| author | blanchet | 
| Tue, 22 Jun 2010 13:17:59 +0200 | |
| changeset 37497 | 71fdbffe3275 | 
| parent 35849 | b5522b51cb1e | 
| child 40786 | 0a54cfc9add3 | 
| permissions | -rw-r--r-- | 
| 14706 | 1 | (* Title: HOL/Algebra/FiniteProduct.thy | 
| 13936 | 2 | Author: Clemens Ballarin, started 19 November 2002 | 
| 3 | ||
| 4 | This file is largely based on HOL/Finite_Set.thy. | |
| 5 | *) | |
| 6 | ||
| 35849 | 7 | theory FiniteProduct | 
| 8 | imports Group | |
| 9 | begin | |
| 13936 | 10 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27699diff
changeset | 11 | subsection {* Product Operator for Commutative Monoids *}
 | 
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 12 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27699diff
changeset | 13 | subsubsection {* Inductive Definition of a Relation for Products over Sets *}
 | 
| 13936 | 14 | |
| 14750 | 15 | text {* Instantiation of locale @{text LC} of theory @{text Finite_Set} is not
 | 
| 16 | possible, because here we have explicit typing rules like | |
| 17 |   @{text "x \<in> carrier G"}.  We introduce an explicit argument for the domain
 | |
| 14651 | 18 |   @{text D}. *}
 | 
| 13936 | 19 | |
| 23746 | 20 | inductive_set | 
| 13936 | 21 |   foldSetD :: "['a set, 'b => 'a => 'a, 'a] => ('b set * 'a) set"
 | 
| 23746 | 22 | for D :: "'a set" and f :: "'b => 'a => 'a" and e :: 'a | 
| 23 | where | |
| 14750 | 24 |     emptyI [intro]: "e \<in> D ==> ({}, e) \<in> foldSetD D f e"
 | 
| 23746 | 25 | | insertI [intro]: "[| x ~: A; f x y \<in> D; (A, y) \<in> foldSetD D f e |] ==> | 
| 14750 | 26 | (insert x A, f x y) \<in> foldSetD D f e" | 
| 13936 | 27 | |
| 14750 | 28 | inductive_cases empty_foldSetDE [elim!]: "({}, x) \<in> foldSetD D f e"
 | 
| 13936 | 29 | |
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 30 | definition | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 31 | foldD :: "['a set, 'b => 'a => 'a, 'a, 'b set] => 'a" | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 32 | where "foldD D f e A = (THE x. (A, x) \<in> foldSetD D f e)" | 
| 13936 | 33 | |
| 34 | lemma foldSetD_closed: | |
| 14750 | 35 | "[| (A, z) \<in> foldSetD D f e ; e \<in> D; !!x y. [| x \<in> A; y \<in> D |] ==> f x y \<in> D | 
| 36 | |] ==> z \<in> D"; | |
| 23746 | 37 | by (erule foldSetD.cases) auto | 
| 13936 | 38 | |
| 39 | lemma Diff1_foldSetD: | |
| 14750 | 40 |   "[| (A - {x}, y) \<in> foldSetD D f e; x \<in> A; f x y \<in> D |] ==>
 | 
| 41 | (A, f x y) \<in> foldSetD D f e" | |
| 13936 | 42 | apply (erule insert_Diff [THEN subst], rule foldSetD.intros) | 
| 43 | apply auto | |
| 44 | done | |
| 45 | ||
| 14750 | 46 | lemma foldSetD_imp_finite [simp]: "(A, x) \<in> foldSetD D f e ==> finite A" | 
| 13936 | 47 | by (induct set: foldSetD) auto | 
| 48 | ||
| 49 | lemma finite_imp_foldSetD: | |
| 14750 | 50 | "[| finite A; e \<in> D; !!x y. [| x \<in> A; y \<in> D |] ==> f x y \<in> D |] ==> | 
| 51 | EX x. (A, x) \<in> foldSetD D f e" | |
| 22265 | 52 | proof (induct set: finite) | 
| 13936 | 53 | case empty then show ?case by auto | 
| 54 | next | |
| 15328 | 55 | case (insert x F) | 
| 14750 | 56 | then obtain y where y: "(F, y) \<in> foldSetD D f e" by auto | 
| 57 | with insert have "y \<in> D" by (auto dest: foldSetD_closed) | |
