| author | wenzelm | 
| Thu, 28 Sep 2000 14:48:05 +0200 | |
| changeset 10108 | 72a719e997b9 | 
| parent 9508 | 4d01dbf6ded7 | 
| child 10834 | a7897aebbffc | 
| permissions | -rw-r--r-- | 
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
1  | 
(* Title: BijectionRel.ML  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
2  | 
ID: $Id$  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
3  | 
Author: Thomas M. Rasmussen  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
4  | 
Copyright 2000 University of Cambridge  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
5  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
6  | 
Inductive definitions of bijections between two different sets and  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
7  | 
between the same set.  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
8  | 
Theorem for relating the two definitions  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
9  | 
*)  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
10  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
11  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
12  | 
(***** bijR *****)  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
13  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
14  | 
Addsimps [bijR.empty];  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
15  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
16  | 
Goal "(A,B) : (bijR P) ==> finite A";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
17  | 
by (etac bijR.induct 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
18  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
19  | 
qed "fin_bijRl";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
20  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
21  | 
Goal "(A,B) : (bijR P) ==> finite B";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
22  | 
by (etac bijR.induct 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
23  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
24  | 
qed "fin_bijRr";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
25  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
26  | 
val major::subs::prems =  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
27  | 
Goal "[| finite F;  F <= A; P({}); \
 | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
28  | 
\ !!F a. [| F <= A; a:A; a ~: F; P(F) |] ==> P(insert a F) |] \  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
29  | 
\ ==> P(F)";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
30  | 
by (rtac (subs RS rev_mp) 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
31  | 
by (rtac (major RS finite_induct) 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
32  | 
by (ALLGOALS (blast_tac (claset() addIs prems)));  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
33  | 
val lemma_induct = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
34  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
35  | 
Goalw [inj_on_def]  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
36  | 
"[| A <= B; a ~: A ; a : B; inj_on f B |] ==> (f a) ~: f``A";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
37  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
38  | 
val lemma = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
39  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
40  | 
Goal "[| ALL a. a:A --> P a (f a); inj_on f A; finite A; F <= A |] \  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
41  | 
\ ==> (F,f``F) : bijR P";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
42  | 
by (res_inst_tac [("F","F"),("A","A")] lemma_induct 1);
 | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
43  | 
by (rtac finite_subset 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
44  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
45  | 
by (rtac bijR.insert 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
46  | 
by (rtac lemma 3);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
47  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
48  | 
val lemma = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
49  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
50  | 
Goal "[| ALL a. a:A --> P a (f a); inj_on f A; finite A |] \  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
51  | 
\ ==> (A,f``A) : bijR P";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
52  | 
by (rtac lemma 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
53  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
54  | 
qed "inj_func_bijR";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
55  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
56  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
57  | 
(***** bijER *****)  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
58  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
59  | 
Addsimps [bijER.empty];  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
60  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
61  | 
Goal "A : bijER P ==> finite A";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
62  | 
by (etac bijER.induct 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
63  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
64  | 
qed "fin_bijER";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
65  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
66  | 
Goal "[| a ~: A; a ~: B; F <= insert a A; F <= insert a B; a : F |] \  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
67  | 
\ ==> (EX C. F = insert a C & a ~: C & C <= A & C <= B)";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
68  | 
by (res_inst_tac [("x","F-{a}")] exI 1);
 | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
69  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
70  | 
val lemma1 = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
71  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
72  | 
Goal "[| a ~= b; a ~: A; b ~: B; a : F; b : F; \  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
73  | 
\ F <= insert a A; F <= insert b B |] \  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
74  | 
\ ==> (EX C. F = insert a (insert b C) & a ~: C & b ~: C & \  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
75  | 
\ C <= A & C <= B)";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
76  | 
by (res_inst_tac [("x","F-{a,b}")] exI 1);
 | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
77  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
78  | 
val lemma2 = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
79  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
80  | 
Goalw [uniqP_def] "[| uniqP P; P a b; P c d |] ==> (a=c) = (b=d)";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
81  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
82  | 
val lemma_uniq = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
83  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
84  | 
Goalw [symP_def] "symP P ==> (P a b) = (P b a)";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
85  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
86  | 
val lemma_sym = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
87  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
88  | 
Goalw [bijP_def]  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
89  | 
"[| uniqP P; b ~: C; P b b; bijP P (insert b C) |] ==> bijP P C";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
90  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
91  | 
by (subgoal_tac "b~=a" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
92  | 
by (Clarify_tac 2);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
93  | 
by (asm_full_simp_tac (simpset() addsimps [lemma_uniq]) 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
94  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
95  | 
val lemma_in1 = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
96  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
97  | 
Goalw [bijP_def]  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
98  | 
"[| symP P; uniqP P; a ~: C; b ~: C; a ~= b; P a b; \  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
99  | 
\ bijP P (insert a (insert b C)) |] ==> bijP P C";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
100  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
101  | 
by (subgoal_tac "aa~=a" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
102  | 
by (Clarify_tac 2);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
103  | 
by (subgoal_tac "aa~=b" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
104  | 
by (Clarify_tac 2);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
105  | 
by (asm_full_simp_tac (simpset() addsimps [lemma_uniq]) 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
106  | 
by (subgoal_tac "ba~=a" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
107  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
108  | 
by (subgoal_tac "P a aa" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
109  | 
by (asm_simp_tac (simpset() addsimps [lemma_sym]) 2);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
110  | 
by (subgoal_tac "b=aa" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
111  | 
by (rtac iffD1 2);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
112  | 
by (res_inst_tac [("a","a"),("c","a"),("P","P")] lemma_uniq 2);
 | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
113  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
114  | 
val lemma_in2 = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
115  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
116  | 
Goal "[| ALL a b. Q a & P a b --> R b; P a b; Q a |] ==> R b";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
117  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
118  | 
val lemma = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
119  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
120  | 
Goalw [bijP_def] "[| bijP P F; symP P; P a b |] ==> (a:F) = (b:F)";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
121  | 
by (rtac iffI 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
122  | 
by (ALLGOALS (etac lemma));  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
123  | 
by (ALLGOALS Asm_simp_tac);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
124  | 
by (rtac iffD2 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
125  | 
by (res_inst_tac [("P","P")] lemma_sym 1);
 | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
126  | 
by (ALLGOALS Asm_simp_tac);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
127  | 
val lemma_bij = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
128  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
129  | 
Goal "[| (A,B) : bijR P; uniqP P; symP P |] \  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
130  | 
\ ==> (ALL F. (bijP P F) & F<=A & F<=B --> F : bijER P)";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
131  | 
by (etac bijR.induct 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
132  | 
by (Simp_tac 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
133  | 
by (case_tac "a=b" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
134  | 
by (Clarify_tac 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
135  | 
by (case_tac "b:F" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
136  | 
by (rotate_tac ~1 2);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
137  | 
by (asm_full_simp_tac (simpset() addsimps [subset_insert]) 2);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
138  | 
by (cut_inst_tac [("F","F"),("a","b"),("A","A"),("B","B")] lemma1 1);
 | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
139  | 
by (Clarify_tac 6);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
140  | 
by (rtac bijER.insert1 6);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
141  | 
by (ALLGOALS Asm_full_simp_tac);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
142  | 
by (subgoal_tac "bijP P C" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
143  | 
by (Asm_full_simp_tac 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
144  | 
by (rtac lemma_in1 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
145  | 
by (ALLGOALS Asm_simp_tac);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
146  | 
by (Clarify_tac 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
147  | 
by (case_tac "a:F" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
148  | 
by (ALLGOALS (case_tac "b:F"));  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
149  | 
by (rotate_tac ~2 4);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
150  | 
by (asm_full_simp_tac (simpset() addsimps [subset_insert]) 4);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
151  | 
by (rotate_tac ~2 3);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
152  | 
by (asm_full_simp_tac (simpset() addsimps [subset_insert]) 3);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
153  | 
by (rotate_tac ~2 2);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
154  | 
by (asm_full_simp_tac (simpset() addsimps [subset_insert]) 2);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
155  | 
by (cut_inst_tac [("F","F"),("a","a"),("b","b"),("A","A"),("B","B")] 
 | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
156  | 
lemma2 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
157  | 
by (ALLGOALS Asm_simp_tac);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
158  | 
by (Clarify_tac 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
159  | 
by (rtac bijER.insert2 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
160  | 
by (ALLGOALS Asm_simp_tac);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
161  | 
by (subgoal_tac "bijP P C" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
162  | 
by (Asm_full_simp_tac 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
163  | 
by (rtac lemma_in2 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
164  | 
by (ALLGOALS Asm_simp_tac);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
165  | 
by (subgoal_tac "b:F" 1);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
166  | 
by (rtac iffD1 2);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
167  | 
by (res_inst_tac [("a","a"),("F","F"),("P","P")] lemma_bij 2);
 | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
168  | 
by (ALLGOALS Asm_simp_tac);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
169  | 
by (subgoal_tac "a:F" 2);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
170  | 
by (rtac iffD2 3);  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
171  | 
by (res_inst_tac [("b","b"),("F","F"),("P","P")] lemma_bij 3);
 | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
172  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
173  | 
val lemma_bijRER = result();  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
174  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
175  | 
Goal "[| (A,A) : bijR P; (bijP P A); uniqP P; symP P |] ==> A : bijER P";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
176  | 
by (cut_inst_tac [("A","A"),("B","A"),("P","P")] lemma_bijRER 1);
 | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
177  | 
by Auto_tac;  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
178  | 
qed "bijR_bijER";  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
179  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
180  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
181  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
182  |