambda> (t,n). Ge (Add (Mul c t) (Mul n e)))"  | 
|
1387  | 
"usubst p = (\<lambda> (t,n). p)"  | 
|
1388  | 
||
1389  | 
lemma usubst_I: assumes lp: "isrlfm p"  | 
|
1390  | 
and np: "real n > 0" and nbt: "numbound0 t"  | 
|
1391  | 
shows "(Ifm (x#bs) (usubst p (t,n)) = Ifm (((Inum (x#bs) t)/(real n))#bs) p) \<and> bound0 (usubst p (t,n))" (is "(?I x (usubst p (t,n)) = ?I ?u p) \<and> ?B p" is "(_ = ?I (?t/?n) p) \<and> _" is "(_ = ?I (?N x t /_) p) \<and> _")  | 
|
1392  | 
using lp  | 
|
1393  | 
proof(induct p rule: usubst.induct)  | 
|
1394  | 
case (5 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+  | 
|
1395  | 
have "?I ?u (Lt (CN 0 c e)) = (real c *(?t/?n) + (?N x e) < 0)"  | 
|
1396  | 
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp  | 
|
1397  | 
also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) < 0)"  | 
|
1398  | 
by (simp only: pos_less_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)"  | 
|
1399  | 
and b="0", simplified divide_zero_left]) (simp only: algebra_simps)  | 
|
1400  | 
also have "\<dots> = (real c *?t + ?n* (?N x e) < 0)"  | 
|
1401  | 
using np by simp  | 
|
1402  | 
finally show ?case using nbt nb by (simp add: algebra_simps)  | 
|
1403  | 
next  | 
|
1404  | 
case (6 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+  | 
|
1405  | 
have "?I ?u (Le (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<le> 0)"  | 
|
1406  | 
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp  | 
|
1407  | 
also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<le> 0)"  | 
|
1408  | 
by (simp only: pos_le_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)"  | 
|
1409  | 
and b="0", simplified divide_zero_left]) (simp only: algebra_simps)  | 
|
1410  | 
also have "\<dots> = (real c *?t + ?n* (?N x e) \<le> 0)"  | 
|
1411  | 
using np by simp  | 
|
1412  | 
finally show ?case using nbt nb by (simp add: algebra_simps)  | 
|
1413  | 
next  | 
|
1414  | 
case (7 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+  | 
|
1415  | 
have "?I ?u (Gt (CN 0 c e)) = (real c *(?t/?n) + (?N x e) > 0)"  | 
|
1416  | 
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp  | 
|
1417  | 
also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) > 0)"  | 
|
1418  | 
by (simp only: pos_divide_less_eq[OF np, where a="real c *(?t/?n) + (?N x e)"  | 
|
1419  | 
and b="0", simplified divide_zero_left]) (simp only: algebra_simps)  | 
|
1420  | 
also have "\<dots> = (real c *?t + ?n* (?N x e) > 0)"  | 
|
1421  | 
using np by simp  | 
|
1422  | 
finally show ?case using nbt nb by (simp add: algebra_simps)  | 
|
1423  | 
next  | 
|
1424  | 
case (8 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+  | 
|
1425  | 
have "?I ?u (Ge (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<ge> 0)"  | 
|
1426  | 
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp  | 
|
1427  | 
also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<ge> 0)"  | 
|
1428  | 
by (simp only: pos_divide_le_eq[OF np, where a="real c *(?t/?n) + (?N x e)"  | 
|
1429  | 
and b="0", simplified divide_zero_left]) (simp only: algebra_simps)  | 
|
1430  | 
also have "\<dots> = (real c *?t + ?n* (?N x e) \<ge> 0)"  | 
|
1431  | 
using np by simp  | 
|
1432  | 
finally show ?case using nbt nb by (simp add: algebra_simps)  | 
|
1433  | 
next  | 
|
1434  | 
case (3 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+  | 
|
1435  | 
from np have np: "real n \<noteq> 0" by simp  | 
|
1436  | 
have "?I ?u (Eq (CN 0 c e)) = (real c *(?t/?n) + (?N x e) = 0)"  | 
|
1437  | 
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp  | 
|
1438  | 
also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) = 0)"  | 
|
1439  | 
by (simp only: nonzero_eq_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)"  | 
|
1440  | 
and b="0", simplified divide_zero_left]) (simp only: algebra_simps)  | 
|
1441  | 
also have "\<dots> = (real c *?t + ?n* (?N x e) = 0)"  | 
|
1442  | 
using np by simp  | 
|
1443  | 
finally show ?case using nbt nb by (simp add: algebra_simps)  | 
|
1444  | 
next  | 
|
1445  | 
case (4 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+  | 
|
1446  | 
from np have np: "real n \<noteq> 0" by simp  | 
|
1447  | 
have "?I ?u (NEq (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<noteq> 0)"  | 
|
1448  | 
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp  | 
|
1449  | 
also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<noteq> 0)"  | 
|
1450  | 
by (simp only: nonzero_eq_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)"  | 
|
1451  | 
and b="0", simplified divide_zero_left]) (simp only: algebra_simps)  | 
|
1452  | 
also have "\<dots> = (real c *?t + ?n* (?N x e) \<noteq> 0)"  | 
|
1453  | 
using np by simp  | 
|
1454  | 
finally show ?case using nbt nb by (simp add: algebra_simps)  | 
|
1455  | 
qed(simp_all add: nbt numbound0_I[where bs ="bs" and b="(Inum (x#bs) t)/ real n" and b'="x"] nth_pos2)  | 
|
1456  | 
||
1457  | 
lemma uset_l:  | 
|
1458  | 
assumes lp: "isrlfm p"  | 
|
1459  | 
shows "\<forall> (t,k) \<in> set (uset p). numbound0 t \<and> k >0"  | 
|
1460  | 
using lp  | 
|
1461  | 
by(induct p rule: uset.induct,auto)  | 
|
1462  | 
||
1463  | 
lemma rminusinf_uset:  | 
|
1464  | 
assumes lp: "isrlfm p"  | 
|
1465  | 
and nmi: "\<not> (Ifm (a#bs) (minusinf p))" (is "\<not> (Ifm (a#bs) (?M p))")  | 
|
1466  | 
and ex: "Ifm (x#bs) p" (is "?I x p")  | 
|
1467  | 
shows "\<exists> (s,m) \<in> set (uset p). x \<ge> Inum (a#bs) s / real m" (is "\<exists> (s,m) \<in> ?U p. x \<ge> ?N a s / real m")  | 
|
1468  | 
proof-  | 
|
1469  | 
have "\<exists> (s,m) \<in> set (uset p). real m * x \<ge> Inum (a#bs) s " (is "\<exists> (s,m) \<in> ?U p. real m *x \<ge> ?N a s")  | 
|
1470  | 
using lp nmi ex  | 
|
1471  | 
by (induct p rule: minusinf.induct, auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"] nth_pos2)  | 
|
1472  | 
then obtain s m where smU: "(s,m) \<in> set (uset p)" and mx: "real m * x \<ge> ?N a s" by blast  | 
|
1473  | 
from uset_l[OF lp] smU have mp: "real m > 0" by auto  | 
|
1474  | 