| 58 | with y and insert have "(insert x F, f x y) \<in> foldSetD D f e" | |
| 13936 | 59 | by (intro foldSetD.intros) auto | 
| 60 | then show ?case .. | |
| 61 | qed | |
| 62 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 63 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27699diff
changeset | 64 | text {* Left-Commutative Operations *}
 | 
| 13936 | 65 | |
| 66 | locale LCD = | |
| 67 | fixes B :: "'b set" | |
| 68 | and D :: "'a set" | |
| 69 | and f :: "'b => 'a => 'a" (infixl "\<cdot>" 70) | |
| 70 | assumes left_commute: | |
| 14750 | 71 | "[| x \<in> B; y \<in> B; z \<in> D |] ==> x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" | 
| 72 | and f_closed [simp, intro!]: "!!x y. [| x \<in> B; y \<in> D |] ==> f x y \<in> D" | |
| 13936 | 73 | |
| 74 | lemma (in LCD) foldSetD_closed [dest]: | |
| 14750 | 75 | "(A, z) \<in> foldSetD D f e ==> z \<in> D"; | 
| 23746 | 76 | by (erule foldSetD.cases) auto | 
| 13936 | 77 | |
| 78 | lemma (in LCD) Diff1_foldSetD: | |
| 14750 | 79 |   "[| (A - {x}, y) \<in> foldSetD D f e; x \<in> A; A \<subseteq> B |] ==>
 | 
| 80 | (A, f x y) \<in> foldSetD D f e" | |
| 81 | apply (subgoal_tac "x \<in> B") | |
| 13936 | 82 | prefer 2 apply fast | 
| 83 | apply (erule insert_Diff [THEN subst], rule foldSetD.intros) | |
| 84 | apply auto | |
| 85 | done | |
| 86 | ||
| 87 | lemma (in LCD) foldSetD_imp_finite [simp]: | |
| 14750 | 88 | "(A, x) \<in> foldSetD D f e ==> finite A" | 
| 13936 | 89 | by (induct set: foldSetD) auto | 
| 90 | ||
| 91 | lemma (in LCD) finite_imp_foldSetD: | |
| 14750 | 92 | "[| finite A; A \<subseteq> B; e \<in> D |] ==> EX x. (A, x) \<in> foldSetD D f e" | 
| 22265 | 93 | proof (induct set: finite) | 
| 13936 | 94 | case empty then show ?case by auto | 
| 95 | next | |
| 15328 | 96 | case (insert x F) | 
| 14750 | 97 | then obtain y where y: "(F, y) \<in> foldSetD D f e" by auto | 
| 98 | with insert have "y \<in> D" by auto | |
| 99 | with y and insert have "(insert x F, f x y) \<in> foldSetD D f e" | |
| 13936 | 100 | by (intro foldSetD.intros) auto | 
| 101 | then show ?case .. | |
| 102 | qed | |
| 103 | ||
| 104 | lemma (in LCD) foldSetD_determ_aux: | |
| 14750 | 105 | "e \<in> D ==> \<forall>A x. A \<subseteq> B & card A < n --> (A, x) \<in> foldSetD D f e --> | 
| 106 | (\<forall>y. (A, y) \<in> foldSetD D f e --> y = x)" | |
| 13936 | 107 | apply (induct n) | 
| 108 | apply (auto simp add: less_Suc_eq) (* slow *) | |
| 109 | apply (erule foldSetD.cases) | |
| 110 | apply blast | |
| 111 | apply (erule foldSetD.cases) | |
| 112 | apply blast | |
| 113 | apply clarify | |
| 114 |   txt {* force simplification of @{text "card A < card (insert ...)"}. *}
 | |
| 115 | apply (erule rev_mp) | |
| 116 | apply (simp add: less_Suc_eq_le) | |
| 117 | apply (rule impI) | |
| 23746 | 118 | apply (rename_tac xa Aa ya xb Ab yb, case_tac "xa = xb") | 
| 13936 | 119 | apply (subgoal_tac "Aa = Ab") | 
| 120 | prefer 2 apply (blast elim!: equalityE) | |
| 121 | apply blast | |
| 122 |   txt {* case @{prop "xa \<notin> xb"}. *}
 | |
| 14750 | 123 |   apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb \<in> Aa & xa \<in> Ab")
 | 
| 13936 | 124 | prefer 2 apply (blast elim!: equalityE) | 
| 125 | apply clarify | |
| 126 |   apply (subgoal_tac "Aa = insert xb Ab - {xa}")
 | |
| 127 | prefer 2 apply blast | |
