| author | berghofe | 
| Wed, 11 Jul 2007 11:46:44 +0200 | |
| changeset 23767 | 7272a839ccd9 | 
| parent 23199 | 42004f6d908b | 
| child 24035 | 74c032aea9ed | 
| permissions | -rw-r--r-- | 
| 21163 | 1 | (* Title: HOL/simpdata.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow | |
| 4 | Copyright 1991 University of Cambridge | |
| 5 | ||
| 6 | Instantiation of the generic simplifier for HOL. | |
| 7 | *) | |
| 8 | ||
| 9 | (** tools setup **) | |
| 10 | ||
| 11 | structure Quantifier1 = Quantifier1Fun | |
| 12 | (struct | |
| 13 | (*abstract syntax*) | |
| 14 |   fun dest_eq ((c as Const("op =",_)) $ s $ t) = SOME (c, s, t)
 | |
| 15 | | dest_eq _ = NONE; | |
| 16 |   fun dest_conj ((c as Const("op &",_)) $ s $ t) = SOME (c, s, t)
 | |
| 17 | | dest_conj _ = NONE; | |
| 18 |   fun dest_imp ((c as Const("op -->",_)) $ s $ t) = SOME (c, s, t)
 | |
| 19 | | dest_imp _ = NONE; | |
| 20 | val conj = HOLogic.conj | |
| 21 | val imp = HOLogic.imp | |
| 22 | (*rules*) | |
| 22147 | 23 |   val iff_reflection = @{thm eq_reflection}
 | 
| 24 |   val iffI = @{thm iffI}
 | |
| 25 |   val iff_trans = @{thm trans}
 | |
| 26 |   val conjI= @{thm conjI}
 | |
| 27 |   val conjE= @{thm conjE}
 | |
| 28 |   val impI = @{thm impI}
 | |
| 29 |   val mp   = @{thm mp}
 | |
| 30 |   val uncurry = @{thm uncurry}
 | |
| 31 |   val exI  = @{thm exI}
 | |
| 32 |   val exE  = @{thm exE}
 | |
| 33 |   val iff_allI = @{thm iff_allI}
 | |
| 34 |   val iff_exI = @{thm iff_exI}
 | |
| 35 |   val all_comm = @{thm all_comm}
 | |
| 36 |   val ex_comm = @{thm ex_comm}
 | |
| 21163 | 37 | end); | 
| 38 | ||
| 21551 | 39 | structure Simpdata = | 
| 21163 | 40 | struct | 
| 41 | ||
| 22147 | 42 | fun mk_meta_eq r = r RS @{thm eq_reflection};
 | 
| 21163 | 43 | fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r; | 
| 44 | ||
| 22147 | 45 | fun mk_eq th = case concl_of th | 
| 21163 | 46 | (*expects Trueprop if not == *) | 
| 21551 | 47 |   of Const ("==",_) $ _ $ _ => th
 | 
| 48 |    | _ $ (Const ("op =", _) $ _ $ _) => mk_meta_eq th
 | |
| 22147 | 49 |    | _ $ (Const ("Not", _) $ _) => th RS @{thm Eq_FalseI}
 | 
| 50 |    | _ => th RS @{thm Eq_TrueI}
 | |
| 21163 | 51 | |
| 22147 | 52 | fun mk_eq_True r = | 
| 53 |   SOME (r RS @{thm meta_eq_to_obj_eq} RS @{thm Eq_TrueI}) handle Thm.THM _ => NONE;
 | |
| 21163 | 54 | |
| 55 | (* Produce theorems of the form | |
| 56 | (P1 =simp=> ... =simp=> Pn => x == y) ==> (P1 =simp=> ... =simp=> Pn => x = y) | |
| 57 | *) | |
| 22838 | 58 | |
| 22147 | 59 | fun lift_meta_eq_to_obj_eq i st = | 
| 21163 | 60 | let | 
| 61 |     fun count_imp (Const ("HOL.simp_implies", _) $ P $ Q) = 1 + count_imp Q
 | |
| 62 | | count_imp _ = 0; | |
| 63 | val j = count_imp (Logic.strip_assums_concl (List.nth (prems_of st, i - 1))) | |
| 22147 | 64 |   in if j = 0 then @{thm meta_eq_to_obj_eq}
 | 
| 21163 | 65 | else | 
| 66 | let | |
| 67 |         val Ps = map (fn k => Free ("P" ^ string_of_int k, propT)) (1 upto j);
 | |
| 68 | fun mk_simp_implies Q = foldr (fn (R, S) => | |
| 69 |           Const ("HOL.simp_implies", propT --> propT --> propT) $ R $ S) Q Ps
 | |
| 70 |         val aT = TFree ("'a", HOLogic.typeS);
 | |
| 71 |         val x = Free ("x", aT);