from pos_divide_le_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<ge> ?N a s / real m"  | 
|
1475  | 
by (auto simp add: mult_commute)  | 
|
1476  | 
thus ?thesis using smU by auto  | 
|
1477  | 
qed  | 
|
1478  | 
||
1479  | 
lemma rplusinf_uset:  | 
|
1480  | 
assumes lp: "isrlfm p"  | 
|
1481  | 
and nmi: "\<not> (Ifm (a#bs) (plusinf p))" (is "\<not> (Ifm (a#bs) (?M p))")  | 
|
1482  | 
and ex: "Ifm (x#bs) p" (is "?I x p")  | 
|
1483  | 
shows "\<exists> (s,m) \<in> set (uset p). x \<le> Inum (a#bs) s / real m" (is "\<exists> (s,m) \<in> ?U p. x \<le> ?N a s / real m")  | 
|
1484  | 
proof-  | 
|
1485  | 
have "\<exists> (s,m) \<in> set (uset p). real m * x \<le> Inum (a#bs) s " (is "\<exists> (s,m) \<in> ?U p. real m *x \<le> ?N a s")  | 
|
1486  | 
using lp nmi ex  | 
|
1487  | 
by (induct p rule: minusinf.induct, auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"] nth_pos2)  | 
|
1488  | 
then obtain s m where smU: "(s,m) \<in> set (uset p)" and mx: "real m * x \<le> ?N a s" by blast  | 
|
1489  | 
from uset_l[OF lp] smU have mp: "real m > 0" by auto  | 
|
1490  | 
from pos_le_divide_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<le> ?N a s / real m"  | 
|
1491  | 
by (auto simp add: mult_commute)  | 
|
1492  | 
thus ?thesis using smU by auto  | 
|
1493  | 
qed  | 
|
1494  | 
||
1495  | 
lemma lin_dense:  | 
|
1496  | 
assumes lp: "isrlfm p"  | 
|
1497  | 
and noS: "\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> (\<lambda> (t,n). Inum (x#bs) t / real n) ` set (uset p)"  | 
|
1498  | 
(is "\<forall> t. _ \<and> _ \<longrightarrow> t \<notin> (\<lambda> (t,n). ?N x t / real n ) ` (?U p)")  | 
|
1499  | 
and lx: "l < x" and xu:"x < u" and px:" Ifm (x#bs) p"  | 
|
1500  | 
and ly: "l < y" and yu: "y < u"  | 
|
1501  | 
shows "Ifm (y#bs) p"  | 
|
1502  | 
using lp px noS  | 
|
1503  | 
proof (induct p rule: isrlfm.induct)  | 
|
1504  | 
case (5 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+  | 
|
1505  | 
from prems have "x * real c + ?N x e < 0" by (simp add: algebra_simps)  | 
|
1506  | 
hence pxc: "x < (- ?N x e) / real c"  | 
|
1507  | 
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="-?N x e"])  | 
|
1508  | 
from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto  | 
|
1509  | 
with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto  | 
|
1510  | 
hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto  | 
|
1511  | 
    moreover {assume y: "y < (-?N x e)/ real c"
 | 
|
1512  | 
hence "y * real c < - ?N x e"  | 
|
1513  | 
by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric])  | 
|
1514  | 
hence "real c * y + ?N x e < 0" by (simp add: algebra_simps)  | 
|
1515  | 
hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp}  | 
|
1516  | 
    moreover {assume y: "y > (- ?N x e) / real c" 
 | 
|
1517  | 
with yu have eu: "u > (- ?N x e) / real c" by auto  | 
|
1518  | 
with noSc ly yu have "(- ?N x e) / real c \<le> l" by (cases "(- ?N x e) / real c > l", auto)  | 
|
1519  | 
with lx pxc have "False" by auto  | 
|
1520  | 
hence ?case by simp }  | 
|
1521  | 
ultimately show ?case by blast  | 
|
1522  | 
next  | 
|
1523  | 
case (6 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp +  | 
|
1524  | 
from prems have "x * real c + ?N x e \<le> 0" by (simp add: algebra_simps)  | 
|
1525  | 
hence pxc: "x \<le> (- ?N x e) / real c"  | 
|
1526  | 
by (simp only: pos_le_divide_eq[OF cp, where a="x" and b="-?N x e"])  | 
|
1527  | 
from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto  | 
|
1528  | 
with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto  | 
|
1529  | 
hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto  | 
|
1530  | 
    moreover {assume y: "y < (-?N x e)/ real c"
 | 
|
1531  | 
hence "y * real c < - ?N x e"  | 
|
1532  | 
by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric])  | 
|
1533  | 
hence "real c * y + ?N x e < 0" by (simp add: algebra_simps)  | 
|
1534  | 
hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp}  | 
|
1535  | 
    moreover {assume y: "y > (- ?N x e) / real c" 
 | 
|
1536  | 
with yu have eu: "u > (- ?N x e) / real c" by auto  | 
|
1537  | 
with noSc ly yu have "(- ?N x e) / real c \<le> l" by (cases "(- ?N x e) / real c > l", auto)  | 
|
1538  | 
with lx pxc have "False" by auto  | 
|
1539  | 
hence ?case by simp }  | 
|
1540  | 
ultimately show ?case by blast  | 
|
1541  | 
next  | 
|
1542  | 
case (7 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+  | 
|
1543  | 
from prems have "x * real c + ?N x e > 0" by (simp add: algebra_simps)  | 
|
1544  | 
hence pxc: "x > (- ?N x e) / real c"  | 
|
1545  | 
by (simp only: pos_divide_less_eq[OF cp, where a="x" and b="-?N x e"])  | 
|
1546  | 
from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto  | 
|
1547  | 
with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto  | 
|
1548  | 
hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto  | 
|
1549  | 
    moreover {assume y: "y > (-?N x e)/ real c"
 | 
|
1550  | 
hence "y * real c > - ?N x e"  | 
|
1551  | 
by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric])  | 
|
1552  | 
hence "real c * y + ?N x e > 0" by (simp add: algebra_simps)  | 
|
1553  | 
hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp}  | 
|
1554  | 
    moreover {assume y: "y < (- ?N x e) / real c" 
 | 
|
1555  | 
with ly have eu: "l < (- ?N x e) / real c" by auto  | 
|
1556  | 
with noSc ly yu have "(- ?N x e) / real c \<ge> u" by (cases "(- ?N x e) / real c > l", auto)  | 
|
1557  | 
with xu pxc have "False" by auto  | 
|
1558  | 
hence ?case by simp }  | 
|
1559  | 
ultimately show ?case by blast  | 
|
1560  | 
next  | 
|
1561  | 
case (8 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+  | 
|
1562  | 
from prems have "x * real c + ?N x e \<ge> 0" by (simp add: algebra_simps)  | 
|
1563  | 
hence pxc: "x \<ge> (- ?N x e) / real c"  | 
|
1564  | 
by (simp only: pos_divide_le_eq[OF cp, where a="x" and b="-?N x e"])  | 
|
1565  | 
from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto  | 
|
1566  | 
with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto  | 
