doc-src/TutorialI/Inductive/document/Even.tex
author wenzelm
Tue, 23 Oct 2007 14:00:06 +0200
changeset 25160 72fcf0832cfe
parent 23928 efee34ff4764
child 25330 15bf0f47a87d
permissions -rw-r--r--
updated;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
     1
%
a17cf465d29a auto generated
paulson
parents:
diff changeset
     2
\begin{isabellebody}%
a17cf465d29a auto generated
paulson
parents:
diff changeset
     3
\def\isabellecontext{Even}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     4
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     5
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     6
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     7
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     8
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     9
\isatagtheory
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    10
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    11
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    12
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    13
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    14
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    15
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    16
\endisadelimtheory
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    17
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    18
\isamarkupsection{The Set of Even Numbers%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    19
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    20
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    21
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    22
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    23
\index{even numbers!defining inductively|(}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    24
The set of even numbers can be inductively defined as the least set
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    25
containing 0 and closed under the operation $+2$.  Obviously,
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    26
\emph{even} can also be expressed using the divides relation (\isa{dvd}). 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    27
We shall prove below that the two formulations coincide.  On the way we
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    28
shall examine the primary means of reasoning about inductively defined
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    29
sets: rule induction.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    30
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    31
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    32
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    33
\isamarkupsubsection{Making an Inductive Definition%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    34
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    35
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    36
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    37
\begin{isamarkuptext}%
23928
efee34ff4764 Protected underscore in inductive_set.
berghofe
parents: 23848
diff changeset
    38
Using \commdx{inductive\protect\_set}, we declare the constant \isa{even} to be
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    39
a set of natural numbers with the desired properties.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    40
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    41
\isamarkuptrue%
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 21261
diff changeset
    42
\isacommand{inductive{\isacharunderscore}set}\isamarkupfalse%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    43
\ even\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ set{\isachardoublequoteclose}\isanewline
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 21261
diff changeset
    44
\isakeyword{where}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 21261
diff changeset
    45
\ \ zero{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}{\isadigit{0}}\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 21261
diff changeset
    46
{\isacharbar}\ step{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymin}\ even{\isachardoublequoteclose}%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
    47
\begin{isamarkuptext}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    48
An inductive definition consists of introduction rules.  The first one
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    49
above states that 0 is even; the second states that if $n$ is even, then so
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    50
is~$n+2$.  Given this declaration, Isabelle generates a fixed point
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    51
definition for \isa{even} and proves theorems about it,
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    52
thus following the definitional approach (see {\S}\ref{sec:definitional}).
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    53
These theorems
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    54
include the introduction rules specified in the declaration, an elimination
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    55
rule for case analysis and an induction rule.  We can refer to these
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    56
theorems by automatically-generated names.  Here are two examples:
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
    57
\begin{isabelle}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    58
{\isadigit{0}}\ {\isasymin}\ even\rulename{even{\isachardot}zero}\par\smallskip%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    59
n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\rulename{even{\isachardot}step}%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
    60
\end{isabelle}
a17cf465d29a auto generated
paulson
parents:
diff changeset
    61
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    62
The introduction rules can be given attributes.  Here
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    63
both rules are specified as \isa{intro!},%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    64
\index{intro"!@\isa {intro"!} (attribute)}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    65
directing the classical reasoner to 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    66
apply them aggressively. Obviously, regarding 0 as even is safe.  The
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    67
\isa{step} rule is also safe because $n+2$ is even if and only if $n$ is
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    68
even.  We prove this equivalence later.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    69
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    70
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    71
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    72
\isamarkupsubsection{Using Introduction Rules%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    73
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    74
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    75
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    76
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    77
Our first lemma states that numbers of the form $2\times k$ are even.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    78
Introduction rules are used to show that specific values belong to the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    79
inductive set.  Such proofs typically involve 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    80
induction, perhaps over some other inductive set.%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
    81
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    82
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    83
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    84
\ two{\isacharunderscore}times{\isacharunderscore}even{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}{\isadigit{2}}{\isacharasterisk}k\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    85
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    86
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    87
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    88
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    89
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    90
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    91
\isacommand{apply}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    92
\ {\isacharparenleft}induct{\isacharunderscore}tac\ k{\isacharparenright}\isanewline
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    93
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    94
\ auto\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    95
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    96
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    97
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    98
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    99
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   100
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   101
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   102
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   103
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   104
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   105
