src/HOL/PreList.thy
author wenzelm
Wed, 22 Jun 2005 19:41:24 +0200
changeset 16538 7318c205a67f
parent 15298 a5bea99352d6
child 16760 5c5f051aaaaa
permissions -rw-r--r--
removed obsolete object.ML (see Pure/library.ML);
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10519
ade64af4c57c hide many names from Datatype_Universe.
nipkow
parents: 10261
diff changeset
     1
(*  Title:      HOL/PreList.thy
8563
2746bc9a7ef2 comments
nipkow
parents: 8490
diff changeset
     2
    ID:         $Id$
10733
59f82484e000 hide type node item;
wenzelm
parents: 10680
diff changeset
     3
    Author:     Tobias Nipkow and Markus Wenzel
8563
2746bc9a7ef2 comments
nipkow
parents: 8490
diff changeset
     4
    Copyright   2000 TU Muenchen
2746bc9a7ef2 comments
nipkow
parents: 8490
diff changeset
     5
*)
8490
6e0f23304061 added HOL/PreLIst.thy;
wenzelm
parents:
diff changeset
     6
14125
paulson
parents: 13878
diff changeset
     7
header{*A Basis for Building the Theory of Lists*}
12020
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11955
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14577
diff changeset
     9
theory PreList
15298
a5bea99352d6 Barith removed
chaieb
parents: 15231
diff changeset
    10
imports Wellfounded_Relations Presburger Recdef Relation_Power Parity
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14577
diff changeset
    11
begin
12397
6766aa05e4eb less_induct, wf_induct_rule;
wenzelm
parents: 12304
diff changeset
    12
14577
dbb95b825244 tuned document;
wenzelm
parents: 14430
diff changeset
    13
text {*
dbb95b825244 tuned document;
wenzelm
parents: 14430
diff changeset
    14
  Is defined separately to serve as a basis for theory ToyList in the
dbb95b825244 tuned document;
wenzelm
parents: 14430
diff changeset
    15
  documentation. *}
dbb95b825244 tuned document;
wenzelm
parents: 14430
diff changeset
    16
12397
6766aa05e4eb less_induct, wf_induct_rule;
wenzelm
parents: 12304
diff changeset
    17
lemmas wf_induct_rule = wf_induct [rule_format, case_names less, induct set: wf]
14577
dbb95b825244 tuned document;
wenzelm
parents: 14430
diff changeset
    18
  -- {* belongs to theory @{text Wellfounded_Recursion} *}
9066
b1e874e38dab theorems [cases type: bool] = case_split;
wenzelm
parents: 8862
diff changeset
    19
8490
6e0f23304061 added HOL/PreLIst.thy;
wenzelm
parents:
diff changeset
    20
end