|
1567  | 
hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto  | 
|
1568  | 
    moreover {assume y: "y > (-?N x e)/ real c"
 | 
|
1569  | 
hence "y * real c > - ?N x e"  | 
|
1570  | 
by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric])  | 
|
1571  | 
hence "real c * y + ?N x e > 0" by (simp add: algebra_simps)  | 
|
1572  | 
hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp}  | 
|
1573  | 
    moreover {assume y: "y < (- ?N x e) / real c" 
 | 
|
1574  | 
with ly have eu: "l < (- ?N x e) / real c" by auto  | 
|
1575  | 
with noSc ly yu have "(- ?N x e) / real c \<ge> u" by (cases "(- ?N x e) / real c > l", auto)  | 
|
1576  | 
with xu pxc have "False" by auto  | 
|
1577  | 
hence ?case by simp }  | 
|
1578  | 
ultimately show ?case by blast  | 
|
1579  | 
next  | 
|
1580  | 
case (3 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+  | 
|
1581  | 
from cp have cnz: "real c \<noteq> 0" by simp  | 
|
1582  | 
from prems have "x * real c + ?N x e = 0" by (simp add: algebra_simps)  | 
|
1583  | 
hence pxc: "x = (- ?N x e) / real c"  | 
|
1584  | 
by (simp only: nonzero_eq_divide_eq[OF cnz, where a="x" and b="-?N x e"])  | 
|
1585  | 
from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto  | 
|
1586  | 
with lx xu have yne: "x \<noteq> - ?N x e / real c" by auto  | 
|
1587  | 
with pxc show ?case by simp  | 
|
1588  | 
next  | 
|
1589  | 
case (4 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+  | 
|
1590  | 
from cp have cnz: "real c \<noteq> 0" by simp  | 
|
1591  | 
from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto  | 
|
1592  | 
with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto  | 
|
1593  | 
hence "y* real c \<noteq> -?N x e"  | 
|
1594  | 
by (simp only: nonzero_eq_divide_eq[OF cnz, where a="y" and b="-?N x e"]) simp  | 
|
1595  | 
hence "y* real c + ?N x e \<noteq> 0" by (simp add: algebra_simps)  | 
|
1596  | 
thus ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"]  | 
|
1597  | 
by (simp add: algebra_simps)  | 
|
1598  | 
qed (auto simp add: nth_pos2 numbound0_I[where bs="bs" and b="y" and b'="x"])  | 
|
1599  | 
||
1600  | 
lemma finite_set_intervals:  | 
|
1601  | 
assumes px: "P (x::real)"  | 
|
1602  | 
and lx: "l \<le> x" and xu: "x \<le> u"  | 
|
1603  | 
and linS: "l\<in> S" and uinS: "u \<in> S"  | 
|
1604  | 
and fS:"finite S" and lS: "\<forall> x\<in> S. l \<le> x" and Su: "\<forall> x\<in> S. x \<le> u"  | 
|
1605  | 
shows "\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a < y \<and> y < b \<longrightarrow> y \<notin> S) \<and> a \<le> x \<and> x \<le> b \<and> P x"  | 
|
1606  | 
proof-  | 
|
1607  | 
  let ?Mx = "{y. y\<in> S \<and> y \<le> x}"
 | 
|
1608  | 
  let ?xM = "{y. y\<in> S \<and> x \<le> y}"
 | 
|
1609  | 
let ?a = "Max ?Mx"  | 
|
1610  | 
let ?b = "Min ?xM"  | 
|
1611  | 
have MxS: "?Mx \<subseteq> S" by blast  | 
|
1612  | 
hence fMx: "finite ?Mx" using fS finite_subset by auto  | 
|
1613  | 
from lx linS have linMx: "l \<in> ?Mx" by blast  | 
|
1614  | 
  hence Mxne: "?Mx \<noteq> {}" by blast
 | 
|
1615  | 
have xMS: "?xM \<subseteq> S" by blast  | 
|
1616  | 
hence fxM: "finite ?xM" using fS finite_subset by auto  | 
|
1617  | 
from xu uinS have linxM: "u \<in> ?xM" by blast  | 
|
1618  | 
  hence xMne: "?xM \<noteq> {}" by blast
 | 
|
1619  | 
have ax:"?a \<le> x" using Mxne fMx by auto  | 
|
1620  | 
have xb:"x \<le> ?b" using xMne fxM by auto  | 
|
1621  | 
have "?a \<in> ?Mx" using Max_in[OF fMx Mxne] by simp hence ainS: "?a \<in> S" using MxS by blast  | 
|
1622  | 
have "?b \<in> ?xM" using Min_in[OF fxM xMne] by simp hence binS: "?b \<in> S" using xMS by blast  | 
|
1623  | 
have noy:"\<forall> y. ?a < y \<and> y < ?b \<longrightarrow> y \<notin> S"  | 
|
1624  | 
proof(clarsimp)  | 
|
1625  | 
fix y  | 
|
1626  | 
assume ay: "?a < y" and yb: "y < ?b" and yS: "y \<in> S"  | 
|
1627  | 
from yS have "y\<in> ?Mx \<or> y\<in> ?xM" by auto  | 
|
1628  | 
    moreover {assume "y \<in> ?Mx" hence "y \<le> ?a" using Mxne fMx by auto with ay have "False" by simp}
 | 
|
1629  | 
    moreover {assume "y \<in> ?xM" hence "y \<ge> ?b" using xMne fxM by auto with yb have "False" by simp}
 | 
|
1630  | 
ultimately show "False" by blast  | 
|
1631  | 
qed  | 
|
1632  | 
from ainS binS noy ax xb px show ?thesis by blast  | 
|
1633  | 
qed  | 
|
1634  | 
||
1635  | 
lemma finite_set_intervals2:  | 
|
1636  | 
assumes px: "P (x::real)"  | 
|
1637  | 
and lx: "l \<le> x" and xu: "x \<le> u"  | 
|
1638  | 
and linS: "l\<in> S" and uinS: "u \<in> S"  | 
|
1639  | 
and fS:"finite S" and lS: "\<forall> x\<in> S. l \<le> x" and Su: "\<forall> x\<in> S. x \<le> u"  | 
|
1640  | 
shows "(\<exists> s\<in> S. P s) \<or> (\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a < y \<and> y < b \<longrightarrow> y \<notin> S) \<and> a < x \<and> x < b \<and> P x)"  | 
|
1641  | 
proof-  | 
|
1642  | 
from finite_set_intervals[where P="P", OF px lx xu linS uinS fS lS Su]  | 
|
1643  | 
obtain a and b where  | 
|
1644  | 
as: "a\<in> S" and bs: "b\<in> S" and noS:"\<forall>y. a < y \<and> y < b \<longrightarrow> y \<notin> S" and axb: "a \<le> x \<and> x \<le> b \<and> P x" by auto  | 
|
1645  | 
from axb have "x= a \<or> x= b \<or> (a < x \<and> x < b)" by auto  | 
|
1646  | 
thus ?thesis using px as bs noS by blast  | 
|
1647  | 
qed  | 
|
1648  | 
||
1649  | 
lemma rinf_uset:  | 
|
1650  | 
assumes lp: "isrlfm p"  | 
|
1651  | 
and nmi: "\<not> (Ifm (x#bs) (minusinf p))" (is "\<not> (Ifm (x#bs) (?M p))")  | 
|
1652  | 
and npi: "\<not> (Ifm (x#bs) (plusinf p))" (is "\<not> (Ifm (x#bs) (?P p))")  | 
|
1653  | 
and ex: "\<exists> x. Ifm (x#bs) p" (is "\<exists> x. ?I x p")  | 
|
1654  | 
shows "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). ?I ((Inum (x#bs) l / real n + Inum (x#bs) s / real m) / 2) p"  | 
|
1655  | 
proof-  | 
|
1656  | 
let ?N = "\<lambda> x t. Inum (x#bs) t"  | 
|
1657  | 
let ?U = "set (uset p)"  | 
|
1658  | 
from ex obtain a where pa: "?I a p" by blast  | 
|
1659  | 