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   106
\endisadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   107
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   108
\isatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   109
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   110
\begin{isamarkuptxt}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   111
\noindent
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   112
The first step is induction on the natural number \isa{k}, which leaves
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   113
two subgoals:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   114
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   115
\ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ {\isadigit{0}}\ {\isasymin}\ even\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   116
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isadigit{2}}\ {\isacharasterisk}\ Suc\ n\ {\isasymin}\ even%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   117
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   118
Here \isa{auto} simplifies both subgoals so that they match the introduction
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   119
rules, which are then applied automatically.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   120
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   121
Our ultimate goal is to prove the equivalence between the traditional
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   122
definition of \isa{even} (using the divides relation) and our inductive
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   123
definition.  One direction of this equivalence is immediate by the lemma
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   124
just proved, whose \isa{intro{\isacharbang}} attribute ensures it is applied automatically.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   125
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   126
\isamarkuptrue%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   127
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   128
\endisatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   129
{\isafoldproof}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   130
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   131
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   132
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   133
\endisadelimproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   134
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   135
\ dvd{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequoteopen}{\isadigit{2}}\ dvd\ n\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   136
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   137
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   138
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   139
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   140
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   141
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   142
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   143
\ {\isacharparenleft}auto\ simp\ add{\isacharcolon}\ dvd{\isacharunderscore}def{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   144
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   145
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   146
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   147
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   148
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   149
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   150
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   151
\isamarkupsubsection{Rule Induction \label{sec:rule-induction}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   152
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   153
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   154
%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   155
\begin{isamarkuptext}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   156
\index{rule induction|(}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   157
From the definition of the set
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   158
\isa{even}, Isabelle has
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   159
generated an induction rule:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   160
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   161
{\isasymlbrakk}x\ {\isasymin}\ even{\isacharsemicolon}\ P\ {\isadigit{0}}{\isacharsemicolon}\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   162
\isaindent{\ }{\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ P\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isasymrbrakk}\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   163
{\isasymLongrightarrow}\ P\ x\rulename{even{\isachardot}induct}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   164
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   165
A property \isa{P} holds for every even number provided it
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   166
holds for~\isa{{\isadigit{0}}} and is closed under the operation
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   167
\isa{Suc(Suc \(\cdot\))}.  Then \isa{P} is closed under the introduction
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   168
rules for \isa{even}, which is the least set closed under those rules. 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   169
This type of inductive argument is called \textbf{rule induction}. 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   170
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   171
Apart from the double application of \isa{Suc}, the induction rule above
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   172
resembles the familiar mathematical induction, which indeed is an instance
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   173
of rule induction; the natural numbers can be defined inductively to be
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   174
the least set containing \isa{{\isadigit{0}}} and closed under~\isa{Suc}.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   175
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   176
Induction is the usual way of proving a property of the elements of an
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   177
inductively defined set.  Let us prove that all members of the set
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   178
\isa{even} are multiples of two.%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   179
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   180
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   181
\isacommand{lemma}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   182
\ even{\isacharunderscore}imp{\isacharunderscore}dvd{\isacharcolon}\ {\isachardoublequoteopen}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ n{\isachardoublequoteclose}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   183
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   184
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   185
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   186
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   187
\isatagproof
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   188
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   189
\begin{isamarkuptxt}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   190
We begin by applying induction.  Note that \isa{even{\isachardot}induct} has the form
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   191
of an elimination rule, so we use the method \isa{erule}.  We get two
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   192
subgoals:%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   193
\end{isamarkuptxt}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   194
\isamarkuptrue%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   195
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   196
\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   197
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   198
\begin{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   199
\ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ dvd\ {\isadigit{0}}\isanewline
21261
58223c67fd8b updated;
wenzelm
parents: 17187
diff changeset
   200
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   201
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   202
We unfold the definition of \isa{dvd} in both subgoals, proving the first
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   203
one and simplifying the second:%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   204
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   205
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   206
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   207
\ {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ dvd{\isacharunderscore}def{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   208
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   209
\begin{isabelle}%
21261
58223c67fd8b updated;
wenzelm
parents: 17187
diff changeset
   210
