| 
0
 | 
     1  | 
(*  Title: 	91/Modal/prover
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Martin Coen
  | 
| 
 | 
     4  | 
    Copyright   1991  University of Cambridge
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
signature MODAL_PROVER_RULE =
  | 
| 
 | 
     8  | 
sig
  | 
| 
 | 
     9  | 
    val rewrite_rls      : thm list
  | 
| 
 | 
    10  | 
    val safe_rls         : thm list
  | 
| 
 | 
    11  | 
    val unsafe_rls       : thm list
  | 
| 
 | 
    12  | 
    val bound_rls        : thm list
  | 
| 
 | 
    13  | 
    val aside_rls        : thm list
  | 
| 
 | 
    14  | 
end;
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
signature MODAL_PROVER = 
  | 
| 
 | 
    17  | 
sig
  | 
| 
 | 
    18  | 
    val rule_tac   : thm list -> int ->tactic
  | 
| 
 | 
    19  | 
    val step_tac   : int -> tactic
  | 
| 
 | 
    20  | 
    val solven_tac : int -> int -> tactic
  | 
| 
 | 
    21  | 
    val solve_tac  : int -> tactic
  | 
| 
 | 
    22  | 
end;
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
functor Modal_ProverFun (Modal_Rule: MODAL_PROVER_RULE) : MODAL_PROVER = 
  | 
| 
 | 
    25  | 
struct
  | 
| 
 | 
    26  | 
local open Modal_Rule
  | 
| 
 | 
    27  | 
in 
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
(*Returns the list of all formulas in the sequent*)
  | 
| 
 | 
    30  | 
fun forms_of_seq (Const("Seqof",_) $ P $ u) = P :: forms_of_seq u
 | 
| 
 | 
    31  | 
  | forms_of_seq (H $ u) = forms_of_seq u
  | 
| 
 | 
    32  | 
  | forms_of_seq _ = [];
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
(*Tests whether two sequences (left or right sides) could be resolved.
  | 
| 
 | 
    35  | 
  seqp is a premise (subgoal), seqc is a conclusion of an object-rule.
  | 
| 
 | 
    36  | 
  Assumes each formula in seqc is surrounded by sequence variables
  | 
| 
 | 
    37  | 
  -- checks that each concl formula looks like some subgoal formula.*)
  | 
| 
 | 
    38  | 
fun could_res (seqp,seqc) =
  | 
| 
 | 
    39  | 
      forall (fn Qc => exists (fn Qp => could_unify (Qp,Qc)) 
  | 
| 
 | 
    40  | 
                              (forms_of_seq seqp))
  | 
| 
 | 
    41  | 
             (forms_of_seq seqc);
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
(*Tests whether two sequents G|-H could be resolved, comparing each side.*)
  | 
| 
 | 
    44  | 
fun could_resolve_seq (prem,conc) =
  | 
| 
 | 
    45  | 
  case (prem,conc) of
  | 
| 
 | 
    46  | 
      (_ $ Abs(_,_,leftp) $ Abs(_,_,rightp),
  | 
| 
 | 
    47  | 
       _ $ Abs(_,_,leftc) $ Abs(_,_,rightc)) =>
  | 
| 
 | 
    48  | 
	  could_res (leftp,leftc)  andalso  could_res (rightp,rightc)
  | 
| 
 | 
    49  | 
    | _ => false;
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
(*Like filt_resolve_tac, using could_resolve_seq
  | 
| 
 | 
    52  | 
  Much faster than resolve_tac when there are many rules.
  | 
| 
 | 
    53  | 
  Resolve subgoal i using the rules, unless more than maxr are compatible. *)
  | 
| 
 | 
    54  | 
fun filseq_resolve_tac rules maxr = SUBGOAL(fn (prem,i) =>
  | 
| 
 | 
    55  | 
  let val rls = filter_thms could_resolve_seq (maxr+1, prem, rules)
  | 
| 
 | 
    56  | 
  in  if length rls > maxr  then  no_tac  else resolve_tac rls i
  | 
| 
 | 
    57  | 
  end);
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
fun fresolve_tac rls n = filseq_resolve_tac rls 999 n;
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
(* NB No back tracking possible with aside rules *)
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
fun aside_tac n = DETERM(REPEAT (filt_resolve_tac aside_rls 999 n));
  | 
| 
 | 
    64  | 
fun rule_tac rls n = fresolve_tac rls n THEN aside_tac n;
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
val fres_safe_tac = fresolve_tac safe_rls;
  | 
| 
 | 
    67  | 
val fres_unsafe_tac = fresolve_tac unsafe_rls THEN' aside_tac;
  | 
| 
 | 
    68  | 
val fres_bound_tac = fresolve_tac bound_rls;
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
fun UPTOGOAL n tf = let fun tac i = if i<n then all_tac
  | 
| 
 | 
    71  | 
                                    else tf(i) THEN tac(i-1)
  | 
| 
 | 
    72  | 
                    in STATE(fn state=> tac(nprems_of state)) end;
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
(* Depth first search bounded by d *)
  | 
| 
 | 
    75  | 
fun solven_tac d n = STATE (fn state =>
  | 
| 
 | 
    76  | 
        if d<0 then no_tac
  | 
| 
 | 
    77  | 
        else if (nprems_of state = 0) then all_tac 
  | 
| 
 | 
    78  | 
	else (DETERM(fres_safe_tac n) THEN UPTOGOAL n (solven_tac d)) ORELSE
  | 
| 
 | 
    79  | 
	         ((fres_unsafe_tac n  THEN UPTOGOAL n (solven_tac d)) APPEND
  | 
| 
 | 
    80  | 
	           (fres_bound_tac n  THEN UPTOGOAL n (solven_tac (d-1)))));
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
fun solve_tac d = rewrite_goals_tac rewrite_rls THEN solven_tac d 1;
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
fun step_tac n = STATE (fn state =>  
  | 
| 
 | 
    85  | 
      if (nprems_of state = 0) then all_tac 
  | 
| 
 | 
    86  | 
      else (DETERM(fres_safe_tac n)) ORELSE 
  | 
| 
 | 
    87  | 
	   (fres_unsafe_tac n APPEND fres_bound_tac n));
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
end;
  | 
| 
 | 
    90  | 
end;
  |