from bound0_I[OF rminusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] nmi  | 
|
1660  | 
have nmi': "\<not> (?I a (?M p))" by simp  | 
|
1661  | 
from bound0_I[OF rplusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] npi  | 
|
1662  | 
have npi': "\<not> (?I a (?P p))" by simp  | 
|
1663  | 
have "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). ?I ((?N a l/real n + ?N a s /real m) / 2) p"  | 
|
1664  | 
proof-  | 
|
1665  | 
let ?M = "(\<lambda> (t,c). ?N a t / real c) ` ?U"  | 
|
1666  | 
have fM: "finite ?M" by auto  | 
|
1667  | 
from rminusinf_uset[OF lp nmi pa] rplusinf_uset[OF lp npi pa]  | 
|
1668  | 
have "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). a \<le> ?N x l / real n \<and> a \<ge> ?N x s / real m" by blast  | 
|
1669  | 
then obtain "t" "n" "s" "m" where  | 
|
1670  | 
tnU: "(t,n) \<in> ?U" and smU: "(s,m) \<in> ?U"  | 
|
1671  | 
and xs1: "a \<le> ?N x s / real m" and tx1: "a \<ge> ?N x t / real n" by blast  | 
|
1672  | 
from uset_l[OF lp] tnU smU numbound0_I[where bs="bs" and b="x" and b'="a"] xs1 tx1 have xs: "a \<le> ?N a s / real m" and tx: "a \<ge> ?N a t / real n" by auto  | 
|
1673  | 
    from tnU have Mne: "?M \<noteq> {}" by auto
 | 
|
1674  | 
    hence Une: "?U \<noteq> {}" by simp
 | 
|
1675  | 
let ?l = "Min ?M"  | 
|
1676  | 
let ?u = "Max ?M"  | 
|
1677  | 
have linM: "?l \<in> ?M" using fM Mne by simp  | 
|
1678  | 
have uinM: "?u \<in> ?M" using fM Mne by simp  | 
|
1679  | 
have tnM: "?N a t / real n \<in> ?M" using tnU by auto  | 
|
1680  | 
have smM: "?N a s / real m \<in> ?M" using smU by auto  | 
|
1681  | 
have lM: "\<forall> t\<in> ?M. ?l \<le> t" using Mne fM by auto  | 
|
1682  | 
have Mu: "\<forall> t\<in> ?M. t \<le> ?u" using Mne fM by auto  | 
|
1683  | 
have "?l \<le> ?N a t / real n" using tnM Mne by simp hence lx: "?l \<le> a" using tx by simp  | 
|
1684  | 
have "?N a s / real m \<le> ?u" using smM Mne by simp hence xu: "a \<le> ?u" using xs by simp  | 
|
1685  | 
from finite_set_intervals2[where P="\<lambda> x. ?I x p",OF pa lx xu linM uinM fM lM Mu]  | 
|
1686  | 
have "(\<exists> s\<in> ?M. ?I s p) \<or>  | 
|
1687  | 
(\<exists> t1\<in> ?M. \<exists> t2 \<in> ?M. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M) \<and> t1 < a \<and> a < t2 \<and> ?I a p)" .  | 
|
1688  | 
    moreover { fix u assume um: "u\<in> ?M" and pu: "?I u p"
 | 
|
1689  | 
hence "\<exists> (tu,nu) \<in> ?U. u = ?N a tu / real nu" by auto  | 
|
1690  | 
then obtain "tu" "nu" where tuU: "(tu,nu) \<in> ?U" and tuu:"u= ?N a tu / real nu" by blast  | 
|
1691  | 
have "(u + u) / 2 = u" by auto with pu tuu  | 
|
1692  | 
have "?I (((?N a tu / real nu) + (?N a tu / real nu)) / 2) p" by simp  | 
|
1693  | 
with tuU have ?thesis by blast}  | 
|
1694  | 
    moreover{
 | 
|
1695  | 
assume "\<exists> t1\<in> ?M. \<exists> t2 \<in> ?M. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M) \<and> t1 < a \<and> a < t2 \<and> ?I a p"  | 
|
1696  | 
then obtain t1 and t2 where t1M: "t1 \<in> ?M" and t2M: "t2\<in> ?M"  | 
|
1697  | 
and noM: "\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M" and t1x: "t1 < a" and xt2: "a < t2" and px: "?I a p"  | 
|
1698  | 
by blast  | 
|
1699  | 
from t1M have "\<exists> (t1u,t1n) \<in> ?U. t1 = ?N a t1u / real t1n" by auto  | 
|
1700  | 
then obtain "t1u" "t1n" where t1uU: "(t1u,t1n) \<in> ?U" and t1u: "t1 = ?N a t1u / real t1n" by blast  | 
|
1701  | 
from t2M have "\<exists> (t2u,t2n) \<in> ?U. t2 = ?N a t2u / real t2n" by auto  | 
|
1702  | 
then obtain "t2u" "t2n" where t2uU: "(t2u,t2n) \<in> ?U" and t2u: "t2 = ?N a t2u / real t2n" by blast  | 
|
1703  | 
from t1x xt2 have t1t2: "t1 < t2" by simp  | 
|
1704  | 
let ?u = "(t1 + t2) / 2"  | 
|
1705  | 
from less_half_sum[OF t1t2] gt_half_sum[OF t1t2] have t1lu: "t1 < ?u" and ut2: "?u < t2" by auto  | 
|
1706  | 
from lin_dense[OF lp noM t1x xt2 px t1lu ut2] have "?I ?u p" .  | 
|
1707  | 
with t1uU t2uU t1u t2u have ?thesis by blast}  | 
|
1708  | 
ultimately show ?thesis by blast  | 
|
1709  | 
qed  | 
|
1710  | 
then obtain "l" "n" "s" "m" where lnU: "(l,n) \<in> ?U" and smU:"(s,m) \<in> ?U"  | 
|
1711  | 
and pu: "?I ((?N a l / real n + ?N a s / real m) / 2) p" by blast  | 
|
1712  | 
from lnU smU uset_l[OF lp] have nbl: "numbound0 l" and nbs: "numbound0 s" by auto  | 
|
1713  | 
from numbound0_I[OF nbl, where bs="bs" and b="a" and b'="x"]  | 
|
1714  | 
numbound0_I[OF nbs, where bs="bs" and b="a" and b'="x"] pu  | 
|
1715  | 
have "?I ((?N x l / real n + ?N x s / real m) / 2) p" by simp  | 
|
1716  | 
with lnU smU  | 
|
1717  | 
show ?thesis by auto  | 
|
1718  | 
qed  | 
|
1719  | 
(* The Ferrante - Rackoff Theorem *)  | 
|
1720  | 
||
1721  | 
theorem fr_eq:  | 
|
1722  | 
assumes lp: "isrlfm p"  | 
|
1723  | 
shows "(\<exists> x. Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) \<or> (Ifm (x#bs) (plusinf p)) \<or> (\<exists> (t,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). Ifm ((((Inum (x#bs) t)/ real n + (Inum (x#bs) s) / real m) /2)#bs) p))"  | 
|
1724  | 
(is "(\<exists> x. ?I x p) = (?M \<or> ?P \<or> ?F)" is "?E = ?D")  | 
|
1725  | 
proof  | 
|
1726  | 
assume px: "\<exists> x. ?I x p"  | 
|
1727  | 
have "?M \<or> ?P \<or> (\<not> ?M \<and> \<not> ?P)" by blast  | 
|
1728  | 
  moreover {assume "?M \<or> ?P" hence "?D" by blast}
 | 
|
1729  | 
  moreover {assume nmi: "\<not> ?M" and npi: "\<not> ?P"
 | 
|
1730  | 
from rinf_uset[OF lp nmi npi] have "?F" using px by blast hence "?D" by blast}  | 
|
1731  | 
ultimately show "?D" by blast  | 
|
1732  | 
next  | 
|
1733  | 
assume "?D"  | 
|
1734  | 
  moreover {assume m:"?M" from rminusinf_ex[OF lp m] have "?E" .}
 | 
|
1735  | 
  moreover {assume p: "?P" from rplusinf_ex[OF lp p] have "?E" . }
 | 
|
1736  | 
  moreover {assume f:"?F" hence "?E" by blast}
 | 
|
1737  | 
ultimately show "?E" by blast  | 
|
1738  | 
qed  | 
|
1739  | 
||
1740  | 
||
1741  | 
lemma fr_equsubst:  | 
|
1742  | 
assumes lp: "isrlfm p"  | 
|
1743  | 
shows "(\<exists> x. Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) \<or> (Ifm (x#bs) (plusinf p)) \<or> (\<exists> (t,k) \<in> set (uset p). \<exists> (s,l) \<in> set (uset p). Ifm (x#bs) (usubst p (Add(Mul l t) (Mul k s) , 2*k*l))))"  | 