 | |
| 72 |         val y = Free ("y", aT)
 | |
| 73 | in Goal.prove_global (Thm.theory_of_thm st) [] | |
| 74 | [mk_simp_implies (Logic.mk_equals (x, y))] | |
| 75 | (mk_simp_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, y)))) | |
| 76 | (fn prems => EVERY | |
| 22147 | 77 |          [rewrite_goals_tac @{thms simp_implies_def},
 | 
| 78 |           REPEAT (ares_tac (@{thm meta_eq_to_obj_eq} ::
 | |
| 79 |             map (rewrite_rule @{thms simp_implies_def}) prems) 1)])
 | |
| 21163 | 80 | end | 
| 81 | end; | |
| 82 | ||
| 83 | (*Congruence rules for = (instead of ==)*) | |
| 84 | fun mk_meta_cong rl = zero_var_indexes | |
| 85 | (let val rl' = Seq.hd (TRYALL (fn i => fn st => | |
| 86 | rtac (lift_meta_eq_to_obj_eq i st) i st) rl) | |
| 87 | in mk_meta_eq rl' handle THM _ => | |
| 88 | if can Logic.dest_equals (concl_of rl') then rl' | |
| 89 | else error "Conclusion of congruence rules must be =-equality" | |
| 90 | end); | |
| 91 | ||
| 92 | fun mk_atomize pairs = | |
| 93 | let | |
| 21313 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 94 | fun atoms thm = | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 95 | let | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 96 | fun res th = map (fn rl => th RS rl); (*exception THM*) | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 97 | fun res_fixed rls = | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 98 | if Thm.maxidx_of (Thm.adjust_maxidx_thm ~1 thm) = ~1 then res thm rls | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 99 | else Variable.trade (K (fn [thm'] => res thm' rls)) (Variable.thm_context thm) [thm]; | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 100 | in | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 101 | case concl_of thm | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 102 |           of Const ("Trueprop", _) $ p => (case head_of p
 | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 103 | of Const (a, _) => (case AList.lookup (op =) pairs a | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 104 | of SOME rls => (maps atoms (res_fixed rls) handle THM _ => [thm]) | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 105 | | NONE => [thm]) | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 106 | | _ => [thm]) | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 107 | | _ => [thm] | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 108 | end; | 
| 21163 | 109 | in atoms end; | 
| 110 | ||
| 111 | fun mksimps pairs = | |
| 21313 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 112 | map_filter (try mk_eq) o mk_atomize pairs o gen_all; | 
| 21163 | 113 | |
| 22147 | 114 | fun unsafe_solver_tac prems = | 
| 115 |   (fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN'
 | |
| 116 |   FIRST' [resolve_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems), atac,
 | |
| 117 |     etac @{thm FalseE}];
 | |
| 118 | ||
| 21163 | 119 | val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac; | 
| 120 | ||
| 22838 | 121 | |
| 21163 | 122 | (*No premature instantiation of variables during simplification*) | 
| 22147 | 123 | fun safe_solver_tac prems = | 
| 124 |   (fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN'