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isasymexists}k{\isachardot}\ n\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ k{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isasymexists}k{\isachardot}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ k%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   211
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   212
The next command eliminates the existential quantifier from the assumption
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   213
and replaces \isa{n} by \isa{{\isadigit{2}}\ {\isacharasterisk}\ k}.%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   214
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   215
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   216
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   217
\ clarify%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   218
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   219
\begin{isabelle}%
21261
58223c67fd8b updated;
wenzelm
parents: 17187
diff changeset
   220
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n\ k{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ k\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isasymexists}ka{\isachardot}\ Suc\ {\isacharparenleft}Suc\ {\isacharparenleft}{\isadigit{2}}\ {\isacharasterisk}\ k{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ ka%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   221
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   222
To conclude, we tell Isabelle that the desired value is
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   223
\isa{Suc\ k}.  With this hint, the subgoal falls to \isa{simp}.%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   224
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   225
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   226
\isacommand{apply}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   227
\ {\isacharparenleft}rule{\isacharunderscore}tac\ x\ {\isacharequal}\ {\isachardoublequoteopen}Suc\ k{\isachardoublequoteclose}\ \isakeyword{in}\ exI{\isacharcomma}\ simp{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   228
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   229
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   230
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   231
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   232
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   233
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   234
%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   235
\begin{isamarkuptext}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   236
Combining the previous two results yields our objective, the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   237
equivalence relating \isa{even} and \isa{dvd}. 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   238
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   239
%we don't want [iff]: discuss?%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   240
\end{isamarkuptext}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   241
\isamarkuptrue%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   242
\isacommand{theorem}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   243
\ even{\isacharunderscore}iff{\isacharunderscore}dvd{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}n\ {\isasymin}\ even{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isadigit{2}}\ dvd\ n{\isacharparenright}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   244
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   245
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   246
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   247
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   248
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   249
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   250
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   251
\ {\isacharparenleft}blast\ intro{\isacharcolon}\ dvd{\isacharunderscore}imp{\isacharunderscore}even\ even{\isacharunderscore}imp{\isacharunderscore}dvd{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   252
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   253
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   254
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   255
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   256
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   257
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   258
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   259
\isamarkupsubsection{Generalization and Rule Induction \label{sec:gen-rule-induction}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   260
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   261
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   262
%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   263
\begin{isamarkuptext}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   264
\index{generalizing for induction}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   265
Before applying induction, we typically must generalize
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   266
the induction formula.  With rule induction, the required generalization
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   267
can be hard to find and sometimes requires a complete reformulation of the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   268
problem.  In this  example, our first attempt uses the obvious statement of
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   269
the result.  It fails:%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   270
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   271
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   272
\isacommand{lemma}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   273
\ {\isachardoublequoteopen}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   274
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   275
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   276
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   277
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   278
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   279
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   280
\isacommand{apply}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   281
\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}\isanewline
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   282
\isacommand{oops}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   283
%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   284
\endisatagproof
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   285
{\isafoldproof}%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   286
%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   287
\isadelimproof
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   288
%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   289
\endisadelimproof
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   290
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   291
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   292
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   293
\endisadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   294
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   295
\isatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   296
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   297
\begin{isamarkuptxt}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   298
Rule induction finds no occurrences of \isa{Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}} in the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   299
conclusion, which it therefore leaves unchanged.  (Look at
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   300
\isa{even{\isachardot}induct} to see why this happens.)  We have these subgoals:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   301
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   302
\ {\isadigit{1}}{\isachardot}\ n\ {\isasymin}\ even\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   303
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}na{\isachardot}\ {\isasymlbrakk}na\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   304
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   305
The first one is hopeless.  Rule induction on
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   306
a non-variable term discards information, and usually fails.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   307
How to deal with such situations
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   308
in general is described in {\S}\ref{sec:ind-var-in-prems} below.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   309
In the current case the solution is easy because
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   310
we have the necessary inverse, subtraction:%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   311
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   312
\isamarkuptrue%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   313
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   314
\endisatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   315
{\isafoldproof}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   316
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   317
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   318
