0
|
1 |
(* Title: ZF/ex/TF.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
Trees & forests, a mutually recursive type definition.
|
|
7 |
*)
|
|
8 |
|
|
9 |
TF_Fn = TF + ListFn +
|
|
10 |
consts
|
|
11 |
TF_rec :: "[i, [i,i,i]=>i, i, [i,i,i,i]=>i] => i"
|
|
12 |
TF_map :: "[i=>i, i] => i"
|
|
13 |
TF_size :: "i=>i"
|
|
14 |
TF_preorder :: "i=>i"
|
|
15 |
list_of_TF :: "i=>i"
|
|
16 |
TF_of_list :: "i=>i"
|
|
17 |
|
|
18 |
rules
|
|
19 |
TF_rec_def
|
|
20 |
"TF_rec(z,b,c,d) == Vrec(z, \
|
|
21 |
\ %z r. tree_forest_case(%x tf. b(x, tf, r`tf), \
|
|
22 |
\ c, \
|
|
23 |
\ %t tf. d(t, tf, r`t, r`tf), z))"
|
|
24 |
|
|
25 |
list_of_TF_def
|
|
26 |
"list_of_TF(z) == TF_rec(z, %x tf r. [Tcons(x,tf)], [], \
|
|
27 |
\ %t tf r1 r2. Cons(t, r2))"
|
|
28 |
|
|
29 |
TF_of_list_def
|
|
30 |
"TF_of_list(tf) == list_rec(tf, Fnil, %t tf r. Fcons(t,r))"
|
|
31 |
|
|
32 |
TF_map_def
|
|
33 |
"TF_map(h,z) == TF_rec(z, %x tf r.Tcons(h(x),r), Fnil, \
|
|
34 |
\ %t tf r1 r2. Fcons(r1,r2))"
|
|
35 |
|
|
36 |
TF_size_def
|
|
37 |
"TF_size(z) == TF_rec(z, %x tf r.succ(r), 0, %t tf r1 r2. r1#+r2)"
|
|
38 |
|
|
39 |
TF_preorder_def
|
|
40 |
"TF_preorder(z) == TF_rec(z, %x tf r.Cons(x,r), Nil, %t tf r1 r2. r1@r2)"
|
|
41 |
|
|
42 |
end
|