 | |
| 125 |   FIRST' [match_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems),
 | |
| 126 |          eq_assume_tac, ematch_tac @{thms FalseE}];
 | |
| 127 | ||
| 21163 | 128 | val safe_solver = mk_solver "HOL safe" safe_solver_tac; | 
| 129 | ||
| 130 | structure SplitterData = | |
| 131 | struct | |
| 132 | structure Simplifier = Simplifier | |
| 21551 | 133 | val mk_eq = mk_eq | 
| 22147 | 134 |   val meta_eq_to_iff  = @{thm meta_eq_to_obj_eq}
 | 
| 135 |   val iffD            = @{thm iffD2}
 | |
| 136 |   val disjE           = @{thm disjE}
 | |
| 137 |   val conjE           = @{thm conjE}
 | |
| 138 |   val exE             = @{thm exE}
 | |
| 139 |   val contrapos       = @{thm contrapos_nn}
 | |
| 140 |   val contrapos2      = @{thm contrapos_pp}
 | |
| 141 |   val notnotD         = @{thm notnotD}
 | |
| 21163 | 142 | end; | 
| 143 | ||
| 144 | structure Splitter = SplitterFun(SplitterData); | |
| 145 | ||
| 21674 | 146 | val split_tac = Splitter.split_tac; | 
| 147 | val split_inside_tac = Splitter.split_inside_tac; | |
| 148 | ||
| 149 | val op addsplits = Splitter.addsplits; | |
| 150 | val op delsplits = Splitter.delsplits; | |
| 151 | val Addsplits = Splitter.Addsplits; | |
| 152 | val Delsplits = Splitter.Delsplits; | |
| 153 | ||
| 154 | ||
| 21163 | 155 | (* integration of simplifier with classical reasoner *) | 
| 156 | ||
| 157 | structure Clasimp = ClasimpFun | |
| 158 | (structure Simplifier = Simplifier and Splitter = Splitter | |
| 159 | and Classical = Classical and Blast = Blast | |
| 22147 | 160 |   val iffD1 = @{thm iffD1} val iffD2 = @{thm iffD2} val notE = @{thm notE});
 | 
| 21674 | 161 | open Clasimp; | 
| 21163 | 162 | |
| 22128 | 163 | val _ = ML_Context.value_antiq "clasimpset" | 
| 164 |   (Scan.succeed ("clasimpset", "Clasimp.local_clasimpset_of (ML_Context.the_local_context ())"));
 | |
| 165 | ||
| 21163 | 166 | val mksimps_pairs = | 
| 22147 | 167 |   [("op -->", [@{thm mp}]), ("op &", [@{thm conjunct1}, @{thm conjunct2}]),
 | 
| 168 |    ("All", [@{thm spec}]), ("True", []), ("False", []),
 | |
| 169 |    ("HOL.If", [@{thm if_bool_eq_conj} RS @{thm iffD1}])];
 | |
| 21163 | 170 | |
| 21674 | 171 | val HOL_basic_ss = | 
| 22147 | 172 |   Simplifier.theory_context @{theory} empty_ss
 | 
| 21163 | 173 | setsubgoaler asm_simp_tac | 
| 174 | setSSolver safe_solver | |
| 175 | setSolver unsafe_solver | |
| 176 | setmksimps (mksimps mksimps_pairs) | |
| 177 | setmkeqTrue mk_eq_True | |
| 178 | setmkcong mk_meta_cong; | |
| 179 | ||
| 21674 | 180 | fun hol_simplify rews = Simplifier.full_simplify (HOL_basic_ss addsimps rews); | 
| 21163 | 181 | |
| 182 | fun unfold_tac ths = | |
| 21674 | 183 | let val ss0 = Simplifier.clear_ss HOL_basic_ss addsimps ths | 
| 21163 | 184 | in fn ss => ALLGOALS (full_simp_tac (Simplifier.inherit_context ss ss0)) end; | 
| 185 | ||
| 21313 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 186 | |
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 187 | |
| 21163 | 188 | (** simprocs **) | 
| 189 | ||
| 190 | (* simproc for proving "(y = x) == False" from premise "~(x = y)" *) | |
| 191 | ||
| 192 | val use_neq_simproc = ref true; | |
| 193 | ||