| 14750 | 128 | apply (subgoal_tac "card Aa \<le> card Ab") | 
| 13936 | 129 | prefer 2 | 
| 130 | apply (rule Suc_le_mono [THEN subst]) | |
| 131 | apply (simp add: card_Suc_Diff1) | |
| 132 |   apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE])
 | |
| 133 | apply (blast intro: foldSetD_imp_finite finite_Diff) | |
| 134 | apply best | |
| 135 | apply assumption | |
| 136 | apply (frule (1) Diff1_foldSetD) | |
| 137 | apply best | |
| 138 | apply (subgoal_tac "ya = f xb x") | |
| 139 | prefer 2 | |
| 14750 | 140 | apply (subgoal_tac "Aa \<subseteq> B") | 
| 13936 | 141 | prefer 2 apply best (* slow *) | 
| 142 | apply (blast del: equalityCE) | |
| 14750 | 143 |   apply (subgoal_tac "(Ab - {xa}, x) \<in> foldSetD D f e")
 | 
| 13936 | 144 | prefer 2 apply simp | 
| 145 | apply (subgoal_tac "yb = f xa x") | |
| 146 | prefer 2 | |
| 147 | apply (blast del: equalityCE dest: Diff1_foldSetD) | |
| 148 | apply (simp (no_asm_simp)) | |
| 149 | apply (rule left_commute) | |
| 150 | apply assumption | |
| 151 | apply best (* slow *) | |
| 152 | apply best | |
| 153 | done | |
| 154 | ||
| 155 | lemma (in LCD) foldSetD_determ: | |
| 14750 | 156 | "[| (A, x) \<in> foldSetD D f e; (A, y) \<in> foldSetD D f e; e \<in> D; A \<subseteq> B |] | 
| 13936 | 157 | ==> y = x" | 
| 158 | by (blast intro: foldSetD_determ_aux [rule_format]) | |
| 159 | ||
| 160 | lemma (in LCD) foldD_equality: | |
| 14750 | 161 | "[| (A, y) \<in> foldSetD D f e; e \<in> D; A \<subseteq> B |] ==> foldD D f e A = y" | 
| 13936 | 162 | by (unfold foldD_def) (blast intro: foldSetD_determ) | 
| 163 | ||
| 164 | lemma foldD_empty [simp]: | |
| 14750 | 165 |   "e \<in> D ==> foldD D f e {} = e"
 | 
| 13936 | 166 | by (unfold foldD_def) blast | 
| 167 | ||
| 168 | lemma (in LCD) foldD_insert_aux: | |
| 14750 | 169 | "[| x ~: A; x \<in> B; e \<in> D; A \<subseteq> B |] ==> | 
| 170 | ((insert x A, v) \<in> foldSetD D f e) = | |
| 171 | (EX y. (A, y) \<in> foldSetD D f e & v = f x y)" | |
| 13936 | 172 | apply auto | 
| 173 | apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE]) | |
| 174 | apply (fastsimp dest: foldSetD_imp_finite) | |
| 175 | apply assumption | |
| 176 | apply assumption | |
| 177 | apply (blast intro: foldSetD_determ) | |
| 178 | done | |
| 179 | ||
| 180 | lemma (in LCD) foldD_insert: | |
| 14750 | 181 | "[| finite A; x ~: A; x \<in> B; e \<in> D; A \<subseteq> B |] ==> | 
| 13936 | 182 | foldD D f e (insert x A) = f x (foldD D f e A)" | 
| 183 | apply (unfold foldD_def) | |
| 184 | apply (simp add: foldD_insert_aux) | |
| 185 | apply (rule the_equality) | |
| 186 | apply (auto intro: finite_imp_foldSetD | |
| 187 | cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality) | |
| 188 | done | |
| 189 | ||
| 190 | lemma (in LCD) foldD_closed [simp]: | |
| 14750 | 191 | "[| finite A; e \<in> D; A \<subseteq> B |] ==> foldD D f e A \<in> D" | 
| 22265 | 192 | proof (induct set: finite) | 
| 13936 | 193 | case empty then show ?case by (simp add: foldD_empty) | 
| 194 | next | |
| 195 | case insert then show ?case by (simp add: foldD_insert) | |
| 196 | qed | |
| 197 | ||
| 198 | lemma (in LCD) foldD_commute: | |
| 14750 | 199 | "[| finite A; x \<in> B; e \<in> D; A \<subseteq> B |] ==> | 
| 13936 | 200 | f x (foldD D f e A) = foldD D f (f x e) A" | 