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   319
\endisadelimproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   320
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   321
\ even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}{\isacharcolon}\ {\isachardoublequoteopen}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   322
%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   323
\isadelimproof
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   324
%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   325
\endisadelimproof
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   326
%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   327
\isatagproof
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   328
\isacommand{apply}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   329
\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   330
\ \isacommand{apply}\isamarkupfalse%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   331
\ auto\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   332
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   333
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   334
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   335
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   336
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   337
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   338
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   339
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   340
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   341
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   342
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   343
\endisadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   344
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   345
\isatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   346
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   347
\begin{isamarkuptxt}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   348
This lemma is trivially inductive.  Here are the subgoals:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   349
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   350
\ {\isadigit{1}}{\isachardot}\ {\isadigit{0}}\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   351
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   352
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   353
The first is trivial because \isa{{\isadigit{0}}\ {\isacharminus}\ {\isadigit{2}}} simplifies to \isa{{\isadigit{0}}}, which is
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   354
even.  The second is trivial too: \isa{Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharminus}\ {\isadigit{2}}} simplifies to
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   355
\isa{n}, matching the assumption.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   356
\index{rule induction|)}  %the sequel isn't really about induction
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   357
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   358
\medskip
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   359
Using our lemma, we can easily prove the result we originally wanted:%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   360
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   361
\isamarkuptrue%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   362
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   363
\endisatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   364
{\isafoldproof}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   365
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   366
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   367
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   368
\endisadelimproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   369
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   370
\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequoteopen}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   371
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   372
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   373
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   374
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   375
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   376
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   377
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   378
\ {\isacharparenleft}drule\ even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}{\isacharcomma}\ simp{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   379
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   380
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   381
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   382
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   383
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   384
\endisadelimproof
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   385
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   386
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   387
We have just proved the converse of the introduction rule \isa{even{\isachardot}step}.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   388
This suggests proving the following equivalence.  We give it the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   389
\attrdx{iff} attribute because of its obvious value for simplification.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   390
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   391
\isamarkuptrue%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   392
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   393
\ {\isacharbrackleft}iff{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymin}\ even{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}n\ {\isasymin}\ even{\isacharparenright}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   394
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   395
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   396
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   397
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   398
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   399
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   400
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   401
\ {\isacharparenleft}blast\ dest{\isacharcolon}\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   402
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   403
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   404
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   405
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   406
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   407
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   408
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   409
\isamarkupsubsection{Rule Inversion \label{sec:rule-inversion}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   410
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   411
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   412
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   413
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   414
\index{rule inversion|(}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   415
Case analysis on an inductive definition is called \textbf{rule
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   416
inversion}.  It is frequently used in proofs about operational
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   417
semantics.  It can be highly effective when it is applied
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   418
automatically.  Let us look at how rule inversion is done in
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   419
Isabelle/HOL\@.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   420
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   421
Recall that \isa{even} is the minimal set closed under these two rules:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   422
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   423
{\isadigit{0}}\ {\isasymin}\ even\isasep\isanewline%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   424
n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   425
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   426
Minimality means that \isa{even} contains only the elements that these
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   427
rules force it to contain.  If we are told that \isa{a}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   428
belongs to
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   429
\isa{even} then there are only two possibilities.  Either \isa{a} is \isa{{\isadigit{0}}}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   430
or else \isa{a} has the form \isa{Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}}, for some suitable \isa{n}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   431
that belongs to
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   432
\isa{even}.  That is the gist of the \isa{cases} rule, which Isabelle proves
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   433
for us when it accepts an inductive definition:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   434