| 194 | local | |
| 22147 | 195 |   val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
 | 
| 21163 | 196 | fun neq_prover sg ss (eq $ lhs $ rhs) = | 
| 197 | let | |
| 198 | fun test thm = (case #prop (rep_thm thm) of | |
| 199 | _ $ (Not $ (eq' $ l' $ r')) => | |
| 200 | Not = HOLogic.Not andalso eq' = eq andalso | |
| 201 | r' aconv lhs andalso l' aconv rhs | |
| 202 | | _ => false) | |
| 203 | in if !use_neq_simproc then case find_first test (prems_of_ss ss) | |
| 204 | of NONE => NONE | |
| 205 | | SOME thm => SOME (thm RS neq_to_EQ_False) | |
| 206 | else NONE | |
| 207 | end | |
| 208 | in | |
| 209 | ||
| 22147 | 210 | val neq_simproc = Simplifier.simproc @{theory} "neq_simproc" ["x = y"] neq_prover;
 | 
| 21163 | 211 | |
| 21313 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 212 | end; | 
| 21163 | 213 | |
| 214 | ||
| 215 | (* simproc for Let *) | |
| 216 | ||
| 217 | val use_let_simproc = ref true; | |
| 218 | ||
| 219 | local | |
| 220 | val (f_Let_unfold, x_Let_unfold) = | |
| 22147 | 221 |       let val [(_$(f$x)$_)] = prems_of @{thm Let_unfold}
 | 
| 222 |       in (cterm_of @{theory} f, cterm_of @{theory} x) end
 | |
| 21163 | 223 | val (f_Let_folded, x_Let_folded) = | 
| 22147 | 224 |       let val [(_$(f$x)$_)] = prems_of @{thm Let_folded}
 | 
| 225 |       in (cterm_of @{theory} f, cterm_of @{theory} x) end;
 | |
| 21163 | 226 | val g_Let_folded = | 
| 22147 | 227 |       let val [(_$_$(g$_))] = prems_of @{thm Let_folded} in cterm_of @{theory} g end;
 | 
| 21163 | 228 | in | 
| 229 | ||
| 230 | val let_simproc = | |
| 22147 | 231 |   Simplifier.simproc @{theory} "let_simp" ["Let x f"]
 | 
| 22838 | 232 | (fn thy => fn ss => fn t => | 
| 21163 | 233 | let val ctxt = Simplifier.the_context ss; | 
| 234 | val ([t'], ctxt') = Variable.import_terms false [t] ctxt; | |
| 235 | in Option.map (hd o Variable.export ctxt' ctxt o single) | |
| 236 |       (case t' of (Const ("Let",_)$x$f) => (* x and f are already in normal form *)
 | |
| 237 | if not (!use_let_simproc) then NONE | |
| 238 | else if is_Free x orelse is_Bound x orelse is_Const x | |
| 22147 | 239 |          then SOME @{thm Let_def}
 | 
| 21163 | 240 | else | 
| 241 | let | |
| 242 | val n = case f of (Abs (x,_,_)) => x | _ => "x"; | |
| 22838 | 243 | val cx = cterm_of thy x; | 
| 21163 | 244 |              val {T=xT,...} = rep_cterm cx;
 | 
| 22838 | 245 | val cf = cterm_of thy f; | 
| 21163 | 246 | val fx_g = Simplifier.rewrite ss (Thm.capply cf cx); | 
| 247 | val (_$_$g) = prop_of fx_g; | |
| 248 | val g' = abstract_over (x,g); | |
| 249 | in (if (g aconv g') | |
| 250 | then | |
| 251 | let | |
| 22147 | 252 | val rl = | 
| 253 |                       cterm_instantiate [(f_Let_unfold,cf),(x_Let_unfold,cx)] @{thm Let_unfold};
 | |
| 21163 | 254 | in SOME (rl OF [fx_g]) end | 
| 255 | else if Term.betapply (f,x) aconv g then NONE (*avoid identity conversion*) | |
| 256 | else let | |
| 257 | val abs_g'= Abs (n,xT,g'); | |
| 258 | val g'x = abs_g'$x; | |
| 22838 | 259 | val g_g'x = symmetric (beta_conversion false (cterm_of thy g'x)); | 
| 21163 | 260 | val rl = cterm_instantiate | 
| 22838 | 261 | [(f_Let_folded,cterm_of thy f),(x_Let_folded,cx), | 