| 22265 | 201 | apply (induct set: finite) | 
| 13936 | 202 | apply simp | 
| 203 | apply (auto simp add: left_commute foldD_insert) | |
| 204 | done | |
| 205 | ||
| 206 | lemma Int_mono2: | |
| 14750 | 207 | "[| A \<subseteq> C; B \<subseteq> C |] ==> A Int B \<subseteq> C" | 
| 13936 | 208 | by blast | 
| 209 | ||
| 210 | lemma (in LCD) foldD_nest_Un_Int: | |
| 14750 | 211 | "[| finite A; finite C; e \<in> D; A \<subseteq> B; C \<subseteq> B |] ==> | 
| 13936 | 212 | foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A Un C)" | 
| 22265 | 213 | apply (induct set: finite) | 
| 13936 | 214 | apply simp | 
| 215 | apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb | |
| 32693 | 216 | Int_mono2) | 
| 13936 | 217 | done | 
| 218 | ||
| 219 | lemma (in LCD) foldD_nest_Un_disjoint: | |
| 14750 | 220 |   "[| finite A; finite B; A Int B = {}; e \<in> D; A \<subseteq> B; C \<subseteq> B |]
 | 
| 13936 | 221 | ==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A" | 
| 222 | by (simp add: foldD_nest_Un_Int) | |
| 223 | ||
| 224 | -- {* Delete rules to do with @{text foldSetD} relation. *}
 | |
| 225 | ||
| 226 | declare foldSetD_imp_finite [simp del] | |
| 227 | empty_foldSetDE [rule del] | |
| 228 | foldSetD.intros [rule del] | |
| 229 | declare (in LCD) | |
| 230 | foldSetD_closed [rule del] | |
| 231 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 232 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27699diff
changeset | 233 | text {* Commutative Monoids *}
 | 
| 13936 | 234 | |
| 235 | text {*
 | |
| 236 |   We enter a more restrictive context, with @{text "f :: 'a => 'a => 'a"}
 | |
| 237 |   instead of @{text "'b => 'a => 'a"}.
 | |
| 238 | *} | |
| 239 | ||
| 240 | locale ACeD = | |
| 241 | fixes D :: "'a set" | |
| 242 | and f :: "'a => 'a => 'a" (infixl "\<cdot>" 70) | |
| 243 | and e :: 'a | |
| 14750 | 244 | assumes ident [simp]: "x \<in> D ==> x \<cdot> e = x" | 
| 245 | and commute: "[| x \<in> D; y \<in> D |] ==> x \<cdot> y = y \<cdot> x" | |
| 246 | and assoc: "[| x \<in> D; y \<in> D; z \<in> D |] ==> (x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" | |
| 247 | and e_closed [simp]: "e \<in> D" | |
| 248 | and f_closed [simp]: "[| x \<in> D; y \<in> D |] ==> x \<cdot> y \<in> D" | |
| 13936 | 249 | |
| 250 | lemma (in ACeD) left_commute: | |
| 14750 | 251 | "[| x \<in> D; y \<in> D; z \<in> D |] ==> x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" | 
| 13936 | 252 | proof - | 
| 14750 | 253 | assume D: "x \<in> D" "y \<in> D" "z \<in> D" | 
| 13936 | 254 | then have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp add: commute) | 
| 255 | also from D have "... = y \<cdot> (z \<cdot> x)" by (simp add: assoc) | |
| 256 | also from D have "z \<cdot> x = x \<cdot> z" by (simp add: commute) | |
| 257 | finally show ?thesis . | |
| 258 | qed | |
| 259 | ||
| 260 | lemmas (in ACeD) AC = assoc commute left_commute | |
| 261 | ||
| 14750 | 262 | lemma (in ACeD) left_ident [simp]: "x \<in> D ==> e \<cdot> x = x" | 
| 13936 | 263 | proof - | 
| 23350 | 264 | assume "x \<in> D" | 
| 265 | then have "x \<cdot> e = x" by (rule ident) | |
| 266 | with `x \<in> D` show ?thesis by (simp add: commute) | |
| 13936 | 267 | qed | 
| 268 | ||
| 269 | lemma (in ACeD) foldD_Un_Int: | |
| 14750 | 270 | "[| finite A; finite B; A \<subseteq> D; B \<subseteq> D |] ==> | 
| 13936 | 271 | foldD D f e A \<cdot> foldD D f e B = | 
| 272 | foldD D f e (A Un B) \<cdot> foldD D f e (A Int B)" | |
| 22265 | 273 | apply (induct set: finite) | 
| 13936 | 274 | apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]]) | 
| 275 | apply (simp add: AC insert_absorb Int_insert_left | |
| 276 | LCD.foldD_insert [OF LCD.intro [of D]] | |
| 277 | LCD.foldD_closed [OF LCD.intro [of D]] | |
| 32693 | 278 | Int_mono2) | 
| 13936 | 279 | done | 
| 280 | ||
| 281 | lemma (in ACeD) foldD_Un_disjoint: | |
| 14750 | 282 |   "[| finite A; finite B; A Int B = {}; A \<subseteq> D; B \<subseteq> D |] ==>
 | 
| 13936 | 283 | foldD D f e (A Un B) = foldD D f e A \<cdot> foldD D f e B" | 
| 284 | by (simp add: foldD_Un_Int | |
| 32693 | 285 | left_commute LCD.foldD_closed [OF LCD.intro [of D]]) | 
| 13936 | 286 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 287 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27699diff
changeset | 288 | subsubsection {* Products over Finite Sets *}
 | 
| 13936 | 289 | |
| 35847 | 290 | definition | 
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 291 |   finprod :: "[('b, 'm) monoid_scheme, 'a => 'b, 'a set] => 'b"
 | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 292 | where "finprod G f A = | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 293 | (if finite A | 
| 35847 | 294 | then foldD (carrier G) (mult G o f) \<one>\<^bsub>G\<^esub> A | 
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 295 | else undefined)" | 
| 13936 | 296 | |
| 14651 | 297 | syntax | 
| 298 | "_finprod" :: "index => idt => 'a set => 'b => 'b" | |
| 14666 | 299 |       ("(3\<Otimes>__:_. _)" [1000, 0, 51, 10] 10)
 | 
| 14651 | 300 | syntax (xsymbols) | 
| 301 | "_finprod" :: "index => idt => 'a set => 'b => 'b" | |
| 14666 | 302 |       ("(3\<Otimes>__\<in>_. _)" [1000, 0, 51, 10] 10)
 | 
| 14651 | 303 | syntax (HTML output) | 
| 304 | "_finprod" :: "index => idt => 'a set => 'b => 'b" | |
| 14666 | 305 |       ("(3\<Otimes>__\<in>_. _)" [1000, 0, 51, 10] 10)
 | 
| 14651 | 306 | translations | 
| 35054 | 307 | "\<Otimes>\<index>i:A. b" == "CONST finprod \<struct>\<index> (%i. b) A" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 308 |   -- {* Beware of argument permutation! *}
 | 
| 13936 | 309 | |
| 310 | lemma (in comm_monoid) finprod_empty [simp]: | |
| 311 |   "finprod G f {} = \<one>"
 | |
| 312 | by (simp add: finprod_def) | |
| 313 | ||
| 314 | declare funcsetI [intro] | |
| 315 | funcset_mem [dest] | |
| 316 | ||
| 27933 | 317 | context comm_monoid begin | 
| 318 | ||
| 319 | lemma finprod_insert [simp]: | |
| 13936 | 320 | "[| finite F; a \<notin> F; f \<in> F -> carrier G; f a \<in> carrier G |] ==> | 
| 321 | finprod G f (insert a F) = f a \<otimes> finprod G f F" | |
| 322 | apply (rule trans) | |
| 323 | apply (simp add: finprod_def) | |
| 324 | apply (rule trans) | |
| 325 | apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]]) | |
| 326 | apply simp | |
| 327 | apply (rule m_lcomm) | |
| 328 | apply fast | |
| 329 | apply fast | |
| 330 | apply assumption | |
| 331 | apply (fastsimp intro: m_closed) | |
| 332 | apply simp+ | |
| 333 | apply fast | |
| 334 | apply (auto simp add: finprod_def) | |
| 335 | done | |
| 336 | ||
| 27933 | 337 | lemma finprod_one [simp]: | 
| 14651 | 338 | "finite A ==> (\<Otimes>i:A. \<one>) = \<one>" | 
| 22265 | 339 | proof (induct set: finite) | 
| 13936 | 340 | case empty show ?case by simp | 
| 341 | next | |
| 15328 | 342 | case (insert a A) | 
| 13936 | 343 | have "(%i. \<one>) \<in> A -> carrier G" by auto | 
| 344 | with insert show ?case by simp | |
| 345 | qed | |
| 346 | ||
| 27933 | 347 | lemma finprod_closed [simp]: | 
| 13936 | 348 | fixes A | 
| 349 | assumes fin: "finite A" and f: "f \<in> A -> carrier G" | |
| 350 | shows "finprod G f A \<in> carrier G" | |
| 351 | using fin f | |
| 352 | proof induct | |
| 353 | case empty show ?case by simp | |
| 354 | next | |
| 15328 | 355 | case (insert a A) | 
| 13936 | 356 | then have a: "f a \<in> carrier G" by fast | 
| 357 | from insert have A: "f \<in> A -> carrier G" by fast | |
| 358 | from insert A a show ?case by simp | |
| 359 | qed | |
| 360 | ||
| 361 | lemma funcset_Int_left [simp, intro]: | |
| 362 | "[| f \<in> A -> C; f \<in> B -> C |] ==> f \<in> A Int B -> C" | |
| 363 | by fast | |
| 364 | ||
| 365 | lemma funcset_Un_left [iff]: | |
| 366 | "(f \<in> A Un B -> C) = (f \<in> A -> C & f \<in> B -> C)" | |
| 367 | by fast | |
| 368 | ||
| 27933 | 369 | lemma finprod_Un_Int: | 
| 13936 | 370 | "[| finite A; finite B; g \<in> A -> carrier G; g \<in> B -> carrier G |] ==> | 
| 371 | finprod G g (A Un B) \<otimes> finprod G g (A Int B) = | |
| 372 | finprod G g A \<otimes> finprod G g B" | |
| 373 | -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
 | |
| 22265 | 374 | proof (induct set: finite) | 
| 13936 | 375 | case empty then show ?case by (simp add: finprod_closed) | 
| 376 | next | |
| 15328 | 377 | case (insert a A) | 
| 13936 | 378 | then have a: "g a \<in> carrier G" by fast | 
| 379 | from insert have A: "g \<in> A -> carrier G" by fast | |
| 380 | from insert A a show ?case | |
| 381 | by (simp add: m_ac Int_insert_left insert_absorb finprod_closed | |
| 32693 | 382 | Int_mono2) | 
| 13936 | 383 | qed | 
| 384 | ||
| 27933 | 385 | lemma finprod_Un_disjoint: | 
| 13936 | 386 |   "[| finite A; finite B; A Int B = {};
 | 
| 387 | g \<in> A -> carrier G; g \<in> B -> carrier G |] | |
| 388 | ==> finprod G g (A Un B) = finprod G g A \<otimes> finprod G g B" | |
| 389 | apply (subst finprod_Un_Int [symmetric]) | |
| 390 | apply (auto simp add: finprod_closed) | |
| 391 | done | |
| 392 | ||
| 27933 | 393 | lemma finprod_multf: | 
| 13936 | 394 | "[| finite A; f \<in> A -> carrier G; g \<in> A -> carrier G |] ==> | 
| 395 | finprod G (%x. f x \<otimes> g x) A = (finprod G f A \<otimes> finprod G g A)" | |
| 22265 | 396 | proof (induct set: finite) | 
| 13936 | 397 | case empty show ?case by simp | 
| 398 | next | |
| 15328 | 399 | case (insert a A) then | 
| 14750 | 400 | have fA: "f \<in> A -> carrier G" by fast | 
| 401 | from insert have fa: "f a \<in> carrier G" by fast | |
| 402 | from insert have gA: "g \<in> A -> carrier G" by fast | |
| 403 | from insert have ga: "g a \<in> carrier G" by fast | |
| 404 | from insert have fgA: "(%x. f x \<otimes> g x) \<in> A -> carrier G" | |
| 13936 | 405 | by (simp add: Pi_def) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 406 | show ?case | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 407 | by (simp add: insert fA fa gA ga fgA m_ac) | 