|
1744  | 
(is "(\<exists> x. ?I x p) = (?M \<or> ?P \<or> ?F)" is "?E = ?D")  | 
|
1745  | 
proof  | 
|
1746  | 
assume px: "\<exists> x. ?I x p"  | 
|
1747  | 
have "?M \<or> ?P \<or> (\<not> ?M \<and> \<not> ?P)" by blast  | 
|
1748  | 
  moreover {assume "?M \<or> ?P" hence "?D" by blast}
 | 
|
1749  | 
  moreover {assume nmi: "\<not> ?M" and npi: "\<not> ?P"
 | 
|
1750  | 
let ?f ="\<lambda> (t,n). Inum (x#bs) t / real n"  | 
|
1751  | 
let ?N = "\<lambda> t. Inum (x#bs) t"  | 
|
1752  | 
    {fix t n s m assume "(t,n)\<in> set (uset p)" and "(s,m) \<in> set (uset p)"
 | 
|
1753  | 
with uset_l[OF lp] have tnb: "numbound0 t" and np:"real n > 0" and snb: "numbound0 s" and mp:"real m > 0"  | 
|
1754  | 
by auto  | 
|
1755  | 
let ?st = "Add (Mul m t) (Mul n s)"  | 
|
1756  | 
from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0"  | 
|
1757  | 
by (simp add: mult_commute)  | 
|
1758  | 
from tnb snb have st_nb: "numbound0 ?st" by simp  | 
|
1759  | 
have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)"  | 
|
1760  | 
using mnp mp np by (simp add: algebra_simps add_divide_distrib)  | 
|
1761  | 
from usubst_I[OF lp mnp st_nb, where x="x" and bs="bs"]  | 
|
1762  | 
have "?I x (usubst p (?st,2*n*m)) = ?I ((?N t / real n + ?N s / real m) /2) p" by (simp only: st[symmetric])}  | 
|
1763  | 
with rinf_uset[OF lp nmi npi px] have "?F" by blast hence "?D" by blast}  | 
|
1764  | 
ultimately show "?D" by blast  | 
|
1765  | 
next  | 
|
1766  | 
assume "?D"  | 
|
1767  | 
  moreover {assume m:"?M" from rminusinf_ex[OF lp m] have "?E" .}
 | 
|
1768  | 
  moreover {assume p: "?P" from rplusinf_ex[OF lp p] have "?E" . }
 | 
|
1769  | 
  moreover {fix t k s l assume "(t,k) \<in> set (uset p)" and "(s,l) \<in> set (uset p)" 
 | 
|
1770  | 
and px:"?I x (usubst p (Add (Mul l t) (Mul k s), 2*k*l))"  | 
|
1771  | 
with uset_l[OF lp] have tnb: "numbound0 t" and np:"real k > 0" and snb: "numbound0 s" and mp:"real l > 0" by auto  | 
|
1772  | 
let ?st = "Add (Mul l t) (Mul k s)"  | 
|
1773  | 
from mult_pos_pos[OF np mp] have mnp: "real (2*k*l) > 0"  | 
|
1774  | 
by (simp add: mult_commute)  | 
|
1775  | 
from tnb snb have st_nb: "numbound0 ?st" by simp  | 
|
1776  | 
from usubst_I[OF lp mnp st_nb, where bs="bs"] px have "?E" by auto}  | 
|
1777  | 
ultimately show "?E" by blast  | 
|
1778  | 
qed  | 
|
1779  | 
||
1780  | 
||
1781  | 
(* Implement the right hand side of Ferrante and Rackoff's Theorem. *)  | 
|
1782  | 
constdefs ferrack:: "fm \<Rightarrow> fm"  | 
|
1783  | 
"ferrack p \<equiv> (let p' = rlfm (simpfm p); mp = minusinf p'; pp = plusinf p'  | 
|
1784  | 
in if (mp = T \<or> pp = T) then T else  | 
|
1785  | 
(let U = remdps(map simp_num_pair  | 
|
1786  | 
(map (\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m))  | 
|
1787  | 
(alluopairs (uset p'))))  | 
|
1788  | 
in decr (disj mp (disj pp (evaldjf (simpfm o (usubst p')) U)))))"  | 
|
1789  | 
||
1790  | 
lemma uset_cong_aux:  | 
|
1791  | 
assumes Ul: "\<forall> (t,n) \<in> set U. numbound0 t \<and> n >0"  | 
|
1792  | 
shows "((\<lambda> (t,n). Inum (x#bs) t /real n) ` (set (map (\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)) (alluopairs U)))) = ((\<lambda> ((t,n),(s,m)). (Inum (x#bs) t /real n + Inum (x#bs) s /real m)/2) ` (set U \<times> set U))"  | 
|
1793  | 
(is "?lhs = ?rhs")  | 
|
1794  | 
proof(auto)  | 
|
1795  | 
fix t n s m  | 
|
1796  | 
assume "((t,n),(s,m)) \<in> set (alluopairs U)"  | 
|
1797  | 
hence th: "((t,n),(s,m)) \<in> (set U \<times> set U)"  | 
|
1798  | 
using alluopairs_set1[where xs="U"] by blast  | 
|
1799  | 
let ?N = "\<lambda> t. Inum (x#bs) t"  | 
|
1800  | 
let ?st= "Add (Mul m t) (Mul n s)"  | 
|
1801  | 
from Ul th have mnz: "m \<noteq> 0" by auto  | 
|
1802  | 
from Ul th have nnz: "n \<noteq> 0" by auto  | 
|
1803  | 
have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)"  | 
|
1804  | 
using mnz nnz by (simp add: algebra_simps add_divide_distrib)  | 
|
1805  | 
||
1806  | 
thus "(real m * Inum (x # bs) t + real n * Inum (x # bs) s) /  | 
|
1807  | 
(2 * real n * real m)  | 
|
1808  | 
\<in> (\<lambda>((t, n), s, m).  | 
|
1809  | 
(Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2) `  | 
|
1810  | 
(set U \<times> set U)"using mnz nnz th  | 
|
1811  | 
apply (auto simp add: th add_divide_distrib algebra_simps split_def image_def)  | 
|
1812  | 
by (rule_tac x="(s,m)" in bexI,simp_all)  | 
|
1813  | 
(rule_tac x="(t,n)" in bexI,simp_all)  | 
|
1814  | 
next  | 
|
1815  | 
fix t n s m  | 
|
1816  | 
assume tnU: "(t,n) \<in> set U" and smU:"(s,m) \<in> set U"  | 
|
1817  | 
let ?N = "\<lambda> t. Inum (x#bs) t"  | 
|
1818  | 
let ?st= "Add (Mul m t) (Mul n s)"  | 
|
1819  | 
from Ul smU have mnz: "m \<noteq> 0" by auto  | 
|
1820  | 
from Ul tnU have nnz: "n \<noteq> 0" by auto  | 
|
1821  | 
have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)"  | 
|
1822  | 
using mnz nnz by (simp add: algebra_simps add_divide_distrib)  | 
|
1823  | 
let ?P = "\<lambda> (t',n') (s',m'). (Inum (x # bs) t / real n + Inum (x # bs) s / real m)/2 = (Inum (x # bs) t' / real n' + Inum (x # bs) s' / real m')/2"  | 
|
1824  | 
have Pc:"\<forall> a b. ?P a b = ?P b a"  | 
|
1825  | 
by auto  | 
|
1826  | 
from Ul alluopairs_set1 have Up:"\<forall> ((t,n),(s,m)) \<in> set (alluopairs U). n \<noteq> 0 \<and> m \<noteq> 0" by blast  | 
|
1827  | 
from alluopairs_ex[OF Pc, where xs="U"] tnU smU  | 
|
1828  | 
have th':"\<exists> ((t',n'),(s',m')) \<in> set (alluopairs U). ?P (t',n') (s',m')"  | 
|
1829  | 
by blast  | 
|
1830  | 
then obtain t' n' s' m' where ts'_U: "((t',n'),(s',m')) \<in> set (alluopairs U)"  | 
|
1831  | 
and Pts': "?P (t',n') (s',m')" by blast  | 
|
1832  | 
from ts'_U Up have mnz': "m' \<noteq> 0" and nnz': "n'\<noteq> 0" by auto  | 
|
1833  | 
let ?st' = "Add (Mul m' t') (Mul n' s')"  | 
|
1834  | 
have st': "(?N t' / real n' + ?N s' / real m')/2 = ?N ?st' / real (2*n'*m')"  | 
|
1835  | 
using mnz' nnz' by (simp add: algebra_simps add_divide_distrib)  | 
|
1836  | 
from Pts' have  | 
|
1837  | 
"(Inum (x # bs) t / real n + Inum (x # bs) s / real m)/2 = (Inum (x # bs) t' / real n' + Inum (x # bs) s' / real m')/2" by simp  | 
|
1838  | 
also have "\<dots> = ((\<lambda>(t, n). Inum (x # bs) t / real n) ((\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) ((t',n'),(s',m'))))" by (simp add: st')  | 
|
1839  | 
finally show "(Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2  | 
|
1840  | 
\<in> (\<lambda>(t, n). Inum (x # bs) t / real n) `  | 
|
1841  | 
(\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) `  | 
|
1842  | 
set (alluopairs U)"  | 
|
1843  | 
using ts'_U by blast  | 
|
1844  | 
qed  | 
|
1845  | 
||
1846  | 
lemma uset_cong:  | 
|
1847  | 
assumes lp: "isrlfm p"  | 
|
1848  | 
and UU': "((\<lambda> (t,n). Inum (x#bs) t /real n) ` U') = ((\<lambda> ((t,n),(s,m)). (Inum (x#bs) t /real n + Inum (x#bs) s /real m)/2) ` (U \<times> U))" (is "?f ` U' = ?g ` (U\<times>U)")  | 
|
1849  | 
and U: "\<forall> (t,n) \<in> U. numbound0 t \<and> n > 0"  | 
|
1850  | 
and U': "\<forall> (t,n) \<in> U'. numbound0 t \<and> n > 0"  | 
|
1851  | 
shows "(\<exists> (t,n) \<in> U. \<exists> (s,m) \<in> U. Ifm (x#bs) (usubst p (Add (Mul m t) (Mul n s),2*n*m))) = (\<exists> (t,n) \<in> U'. Ifm (x#bs) (usubst p (t,n)))"  | 
|
1852  | 
(is "?lhs = ?rhs")  | 
|
1853  | 
proof  | 
|
1854  | 
assume ?lhs  | 
|
1855  | 
then obtain t n s m where tnU: "(t,n) \<in> U" and smU:"(s,m) \<in> U" and  | 
|
1856  | 
Pst: "Ifm (x#bs) (usubst p (Add (Mul m t) (Mul n s),2*n*m))" by blast  | 
|
1857  | 
let ?N = "\<lambda> t. Inum (x#bs) t"  | 
|
1858  | 
from tnU smU U have tnb: "numbound0 t" and np: "n > 0"  | 
|
1859  | 
and snb: "numbound0 s" and mp:"m > 0" by auto  | 
|
1860  | 
let ?st= "Add (Mul m t) (Mul n s)"  | 
|
1861  | 
from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0"  | 
|
1862  | 
by (simp add: mult_commute real_of_int_mult[symmetric] del: real_of_int_mult)  | 
|
1863  | 
from tnb snb have stnb: "numbound0 ?st" by simp  | 
|
1864  | 
have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)"  | 
|
1865  | 
using mp np by (simp add: algebra_simps add_divide_distrib)  | 
|
1866  | 
from tnU smU UU' have "?g ((t,n),(s,m)) \<in> ?f ` U'" by blast  | 
|
1867  | 
hence "\<exists> (t',n') \<in> U'. ?g ((t,n),(s,m)) = ?f (t',n')"  | 
|
1868  | 
by auto (rule_tac x="(a,b)" in bexI, auto)  | 
|
1869  | 
then obtain t' n' where tnU': "(t',n') \<in> U'" and th: "?g ((t,n),(s,m)) = ?f (t',n')" by blast  | 
|
1870  | 
from U' tnU' have tnb': "numbound0 t'" and np': "real n' > 0" by auto  | 
|
1871  | 
from usubst_I[OF lp mnp stnb, where bs="bs" and x="x"] Pst  | 
|
1872  | 
have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 * n * m) # bs) p" by simp  | 
|
1873  | 
from conjunct1[OF usubst_I[OF lp np' tnb', where bs="bs" and x="x"], symmetric] th[simplified split_def fst_conv snd_conv,symmetric] Pst2[simplified st[symmetric]]  | 
|
1874  | 
have "Ifm (x # bs) (usubst p (t', n')) " by (simp only: st)  | 
|
1875  | 
then show ?rhs using tnU' by auto  | 
|
1876  | 
next  | 
|
1877  | 
assume ?rhs  | 
|
1878  | 
then obtain t' n' where tnU': "(t',n') \<in> U'" and Pt': "Ifm (x # bs) (usubst p (t', n'))"  | 
|
1879  | 
by blast  | 
|
1880  | 
from tnU' UU' have "?f (t',n') \<in> ?g ` (U\<times>U)" by blast  | 
|
1881  | 
hence "\<exists> ((t,n),(s,m)) \<in> (U\<times>U). ?f (t',n') = ?g ((t,n),(s,m))"  | 
|
1882  | 
by auto (rule_tac x="(a,b)" in bexI, auto)  | 
|
1883  | 
then obtain t n s m where tnU: "(t,n) \<in> U" and smU:"(s,m) \<in> U" and  | 
|
1884  | 
th: "?f (t',n') = ?g((t,n),(s,m)) "by blast  | 
|
1885  | 
let ?N = "\<lambda> t. Inum (x#bs) t"  | 
|
1886  | 
from tnU smU U have tnb: "numbound0 t" and np: "n > 0"  | 
|
1887  | 
and snb: "numbound0 s" and mp:"m > 0" by auto  | 
|
1888  | 
let ?st= "Add (Mul m t) (Mul n s)"  | 
|
1889  | 
from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0"  | 
|
1890  | 
by (simp add: mult_commute real_of_int_mult[symmetric] del: real_of_int_mult)  | 
|
1891  | 
from tnb snb have stnb: "numbound0 ?st" by simp  | 
|
1892  | 
have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)"  | 
|
1893  | 
using mp np by (simp add: algebra_simps add_divide_distrib)  | 
|
1894  | 
from U' tnU' have tnb': "numbound0 t'" and np': "real n' > 0" by auto  | 
|
1895  | 
from usubst_I[OF lp np' tnb', where bs="bs" and x="x",simplified th[simplified split_def fst_conv snd_conv] st] Pt'  | 
|
1896  | 
have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 * n * m) # bs) p" by simp  | 
|
1897  | 
with usubst_I[OF lp mnp stnb, where x="x" and bs="bs"] tnU smU show ?lhs by blast  | 
|
1898  | 
qed  | 
|
1899  | 
||
1900  | 
lemma ferrack:  | 
|
1901  | 
assumes qf: "qfree p"  | 
|
1902  | 
shows "qfree (ferrack p) \<and> ((Ifm bs (ferrack p)) = (\<exists> x. Ifm (x#bs) p))"  | 
|
1903  | 
(is "_ \<and> (?rhs = ?lhs)")  | 
|
1904  | 
proof-  | 
|
1905  | 
let ?I = "\<lambda> x p. Ifm (x#bs) p"  | 
|
1906  | 
fix x  | 
|
1907  | 
let ?N = "\<lambda> t. Inum (x#bs) t"  | 
|
1908  | 
let ?q = "rlfm (simpfm p)"  | 
|
1909  | 
let ?U = "uset ?q"  | 
|
1910  | 
let ?Up = "alluopairs ?U"  | 
|
1911  | 
let ?g = "\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)"  | 
|
1912  | 
let ?S = "map ?g ?Up"  | 
|
1913  | 
let ?SS = "map simp_num_pair ?S"  | 
|
1914  | 
let ?Y = "remdps ?SS"  | 
|
1915  | 
let ?f= "(\<lambda> (t,n). ?N t / real n)"  | 
|
1916  | 
let ?h = "\<lambda> ((t,n),(s,m)). (?N t/real n + ?N s/ real m) /2"  | 
|
1917  | 
let ?F = "\<lambda> p. \<exists> a \<in> set (uset p). \<exists> b \<in> set (uset p). ?I x (usubst p (?g(a,b)))"  | 
|
1918  | 
let ?ep = "evaldjf (simpfm o (usubst ?q)) ?Y"  | 
|
1919  | 
from rlfm_I[OF simpfm_qf[OF qf]] have lq: "isrlfm ?q" by blast  | 
|
1920  | 
from alluopairs_set1[where xs="?U"] have UpU: "set ?Up \<le> (set ?U \<times> set ?U)" by simp  | 
|
1921  | 
from uset_l[OF lq] have U_l: "\<forall> (t,n) \<in> set ?U. numbound0 t \<and> n > 0" .  | 
|
1922  | 