| 262 | (g_Let_folded,cterm_of thy abs_g')] | |
| 22147 | 263 |                                @{thm Let_folded};
 | 
| 21163 | 264 | in SOME (rl OF [transitive fx_g g_g'x]) | 
| 265 | end) | |
| 266 | end | |
| 267 | | _ => NONE) | |
| 268 | end) | |
| 269 | ||
| 21313 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 270 | end; | 
| 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 271 | |
| 21163 | 272 | |
| 273 | (* generic refutation procedure *) | |
| 274 | ||
| 275 | (* parameters: | |
| 276 | ||
| 277 | test: term -> bool | |
| 278 | tests if a term is at all relevant to the refutation proof; | |
| 279 | if not, then it can be discarded. Can improve performance, | |
| 280 | esp. if disjunctions can be discarded (no case distinction needed!). | |
| 281 | ||
| 282 | prep_tac: int -> tactic | |
| 283 | A preparation tactic to be applied to the goal once all relevant premises | |
| 284 | have been moved to the conclusion. | |
| 285 | ||
| 286 | ref_tac: int -> tactic | |
| 287 | the actual refutation tactic. Should be able to deal with goals | |
| 288 | [| A1; ...; An |] ==> False | |
| 289 | where the Ai are atomic, i.e. no top-level &, | or EX | |
| 290 | *) | |
| 291 | ||
| 292 | local | |
| 293 | val nnf_simpset = | |
| 294 | empty_ss setmkeqTrue mk_eq_True | |
| 295 | setmksimps (mksimps mksimps_pairs) | |
| 22147 | 296 |     addsimps [@{thm imp_conv_disj}, @{thm iff_conv_conj_imp}, @{thm de_Morgan_disj},
 | 
| 297 |       @{thm de_Morgan_conj}, @{thm not_all}, @{thm not_ex}, @{thm not_not}];
 | |
| 21163 | 298 | fun prem_nnf_tac i st = | 
| 299 | full_simp_tac (Simplifier.theory_context (Thm.theory_of_thm st) nnf_simpset) i st; | |
| 300 | in | |
| 301 | fun refute_tac test prep_tac ref_tac = | |
| 302 | let val refute_prems_tac = | |
| 303 | REPEAT_DETERM | |
| 22147 | 304 |               (eresolve_tac [@{thm conjE}, @{thm exE}] 1 ORELSE
 | 
| 21163 | 305 | filter_prems_tac test 1 ORELSE | 
| 22147 | 306 |                etac @{thm disjE} 1) THEN
 | 
| 23199 | 307 |         (DETERM (etac @{thm notE} 1 THEN eq_assume_tac 1) ORELSE
 | 
| 21163 | 308 | ref_tac 1); | 
| 309 | in EVERY'[TRY o filter_prems_tac test, | |
| 22147 | 310 |             REPEAT_DETERM o etac @{thm rev_mp}, prep_tac, rtac @{thm ccontr}, prem_nnf_tac,
 | 
| 21163 | 311 | SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)] | 
| 312 | end; | |
| 21313 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 313 | end; | 
| 21163 | 314 | |
| 315 | val defALL_regroup = | |
| 22147 | 316 |   Simplifier.simproc @{theory}
 | 
| 21163 | 317 | "defined ALL" ["ALL x. P x"] Quantifier1.rearrange_all; | 
| 318 | ||
| 319 | val defEX_regroup = | |
| 22147 | 320 |   Simplifier.simproc @{theory}
 | 
| 21163 | 321 | "defined EX" ["EX x. P x"] Quantifier1.rearrange_ex; | 
| 322 | ||
| 323 | ||
| 21674 | 324 | val simpset_simprocs = HOL_basic_ss | 
| 21163 | 325 | addsimprocs [defALL_regroup, defEX_regroup, neq_simproc, let_simproc] | 
| 326 | ||
| 21313 
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
 wenzelm parents: 
21163diff
changeset | 327 | end; | 
| 21551 | 328 | |
| 329 | structure Splitter = Simpdata.Splitter; | |
| 330 | structure Clasimp = Simpdata.Clasimp; |