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   435
{\isasymlbrakk}a\ {\isasymin}\ even{\isacharsemicolon}\ a\ {\isacharequal}\ {\isadigit{0}}\ {\isasymLongrightarrow}\ P{\isacharsemicolon}\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   436
\isaindent{\ }{\isasymAnd}n{\isachardot}\ {\isasymlbrakk}a\ {\isacharequal}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharsemicolon}\ n\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ P{\isasymrbrakk}\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   437
{\isasymLongrightarrow}\ P\rulename{even{\isachardot}cases}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   438
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   439
This general rule is less useful than instances of it for
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   440
specific patterns.  For example, if \isa{a} has the form
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   441
\isa{Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}} then the first case becomes irrelevant, while the second
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   442
case tells us that \isa{n} belongs to \isa{even}.  Isabelle will generate
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   443
this instance for us:%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   444
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   445
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   446
\isacommand{inductive{\isacharunderscore}cases}\isamarkupfalse%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   447
\ Suc{\isacharunderscore}Suc{\isacharunderscore}cases\ {\isacharbrackleft}elim{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}Suc{\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even{\isachardoublequoteclose}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   448
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   449
The \commdx{inductive\protect\_cases} command generates an instance of
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   450
the \isa{cases} rule for the supplied pattern and gives it the supplied name:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   451
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   452
{\isasymlbrakk}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\rulename{Suc{\isacharunderscore}Suc{\isacharunderscore}cases}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   453
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   454
Applying this as an elimination rule yields one case where \isa{even{\isachardot}cases}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   455
would yield two.  Rule inversion works well when the conclusions of the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   456
introduction rules involve datatype constructors like \isa{Suc} and \isa{{\isacharhash}}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   457
(list ``cons''); freeness reasoning discards all but one or two cases.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   458
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   459
In the \isacommand{inductive\_cases} command we supplied an
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   460
attribute, \isa{elim{\isacharbang}},
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   461
\index{elim"!@\isa {elim"!} (attribute)}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   462
indicating that this elimination rule can be
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   463
applied aggressively.  The original
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   464
\isa{cases} rule would loop if used in that manner because the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   465
pattern~\isa{a} matches everything.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   466
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   467
The rule \isa{Suc{\isacharunderscore}Suc{\isacharunderscore}cases} is equivalent to the following implication:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   468
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   469
Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   470
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   471
Just above we devoted some effort to reaching precisely
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   472
this result.  Yet we could have obtained it by a one-line declaration,
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   473
dispensing with the lemma \isa{even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}}. 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   474
This example also justifies the terminology
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   475
\textbf{rule inversion}: the new rule inverts the introduction rule
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   476
\isa{even{\isachardot}step}.  In general, a rule can be inverted when the set of elements
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   477
it introduces is disjoint from those of the other introduction rules.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   478
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   479
For one-off applications of rule inversion, use the \methdx{ind_cases} method. 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   480
Here is an example:%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   481
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   482
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   483
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   484
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   485
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   486
\endisadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   487
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   488
\isatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   489
\isacommand{apply}\isamarkupfalse%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   490
\ {\isacharparenleft}ind{\isacharunderscore}cases\ {\isachardoublequoteopen}Suc{\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even{\isachardoublequoteclose}{\isacharparenright}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   491
\endisatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   492
{\isafoldproof}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   493
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   494
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   495
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   496
\endisadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   497
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   498
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   499
The specified instance of the \isa{cases} rule is generated, then applied
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   500
as an elimination rule.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   501
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   502
To summarize, every inductive definition produces a \isa{cases} rule.  The
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   503
\commdx{inductive\protect\_cases} command stores an instance of the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   504
\isa{cases} rule for a given pattern.  Within a proof, the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   505
\isa{ind{\isacharunderscore}cases} method applies an instance of the \isa{cases}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   506
rule.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   507
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   508
The even numbers example has shown how inductive definitions can be
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   509
used.  Later examples will show that they are actually worth using.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   510
\index{rule inversion|)}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   511
\index{even numbers!defining inductively|)}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   512
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   513
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   514
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   515
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   516
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   517
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   518
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   519
\isatagtheory
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   520
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   521
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   522
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   523
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   524
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   525
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   526
\endisadelimtheory
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   527
\end{isabellebody}%
a17cf465d29a auto generated
paulson
parents:
diff changeset
   528
%%% Local Variables:
a17cf465d29a auto generated
paulson
parents:
diff changeset
   529
%%% mode: latex
a17cf465d29a auto generated
paulson
parents:
diff changeset
   530
%%% TeX-master: "root"
a17cf465d29a auto generated
paulson
parents:
diff changeset
   531
%%% End: