author | blanchet |
Tue, 20 Mar 2012 13:53:09 +0100 | |
changeset 47049 | 72bd3311ecba |
parent 46988 | 9f492f5b0cec |
child 47108 | 2a1953f0d20d |
permissions | -rw-r--r-- |
23664 | 1 |
theory ComputeNumeral |
29804
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
hoelzl
parents:
29668
diff
changeset
|
2 |
imports ComputeHOL ComputeFloat |
23664 | 3 |
begin |
4 |
||
5 |
(* normalization of bit strings *) |
|
26075
815f3ccc0b45
added lemma lists {normalize,succ,pred,minus,add,mult}_bin_simps
huffman
parents:
25919
diff
changeset
|
6 |
lemmas bitnorm = normalize_bin_simps |
23664 | 7 |
|
8 |
(* neg for bit strings *) |
|
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
9 |
lemma neg1: "neg Int.Pls = False" by (simp add: Int.Pls_def) |
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
10 |
lemma neg2: "neg Int.Min = True" apply (subst Int.Min_def) by auto |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
11 |
lemma neg3: "neg (Int.Bit0 x) = neg x" apply (simp add: neg_def) apply (subst Bit0_def) by auto |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
12 |
lemma neg4: "neg (Int.Bit1 x) = neg x" apply (simp add: neg_def) apply (subst Bit1_def) by auto |
23664 | 13 |
lemmas bitneg = neg1 neg2 neg3 neg4 |
14 |
||
15 |
(* iszero for bit strings *) |
|
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
16 |
lemma iszero1: "iszero Int.Pls = True" by (simp add: Int.Pls_def iszero_def) |
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
17 |
lemma iszero2: "iszero Int.Min = False" apply (subst Int.Min_def) apply (subst iszero_def) by simp |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
18 |
lemma iszero3: "iszero (Int.Bit0 x) = iszero x" apply (subst Int.Bit0_def) apply (subst iszero_def)+ by auto |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
19 |
lemma iszero4: "iszero (Int.Bit1 x) = False" apply (subst Int.Bit1_def) apply (subst iszero_def)+ apply simp by arith |
23664 | 20 |
lemmas bitiszero = iszero1 iszero2 iszero3 iszero4 |
21 |
||
22 |
(* lezero for bit strings *) |
|
38273 | 23 |
definition "lezero x \<longleftrightarrow> x \<le> 0" |
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
24 |
lemma lezero1: "lezero Int.Pls = True" unfolding Int.Pls_def lezero_def by auto |
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
25 |
lemma lezero2: "lezero Int.Min = True" unfolding Int.Min_def lezero_def by auto |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
26 |
lemma lezero3: "lezero (Int.Bit0 x) = lezero x" unfolding Int.Bit0_def lezero_def by auto |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
27 |
lemma lezero4: "lezero (Int.Bit1 x) = neg x" unfolding Int.Bit1_def lezero_def neg_def by auto |
23664 | 28 |
lemmas bitlezero = lezero1 lezero2 lezero3 lezero4 |
29 |
||
30 |
(* equality for bit strings *) |
|
29037 | 31 |
lemmas biteq = eq_bin_simps |
23664 | 32 |
|
33 |
(* x < y for bit strings *) |
|
29037 | 34 |
lemmas bitless = less_bin_simps |
23664 | 35 |
|
36 |
(* x \<le> y for bit strings *) |
|
29037 | 37 |
lemmas bitle = le_bin_simps |
23664 | 38 |
|
39 |
(* succ for bit strings *) |
|
26075
815f3ccc0b45
added lemma lists {normalize,succ,pred,minus,add,mult}_bin_simps
huffman
parents:
25919
diff
changeset
|
40 |
lemmas bitsucc = succ_bin_simps |
23664 | 41 |
|
42 |
(* pred for bit strings *) |
|
26075
815f3ccc0b45
added lemma lists {normalize,succ,pred,minus,add,mult}_bin_simps
huffman
parents:
25919
diff
changeset
|
43 |
lemmas bitpred = pred_bin_simps |
23664 | 44 |
|
45 |
(* unary minus for bit strings *) |
|
26075
815f3ccc0b45
added lemma lists {normalize,succ,pred,minus,add,mult}_bin_simps
huffman
parents:
25919
diff
changeset
|
46 |
lemmas bituminus = minus_bin_simps |
23664 | 47 |
|
48 |
(* addition for bit strings *) |
|
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
49 |
lemmas bitadd = add_bin_simps |
23664 | 50 |
|
51 |
(* multiplication for bit strings *) |
|