from U_l UpU  | 
|
1923  | 
have "\<forall> ((t,n),(s,m)) \<in> set ?Up. numbound0 t \<and> n> 0 \<and> numbound0 s \<and> m > 0" by auto  | 
|
1924  | 
hence Snb: "\<forall> (t,n) \<in> set ?S. numbound0 t \<and> n > 0 "  | 
|
1925  | 
by (auto simp add: mult_pos_pos)  | 
|
1926  | 
have Y_l: "\<forall> (t,n) \<in> set ?Y. numbound0 t \<and> n > 0"  | 
|
1927  | 
proof-  | 
|
1928  | 
    { fix t n assume tnY: "(t,n) \<in> set ?Y" 
 | 
|
1929  | 
hence "(t,n) \<in> set ?SS" by simp  | 
|
1930  | 
hence "\<exists> (t',n') \<in> set ?S. simp_num_pair (t',n') = (t,n)"  | 
|
1931  | 
by (auto simp add: split_def) (rule_tac x="((aa,ba),(ab,bb))" in bexI, simp_all)  | 
|
1932  | 
then obtain t' n' where tn'S: "(t',n') \<in> set ?S" and tns: "simp_num_pair (t',n') = (t,n)" by blast  | 
|
1933  | 
from tn'S Snb have tnb: "numbound0 t'" and np: "n' > 0" by auto  | 
|
1934  | 
from simp_num_pair_l[OF tnb np tns]  | 
|
1935  | 
have "numbound0 t \<and> n > 0" . }  | 
|
1936  | 
thus ?thesis by blast  | 
|
1937  | 
qed  | 
|
1938  | 
||
1939  | 
have YU: "(?f ` set ?Y) = (?h ` (set ?U \<times> set ?U))"  | 
|
1940  | 
proof-  | 
|
1941  | 
from simp_num_pair_ci[where bs="x#bs"] have  | 
|
1942  | 
"\<forall>x. (?f o simp_num_pair) x = ?f x" by auto  | 
|
1943  | 
hence th: "?f o simp_num_pair = ?f" using ext by blast  | 
|
1944  | 
have "(?f ` set ?Y) = ((?f o simp_num_pair) ` set ?S)" by (simp add: image_compose)  | 
|
1945  | 
also have "\<dots> = (?f ` set ?S)" by (simp add: th)  | 
|
1946  | 
also have "\<dots> = ((?f o ?g) ` set ?Up)"  | 
|
1947  | 
by (simp only: set_map o_def image_compose[symmetric])  | 
|
1948  | 
also have "\<dots> = (?h ` (set ?U \<times> set ?U))"  | 
|
1949  | 
using uset_cong_aux[OF U_l, where x="x" and bs="bs", simplified set_map image_compose[symmetric]] by blast  | 
|
1950  | 
finally show ?thesis .  | 
|
1951  | 
qed  | 
|
1952  | 
have "\<forall> (t,n) \<in> set ?Y. bound0 (simpfm (usubst ?q (t,n)))"  | 
|
1953  | 
proof-  | 
|
1954  | 
    { fix t n assume tnY: "(t,n) \<in> set ?Y"
 | 
|
1955  | 
with Y_l have tnb: "numbound0 t" and np: "real n > 0" by auto  | 
|
1956  | 
from usubst_I[OF lq np tnb]  | 
|
1957  | 
have "bound0 (usubst ?q (t,n))" by simp hence "bound0 (simpfm (usubst ?q (t,n)))"  | 
|
1958  | 
using simpfm_bound0 by simp}  | 
|
1959  | 
thus ?thesis by blast  | 
|
1960  | 
qed  | 
|
1961  | 
hence ep_nb: "bound0 ?ep" using evaldjf_bound0[where xs="?Y" and f="simpfm o (usubst ?q)"] by auto  | 
|
1962  | 
let ?mp = "minusinf ?q"  | 
|
1963  | 
let ?pp = "plusinf ?q"  | 
|
1964  | 
let ?M = "?I x ?mp"  | 
|
1965  | 
let ?P = "?I x ?pp"  | 
|
1966  | 
let ?res = "disj ?mp (disj ?pp ?ep)"  | 
|
1967  | 
from rminusinf_bound0[OF lq] rplusinf_bound0[OF lq] ep_nb  | 
|
1968  | 
have nbth: "bound0 ?res" by auto  | 
|
1969  | 
||
1970  | 
from conjunct1[OF rlfm_I[OF simpfm_qf[OF qf]]] simpfm  | 
|
1971  | 
||
1972  | 
have th: "?lhs = (\<exists> x. ?I x ?q)" by auto  | 
|
1973  | 
from th fr_equsubst[OF lq, where bs="bs" and x="x"] have lhfr: "?lhs = (?M \<or> ?P \<or> ?F ?q)"  | 
|
1974  | 
by (simp only: split_def fst_conv snd_conv)  | 
|
1975  | 
also have "\<dots> = (?M \<or> ?P \<or> (\<exists> (t,n) \<in> set ?Y. ?I x (simpfm (usubst ?q (t,n)))))"  | 
|
1976  | 
using uset_cong[OF lq YU U_l Y_l] by (simp only: split_def fst_conv snd_conv simpfm)  | 
|
1977  | 
also have "\<dots> = (Ifm (x#bs) ?res)"  | 
|
1978  | 
using evaldjf_ex[where ps="?Y" and bs = "x#bs" and f="simpfm o (usubst ?q)",symmetric]  | 
|
1979  | 
by (simp add: split_def pair_collapse)  | 
|
1980  | 
finally have lheq: "?lhs = (Ifm bs (decr ?res))" using decr[OF nbth] by blast  | 
|
1981  | 
hence lr: "?lhs = ?rhs" apply (unfold ferrack_def Let_def)  | 
|
1982  | 
by (cases "?mp = T \<or> ?pp = T", auto) (simp add: disj_def)+  | 
|
1983  | 
from decr_qf[OF nbth] have "qfree (ferrack p)" by (auto simp add: Let_def ferrack_def)  | 
|
1984  | 
with lr show ?thesis by blast  | 
|
1985  | 
qed  | 
|
1986  | 
||
1987  | 
definition linrqe:: "fm \<Rightarrow> fm" where  | 
|
1988  | 
"linrqe p = qelim (prep p) ferrack"  | 
|
1989  | 
||
1990  | 
theorem linrqe: "Ifm bs (linrqe p) = Ifm bs p \<and> qfree (linrqe p)"  | 
|
1991  | 
using ferrack qelim_ci prep  | 
|
1992  | 
unfolding linrqe_def by auto  | 
|
1993  | 
||
1994  | 
definition ferrack_test :: "unit \<Rightarrow> fm" where  | 
|
1995  | 
"ferrack_test u = linrqe (A (A (Imp (Lt (Sub (Bound 1) (Bound 0)))  | 
|
1996  | 
(E (Eq (Sub (Add (Bound 0) (Bound 2)) (Bound 1)))))))"  | 
|
1997  | 
||
| 
30684
 
c98a64746c69
suddenly infix identifier oo occurs in generated code
 
haftmann 
parents: 
30439 
diff
changeset
 | 
1998  | 
code_reserved SML oo  | 
| 
 
c98a64746c69
suddenly infix identifier oo occurs in generated code
 
haftmann 
parents: 
30439 
diff
changeset
 | 
1999  | 
|
| 29789 | 2000  | 
ML {* @{code ferrack_test} () *}
 | 
2001  | 
||
2002  | 
oracle linr_oracle = {*
 | 
|
2003  | 
let  | 
|
2004  | 
||
2005  | 
fun num_of_term vs (t as Free (xn, xT)) = (case AList.lookup (op =) vs t  | 
|
2006  | 
of NONE => error "Variable not found in the list!"  | 
|
2007  | 
      | SOME n => @{code Bound} n)
 | 
|
2008  | 
  | num_of_term vs @{term "real (0::int)"} = @{code C} 0
 | 
|
2009  | 
  | num_of_term vs @{term "real (1::int)"} = @{code C} 1
 | 
|
2010  | 
  | num_of_term vs @{term "0::real"} = @{code C} 0
 | 
|
2011  | 
  | num_of_term vs @{term "1::real"} = @{code C} 1
 | 
|
2012  | 
  | num_of_term vs (Bound i) = @{code Bound} i
 | 
|
2013  | 
  | num_of_term vs (@{term "uminus :: real \<Rightarrow> real"} $ t') = @{code Neg} (num_of_term vs t')
 | 
|
2014  | 
  | num_of_term vs (@{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) = @{code Add} (num_of_term vs t1, num_of_term vs t2)
 | 
|
2015  | 
  | num_of_term vs (@{term "op - :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) = @{code Sub} (num_of_term vs t1, num_of_term vs t2)
 | 
|
2016  | 
  | num_of_term vs (@{term "op * :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) = (case (num_of_term vs t1)
 | 
|
2017  | 
     of @{code C} i => @{code Mul} (i, num_of_term vs t2)
 | 
|
2018  | 
| _ => error "num_of_term: unsupported Multiplication")  | 
|
2019  | 
  | num_of_term vs (@{term "real :: int \<Rightarrow> real"} $ (@{term "number_of :: int \<Rightarrow> int"} $ t')) = @{code C} (HOLogic.dest_numeral t')
 | 
|
2020  | 
  | num_of_term vs (@{term "number_of :: int \<Rightarrow> real"} $ t') = @{code C} (HOLogic.dest_numeral t')
 | 
|
2021  | 
  | num_of_term vs t = error ("num_of_term: unknown term " ^ Syntax.string_of_term @{context} t);
 | 
|
2022  | 
||
2023  | 
fun fm_of_term vs @{term True} = @{code T}
 | 
|
2024  | 
  | fm_of_term vs @{term False} = @{code F}
 | 
|
2025  | 
  | fm_of_term vs (@{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) = @{code Lt} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
 | 
|
2026  | 
  | fm_of_term vs (@{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) = @{code Le} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
 | 
|
2027  | 
  | fm_of_term vs (@{term "op = :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) = @{code Eq} (@{code Sub} (num_of_term vs t1, num_of_term vs t2)) 
 | 
|
2028  | 
  | fm_of_term vs (@{term "op \<longleftrightarrow> :: bool \<Rightarrow> bool \<Rightarrow> bool"} $ t1 $ t2) = @{code Iff} (fm_of_term vs t1, fm_of_term vs t2)
 | 
|
2029  | 
  | fm_of_term vs (@{term "op &"} $ t1 $ t2) = @{code And} (fm_of_term vs t1, fm_of_term vs t2)
 | 
|
2030  | 
  | fm_of_term vs (@{term "op |"} $ t1 $ t2) = @{code Or} (fm_of_term vs t1, fm_of_term vs t2)
 | 
|
2031  | 
  | fm_of_term vs (@{term "op -->"} $ t1 $ t2) = @{code Imp} (fm_of_term vs t1, fm_of_term vs t2)
 | 
|
2032  | 
  | fm_of_term vs (@{term "Not"} $ t') = @{code NOT} (fm_of_term vs t')
 | 
|
2033  | 
  | fm_of_term vs (Const ("Ex", _) $ Abs (xn, xT, p)) =
 | 
|
2034  | 
      @{code E} (fm_of_term (map (fn (v, n) => (v, n + 1)) vs) p)
 | 
|
2035  | 
  | fm_of_term vs (Const ("All", _) $ Abs (xn, xT, p)) =
 | 
|
2036  | 
      @{code A} (fm_of_term (map (fn (v, n) => (v, n + 1)) vs) p)
 | 
|
2037  | 
  | fm_of_term vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term @{context} t);
 | 
|
2038  | 
||
2039  | 
fun term_of_num vs (@{code C} i) = @{term "real :: int \<Rightarrow> real"} $ HOLogic.mk_number HOLogic.intT i
 | 
|
2040  | 
  | term_of_num vs (@{code Bound} n) = fst (the (find_first (fn (_, m) => n = m) vs))
 | 
|
2041  | 
  | term_of_num vs (@{code Neg} t') = @{term "uminus :: real \<Rightarrow> real"} $ term_of_num vs t'
 | 
|
2042  | 
  | term_of_num vs (@{code Add} (t1, t2)) = @{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $
 | 
|
2043  | 
term_of_num vs t1 $ term_of_num vs t2  | 
|
2044  | 
  | term_of_num vs (@{code Sub} (t1, t2)) = @{term "op - :: real \<Rightarrow> real \<Rightarrow> real"} $
 | 
|
2045  | 
term_of_num vs t1 $ term_of_num vs t2  | 
|
2046  | 
  | term_of_num vs (@{code Mul} (i, t2)) = @{term "op * :: real \<Rightarrow> real \<Rightarrow> real"} $
 | 
|
2047  | 
      term_of_num vs (@{code C} i) $ term_of_num vs t2
 | 
|
2048  | 
  | term_of_num vs (@{code CN} (n, i, t)) = term_of_num vs (@{code Add} (@{code Mul} (i, @{code Bound} n), t));
 | 
|
2049  | 
||
2050  | 
fun term_of_fm vs @{code T} = HOLogic.true_const 
 | 
|
2051  | 
  | term_of_fm vs @{code F} = HOLogic.false_const
 | 
|
2052  | 
  | term_of_fm vs (@{code Lt} t) = @{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | 
|
2053  | 
      term_of_num vs t $ @{term "0::real"}
 | 
|
2054  | 
  | term_of_fm vs (@{code Le} t) = @{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | 
|
2055  | 
      term_of_num vs t $ @{term "0::real"}
 | 
|
2056  | 
  | term_of_fm vs (@{code Gt} t) = @{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | 
|
2057  | 
      @{term "0::real"} $ term_of_num vs t
 | 
|
2058  | 
  | term_of_fm vs (@{code Ge} t) = @{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | 
|
2059  | 
      @{term "0::real"} $ term_of_num vs t
 | 
|
2060  | 
  | term_of_fm vs (@{code Eq} t) = @{term "op = :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | 
|
2061  | 
      term_of_num vs t $ @{term "0::real"}
 | 
|
2062  | 
  | term_of_fm vs (@{code NEq} t) = term_of_fm vs (@{code NOT} (@{code Eq} t))
 | 
|
2063  | 
  | term_of_fm vs (@{code NOT} t') = HOLogic.Not $ term_of_fm vs t'
 | 
|
2064  | 
  | term_of_fm vs (@{code And} (t1, t2)) = HOLogic.conj $ term_of_fm vs t1 $ term_of_fm vs t2
 | 
|
2065  | 
  | term_of_fm vs (@{code Or} (t1, t2)) = HOLogic.disj $ term_of_fm vs t1 $ term_of_fm vs t2
 | 
|
2066  | 
  | term_of_fm vs (@{code Imp}  (t1, t2)) = HOLogic.imp $ term_of_fm vs t1 $ term_of_fm vs t2
 | 
|
2067  | 
  | term_of_fm vs (@{code Iff} (t1, t2)) = @{term "op \<longleftrightarrow> :: bool \<Rightarrow> bool \<Rightarrow> bool"} $
 | 
|
2068  | 
term_of_fm vs t1 $ term_of_fm vs t2  | 
|
2069  | 
| term_of_fm vs _ = error "If this is raised, Isabelle/HOL or generate_code is inconsistent.";  | 
|
2070  | 
||
2071  | 
in fn ct =>  | 
|
2072  | 
let  | 
|
2073  | 
val thy = Thm.theory_of_cterm ct;  | 
|
2074  | 
val t = Thm.term_of ct;  | 
|
2075  | 
val fs = OldTerm.term_frees t;  | 
|
2076  | 
val vs = fs ~~ (0 upto (length fs - 1));  | 
|
2077  | 
    val res = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, term_of_fm vs (@{code linrqe} (fm_of_term vs t))));
 | 
|
2078  | 
in Thm.cterm_of thy res end  | 
|
2079  | 
end;  | 
|
2080  | 
*}  | 
|
2081  | 
||
2082  | 
use "ferrack_tac.ML"  | 
|
2083  | 
setup Ferrack_Tac.setup  | 
|
2084  | 
||
2085  | 
lemma  | 
|
2086  | 
fixes x :: real  | 
|
2087  | 
shows "2 * x \<le> 2 * x \<and> 2 * x \<le> 2 * x + 1"  | 
|
2088  | 
apply rferrack  | 
|
2089  | 
done  | 
|
2090  | 
||
2091  | 
lemma  | 
|
2092  | 
fixes x :: real  | 
|
2093  | 
shows "\<exists>y \<le> x. x = y + 1"  | 
|
2094  | 
apply rferrack  | 
|
2095  | 
done  | 
|
2096  | 
||
2097  | 
lemma  | 
|
2098  | 
fixes x :: real  | 
|
2099  | 
shows "\<not> (\<exists>z. x + z = x + z + 1)"  | 
|
2100  | 
apply rferrack  | 
|
2101  | 
done  | 
|
2102  | 
||
2103  | 
end  |