| 13936 | 408 | qed | 
| 409 | ||
| 27933 | 410 | lemma finprod_cong': | 
| 14750 | 411 | "[| A = B; g \<in> B -> carrier G; | 
| 412 | !!i. i \<in> B ==> f i = g i |] ==> finprod G f A = finprod G g B" | |
| 13936 | 413 | proof - | 
| 14750 | 414 | assume prems: "A = B" "g \<in> B -> carrier G" | 
| 415 | "!!i. i \<in> B ==> f i = g i" | |
| 13936 | 416 | show ?thesis | 
| 417 | proof (cases "finite B") | |
| 418 | case True | |
| 14750 | 419 | then have "!!A. [| A = B; g \<in> B -> carrier G; | 
| 420 | !!i. i \<in> B ==> f i = g i |] ==> finprod G f A = finprod G g B" | |
| 13936 | 421 | proof induct | 
| 422 | case empty thus ?case by simp | |
| 423 | next | |
| 15328 | 424 | case (insert x B) | 
| 13936 | 425 | then have "finprod G f A = finprod G f (insert x B)" by simp | 
| 426 | also from insert have "... = f x \<otimes> finprod G f B" | |
| 427 | proof (intro finprod_insert) | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32693diff
changeset | 428 | show "finite B" by fact | 
| 13936 | 429 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32693diff
changeset | 430 | show "x ~: B" by fact | 
| 13936 | 431 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32693diff
changeset | 432 | assume "x ~: B" "!!i. i \<in> insert x B \<Longrightarrow> f i = g i" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32693diff
changeset | 433 | "g \<in> insert x B \<rightarrow> carrier G" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32693diff
changeset | 434 | thus "f \<in> B -> carrier G" by fastsimp | 
| 13936 | 435 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32693diff
changeset | 436 | assume "x ~: B" "!!i. i \<in> insert x B \<Longrightarrow> f i = g i" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32693diff
changeset | 437 | "g \<in> insert x B \<rightarrow> carrier G" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32693diff
changeset | 438 | thus "f x \<in> carrier G" by fastsimp | 
| 13936 | 439 | qed | 
| 440 | also from insert have "... = g x \<otimes> finprod G g B" by fastsimp | |
| 441 | also from insert have "... = finprod G g (insert x B)" | |
| 442 | by (intro finprod_insert [THEN sym]) auto | |
| 443 | finally show ?case . | |
| 444 | qed | |
| 445 | with prems show ?thesis by simp | |
| 446 | next | |
| 447 | case False with prems show ?thesis by (simp add: finprod_def) | |
| 448 | qed | |
| 449 | qed | |
| 450 | ||
| 27933 | 451 | lemma finprod_cong: | 
| 14750 | 452 | "[| A = B; f \<in> B -> carrier G = True; | 
| 453 | !!i. i \<in> B ==> f i = g i |] ==> finprod G f A = finprod G g B" | |
| 14213 
7bf882b0a51e
Changed order of prems in finprod_cong.  Slight speedup.
 ballarin parents: 
13936diff
changeset | 454 | (* This order of prems is slightly faster (3%) than the last two swapped. *) | 
| 
7bf882b0a51e
Changed order of prems in finprod_cong.  Slight speedup.
 ballarin parents: 
13936diff
changeset | 455 | by (rule finprod_cong') force+ | 
| 13936 | 456 | |
| 457 | text {*Usually, if this rule causes a failed congruence proof error,
 | |
| 14750 | 458 |   the reason is that the premise @{text "g \<in> B -> carrier G"} cannot be shown.
 | 
| 13936 | 459 |   Adding @{thm [source] Pi_def} to the simpset is often useful.
 | 
| 460 |   For this reason, @{thm [source] comm_monoid.finprod_cong}
 | |
| 461 | is not added to the simpset by default. | |
| 462 | *} | |
| 463 | ||
| 27933 | 464 | end | 
| 465 | ||
| 13936 | 466 | declare funcsetI [rule del] | 
| 467 | funcset_mem [rule del] | |
| 468 | ||
| 27933 | 469 | context comm_monoid begin | 
| 470 | ||
| 471 | lemma finprod_0 [simp]: | |
| 14750 | 472 |   "f \<in> {0::nat} -> carrier G ==> finprod G f {..0} = f 0"
 | 
| 13936 | 473 | by (simp add: Pi_def) | 
| 474 | ||
| 27933 | 475 | lemma finprod_Suc [simp]: | 
| 14750 | 476 |   "f \<in> {..Suc n} -> carrier G ==>
 | 
| 13936 | 477 |    finprod G f {..Suc n} = (f (Suc n) \<otimes> finprod G f {..n})"
 | 
| 478 | by (simp add: Pi_def atMost_Suc) | |
| 479 | ||
| 27933 | 480 | lemma finprod_Suc2: | 
| 14750 | 481 |   "f \<in> {..Suc n} -> carrier G ==>
 | 
| 13936 | 482 |    finprod G f {..Suc n} = (finprod G (%i. f (Suc i)) {..n} \<otimes> f 0)"
 | 
| 483 | proof (induct n) | |
| 484 | case 0 thus ?case by (simp add: Pi_def) | |
| 485 | next | |
| 486 | case Suc thus ?case by (simp add: m_assoc Pi_def) | |
| 487 | qed | |
| 488 | ||
| 27933 | 489 | lemma finprod_mult [simp]: | 
| 14750 | 490 |   "[| f \<in> {..n} -> carrier G; g \<in> {..n} -> carrier G |] ==>
 | 
| 13936 | 491 |      finprod G (%i. f i \<otimes> g i) {..n::nat} =
 | 
| 492 |      finprod G f {..n} \<otimes> finprod G g {..n}"
 | |
| 493 | by (induct n) (simp_all add: m_ac Pi_def) | |
| 494 | ||
| 27699 | 495 | (* The following two were contributed by Jeremy Avigad. *) | 
| 496 | ||
| 27933 | 497 | lemma finprod_reindex: | 
| 27699 | 498 | assumes fin: "finite A" | 
| 499 | shows "f : (h ` A) \<rightarrow> carrier G \<Longrightarrow> | |
| 500 | inj_on h A ==> finprod G f (h ` A) = finprod G (%x. f (h x)) A" | |
| 501 | using fin apply induct | |
| 502 | apply (auto simp add: finprod_insert Pi_def) | |
| 503 | done | |
| 504 | ||
| 27933 | 505 | lemma finprod_const: | 
| 27699 | 506 | assumes fin [simp]: "finite A" | 
| 507 | and a [simp]: "a : carrier G" | |
| 508 | shows "finprod G (%x. a) A = a (^) card A" | |
| 509 | using fin apply induct | |
| 510 | apply force | |
| 511 | apply (subst finprod_insert) | |
| 512 | apply auto | |
| 513 | apply (subst m_comm) | |
| 514 | apply auto | |
| 515 | done | |
| 516 | ||
| 27933 | 517 | (* The following lemma was contributed by Jesus Aransay. *) | 
| 518 | ||
| 519 | lemma finprod_singleton: | |
| 520 | assumes i_in_A: "i \<in> A" and fin_A: "finite A" and f_Pi: "f \<in> A \<rightarrow> carrier G" | |
| 521 | shows "(\<Otimes>j\<in>A. if i = j then f j else \<one>) = f i" | |
| 29237 | 522 |   using i_in_A finprod_insert [of "A - {i}" i "(\<lambda>j. if i = j then f j else \<one>)"]
 | 
| 523 |     fin_A f_Pi finprod_one [of "A - {i}"]
 | |
| 524 |     finprod_cong [of "A - {i}" "A - {i}" "(\<lambda>j. if i = j then f j else \<one>)" "(\<lambda>i. \<one>)"] 
 | |
| 27933 | 525 | unfolding Pi_def simp_implies_def by (force simp add: insert_absorb) | 
| 526 | ||
| 13936 | 527 | end | 
| 27933 | 528 | |
| 529 | end |