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
52 |
lemma mult_Pls_right: "x * Int.Pls = Int.Pls" by (simp add: Pls_def) |
46985 | 53 |
lemma mult_Min_right: "x * Int.Min = - x" by (subst mult_commute) simp |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
54 |
lemma multb0x: "(Int.Bit0 x) * y = Int.Bit0 (x * y)" by (rule mult_Bit0) |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
55 |
lemma multxb0: "x * (Int.Bit0 y) = Int.Bit0 (x * y)" unfolding Bit0_def by simp |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
56 |
lemma multb1: "(Int.Bit1 x) * (Int.Bit1 y) = Int.Bit1 (Int.Bit0 (x * y) + x + y)" |
29667 | 57 |
unfolding Bit0_def Bit1_def by (simp add: algebra_simps) |
23664 | 58 |
lemmas bitmul = mult_Pls mult_Min mult_Pls_right mult_Min_right multb0x multxb0 multb1 |
59 |
||
60 |
lemmas bitarith = bitnorm bitiszero bitneg bitlezero biteq bitless bitle bitsucc bitpred bituminus bitadd bitmul |
|
61 |
||
38273 | 62 |
definition "nat_norm_number_of (x::nat) = x" |
23664 | 63 |
|
64 |
lemma nat_norm_number_of: "nat_norm_number_of (number_of w) = (if lezero w then 0 else number_of w)" |
|
65 |
apply (simp add: nat_norm_number_of_def) |
|
66 |
unfolding lezero_def iszero_def neg_def |
|
28990 | 67 |
apply (simp add: numeral_simps) |
23664 | 68 |
done |
69 |
||
70 |
(* Normalization of nat literals *) |
|
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
71 |
lemma natnorm0: "(0::nat) = number_of (Int.Pls)" by auto |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
72 |
lemma natnorm1: "(1 :: nat) = number_of (Int.Bit1 Int.Pls)" by auto |
23664 | 73 |
lemmas natnorm = natnorm0 natnorm1 nat_norm_number_of |
74 |
||
75 |
(* Suc *) |
|
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
76 |
lemma natsuc: "Suc (number_of x) = (if neg x then 1 else number_of (Int.succ x))" by (auto simp add: number_of_is_id) |
23664 | 77 |
|
78 |
(* Addition for nat *) |
|
79 |
lemma natadd: "number_of x + ((number_of y)::nat) = (if neg x then (number_of y) else (if neg y then number_of x else (number_of (x + y))))" |
|
29013 | 80 |
unfolding nat_number_of_def number_of_is_id neg_def |
81 |
by auto |
|
23664 | 82 |
|
83 |
(* Subtraction for nat *) |
|
84 |
lemma natsub: "(number_of x) - ((number_of y)::nat) = |
|
85 |
(if neg x then 0 else (if neg y then number_of x else (nat_norm_number_of (number_of (x + (- y))))))" |
|
86 |
unfolding nat_norm_number_of |
|
87 |
by (auto simp add: number_of_is_id neg_def lezero_def iszero_def Let_def nat_number_of_def) |
|
88 |
||
89 |
(* Multiplication for nat *) |
|
90 |
lemma natmul: "(number_of x) * ((number_of y)::nat) = |
|
91 |
(if neg x then 0 else (if neg y then 0 else number_of (x * y)))" |
|
29013 | 92 |
unfolding nat_number_of_def number_of_is_id neg_def |
93 |
by (simp add: nat_mult_distrib) |
|
23664 | 94 |
|
95 |
lemma nateq: "(((number_of x)::nat) = (number_of y)) = ((lezero x \<and> lezero y) \<or> (x = y))" |
|
96 |
by (auto simp add: iszero_def lezero_def neg_def number_of_is_id) |
|
97 |
||
98 |
lemma natless: "(((number_of x)::nat) < (number_of y)) = ((x < y) \<and> (\<not> (lezero y)))" |
|
29013 | 99 |
by (simp add: lezero_def numeral_simps not_le) |
23664 | 100 |
|
101 |
lemma natle: "(((number_of x)::nat) \<le> (number_of y)) = (y < x \<longrightarrow> lezero x)" |
|
102 |
by (auto simp add: number_of_is_id lezero_def nat_number_of_def) |
|
103 |
||
104 |
fun natfac :: "nat \<Rightarrow> nat" |
|
38273 | 105 |
where "natfac n = (if n = 0 then 1 else n * (natfac (n - 1)))" |
23664 | 106 |
|
107 |
lemmas compute_natarith = bitarith natnorm natsuc natadd natsub natmul nateq natless natle natfac.simps |
|
108 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33343
diff
changeset
|
109 |
lemma number_eq: "(((number_of x)::'a::{number_ring, linordered_idom}) = (number_of y)) = (x = y)" |
23664 | 110 |
unfolding number_of_eq |
111 |
apply simp |
|
112 |
done |
|
113 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33343
diff
changeset
|
114 |
lemma number_le: "(((number_of x)::'a::{number_ring, linordered_idom}) \<le> (number_of y)) = (x \<le> y)" |
23664 | 115 |
unfolding number_of_eq |
116 |
apply simp |
|
117 |
done |
|
118 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33343
diff
changeset
|
119 |
lemma number_less: "(((number_of x)::'a::{number_ring, linordered_idom}) < (number_of y)) = (x < y)" |
23664 | 120 |
unfolding number_of_eq |
121 |
apply simp |
|
122 |
done |
|
123 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33343
diff
changeset
|
124 |
lemma number_diff: "((number_of x)::'a::{number_ring, linordered_idom}) - number_of y = number_of (x + (- y))" |
23664 | 125 |
apply (subst diff_number_of_eq) |
126 |
apply simp |
|
127 |
done |
|
128 |
||
129 |
lemmas number_norm = number_of_Pls[symmetric] numeral_1_eq_1[symmetric] |
|
130 |
||
131 |
lemmas compute_numberarith = number_of_minus[symmetric] number_of_add[symmetric] number_diff number_of_mult[symmetric] number_norm number_eq number_le number_less |
|
132 |
||
133 |
lemma compute_real_of_nat_number_of: "real ((number_of v)::nat) = (if neg v then 0 else number_of v)" |
|
134 |
by (simp only: real_of_nat_number_of number_of_is_id) |
|
135 |
||
136 |
lemma compute_nat_of_int_number_of: "nat ((number_of v)::int) = (number_of v)" |
|
137 |
by simp |
|
138 |
||
139 |
lemmas compute_num_conversions = compute_real_of_nat_number_of compute_nat_of_int_number_of real_number_of |
|
140 |
||
141 |
lemmas zpowerarith = zpower_number_of_even |
|
142 |
zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring] |
|
143 |
zpower_Pls zpower_Min |
|
144 |
||
145 |
(* div, mod *) |
|
146 |
||
147 |
lemma adjust: "adjust b (q, r) = (if 0 \<le> r - b then (2 * q + 1, r - b) else (2 * q, r))" |
|
148 |
by (auto simp only: adjust_def) |
|
149 |
||
33343 | 150 |
lemma divmod: "divmod_int a b = (if 0\<le>a then |
23664 | 151 |
if 0\<le>b then posDivAlg a b |
152 |
else if a=0 then (0, 0) |
|
46560
8e252a608765
remove constant negateSnd in favor of 'apsnd uminus' (from Florian Haftmann)
huffman
parents:
38273
diff
changeset
|
153 |
else apsnd uminus (negDivAlg (-a) (-b)) |
23664 | 154 |
else |
155 |
if 0<b then negDivAlg a b |
|
46560
8e252a608765
remove constant negateSnd in favor of 'apsnd uminus' (from Florian Haftmann)
huffman
parents:
38273
diff
changeset
|
156 |
else apsnd uminus (posDivAlg (-a) (-b)))" |
33343 | 157 |
by (auto simp only: divmod_int_def) |
23664 | 158 |
|
46561 | 159 |
lemmas compute_div_mod = div_int_def mod_int_def divmod adjust apsnd_def map_pair_def posDivAlg.simps negDivAlg.simps |
23664 | 160 |
|
161 |
||
162 |
||
163 |
(* collecting all the theorems *) |
|
164 |
||
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
165 |
lemma even_Pls: "even (Int.Pls) = True" |
23664 | 166 |
apply (unfold Pls_def even_def) |
167 |
by simp |
|
168 |
||
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
169 |
lemma even_Min: "even (Int.Min) = False" |
23664 | 170 |
apply (unfold Min_def even_def) |
171 |
by simp |
|
172 |
||
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
173 |
lemma even_B0: "even (Int.Bit0 x) = True" |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
174 |
apply (unfold Bit0_def) |
23664 | 175 |
by simp |
176 |
||
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
177 |
lemma even_B1: "even (Int.Bit1 x) = False" |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
178 |
apply (unfold Bit1_def) |
23664 | 179 |
by simp |
180 |
||
181 |
lemma even_number_of: "even ((number_of w)::int) = even w" |
|
182 |
by (simp only: number_of_is_id) |
|
183 |
||
184 |
lemmas compute_even = even_Pls even_Min even_B0 even_B1 even_number_of |
|
185 |
||
186 |
lemmas compute_numeral = compute_if compute_let compute_pair compute_bool |
|
187 |
compute_natarith compute_numberarith max_def min_def compute_num_conversions zpowerarith compute_div_mod compute_even |
|
188 |
||
189 |
end |