| author | wenzelm | 
| Wed, 07 Nov 2007 22:20:11 +0100 | |
| changeset 25332 | 73491e84ead1 | 
| parent 25112 | 98824cc791c0 | 
| child 25594 | 43c718438f9f | 
| permissions | -rw-r--r-- | 
| 21256 | 1 | (* Title: HOL/GCD.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Christophe Tabacznyj and Lawrence C Paulson | |
| 4 | Copyright 1996 University of Cambridge | |
| 5 | *) | |
| 6 | ||
| 7 | header {* The Greatest Common Divisor *}
 | |
| 8 | ||
| 9 | theory GCD | |
| 10 | imports Main | |
| 11 | begin | |
| 12 | ||
| 13 | text {*
 | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 14 |   See \cite{davenport92}. \bigskip
 | 
| 21256 | 15 | *} | 
| 16 | ||
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 17 | subsection {* Specification of GCD on nats *}
 | 
| 21256 | 18 | |
| 21263 | 19 | definition | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 20 |   is_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where -- {* @{term gcd} as a relation *}
 | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 21 | "is_gcd p m n \<longleftrightarrow> p dvd m \<and> p dvd n \<and> | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 22 | (\<forall>d. d dvd m \<longrightarrow> d dvd n \<longrightarrow> d dvd p)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 23 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 24 | text {* Uniqueness *}
 | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 25 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 26 | lemma is_gcd_unique: "is_gcd m a b \<Longrightarrow> is_gcd n a b \<Longrightarrow> m = n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 27 | by (simp add: is_gcd_def) (blast intro: dvd_anti_sym) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 28 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 29 | text {* Connection to divides relation *}
 | 
| 21256 | 30 | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 31 | lemma is_gcd_dvd: "is_gcd m a b \<Longrightarrow> k dvd a \<Longrightarrow> k dvd b \<Longrightarrow> k dvd m" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 32 | by (auto simp add: is_gcd_def) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 33 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 34 | text {* Commutativity *}
 | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 35 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 36 | lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 37 | by (auto simp add: is_gcd_def) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 38 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 39 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 40 | subsection {* GCD on nat by Euclid's algorithm *}
 | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 41 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 42 | fun | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 43 | gcd :: "nat \<times> nat => nat" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 44 | where | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 45 | "gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))" | 
| 21256 | 46 | |
| 47 | lemma gcd_induct: | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 48 | fixes m n :: nat | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 49 | assumes "\<And>m. P m 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 50 | and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 51 | shows "P m n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 52 | apply (rule gcd.induct [of "split P" "(m, n)", unfolded Product_Type.split]) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 53 | apply (case_tac "n = 0") | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 54 | apply simp_all | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 55 | using assms apply simp_all | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 56 | done | 
| 21256 | 57 | |
| 58 | lemma gcd_0 [simp]: "gcd (m, 0) = m" | |
| 21263 | 59 | by simp | 
| 21256 | 60 | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 61 | lemma gcd_0_left [simp]: "gcd (0, m) = m" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 62 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 63 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 64 | lemma gcd_non_0: "n > 0 \<Longrightarrow> gcd (m, n) = gcd (n, m mod n)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 65 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 66 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 67 | lemma gcd_1 [simp]: "gcd (m, Suc 0) = 1" | 
| 21263 | 68 | by simp | 
| 21256 | 69 | |
| 70 | declare gcd.simps [simp del] | |
| 71 | ||
| 72 | text {*
 | |
| 73 |   \medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}.  The
 | |
| 74 | conjunctions don't seem provable separately. | |
| 75 | *} | |
| 76 | ||
| 77 | lemma gcd_dvd1 [iff]: "gcd (m, n) dvd m" | |
| 78 | and gcd_dvd2 [iff]: "gcd (m, n) dvd n" | |
| 79 | apply (induct m n rule: gcd_induct) | |
| 21263 | 80 | apply (simp_all add: gcd_non_0) | 
| 21256 | 81 | apply (blast dest: dvd_mod_imp_dvd) | 
| 82 | done | |
| 83 | ||
| 84 | text {*
 | |
| 85 |   \medskip Maximality: for all @{term m}, @{term n}, @{term k}
 | |
| 86 |   naturals, if @{term k} divides @{term m} and @{term k} divides
 | |
| 87 |   @{term n} then @{term k} divides @{term "gcd (m, n)"}.
 | |
| 88 | *} | |
| 89 | ||
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 90 | lemma gcd_greatest: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd (m, n)" | 
| 21263 | 91 | by (induct m n rule: gcd_induct) (simp_all add: gcd_non_0 dvd_mod) | 
| 21256 | 92 | |
| 93 | text {*
 | |
| 94 | \medskip Function gcd yields the Greatest Common Divisor. | |
| 95 | *} | |
| 96 | ||
| 97 | lemma is_gcd: "is_gcd (gcd (m, n)) m n" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 98 | by (simp add: is_gcd_def gcd_greatest) | 
| 21256 | 99 | |
| 100 | ||
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 101 | subsection {* Derived laws for GCD *}
 | 
| 21256 | 102 | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 103 | lemma gcd_greatest_iff [iff]: "k dvd gcd (m, n) \<longleftrightarrow> k dvd m \<and> k dvd n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 104 | by (blast intro!: gcd_greatest intro: dvd_trans) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 105 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 106 | lemma gcd_zero: "gcd (m, n) = 0 \<longleftrightarrow> m = 0 \<and> n = 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 107 | by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff) | 
| 21256 | 108 | |
| 109 | lemma gcd_commute: "gcd (m, n) = gcd (n, m)" | |
| 110 | apply (rule is_gcd_unique) | |
| 111 | apply (rule is_gcd) | |
| 112 | apply (subst is_gcd_commute) | |
| 113 | apply (simp add: is_gcd) | |
| 114 | done | |
| 115 | ||
| 116 | lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))" | |
| 117 | apply (rule is_gcd_unique) | |
| 118 | apply (rule is_gcd) | |
| 119 | apply (simp add: is_gcd_def) | |
| 120 | apply (blast intro: dvd_trans) | |
| 121 | done | |
| 122 | ||
| 123 | lemma gcd_1_left [simp]: "gcd (Suc 0, m) = 1" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 124 | by (simp add: gcd_commute) | 
| 21256 | 125 | |
| 126 | text {*
 | |
| 127 | \medskip Multiplication laws | |
| 128 | *} | |
| 129 | ||
| 130 | lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)" | |
| 131 |     -- {* \cite[page 27]{davenport92} *}
 | |
| 132 | apply (induct m n rule: gcd_induct) | |
| 133 | apply simp | |
| 134 | apply (case_tac "k = 0") | |
| 135 | apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2) | |
| 136 | done | |
| 137 | ||
| 138 | lemma gcd_mult [simp]: "gcd (k, k * n) = k" | |
| 139 | apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric]) | |
| 140 | done | |
| 141 | ||
| 142 | lemma gcd_self [simp]: "gcd (k, k) = k" | |
| 143 | apply (rule gcd_mult [of k 1, simplified]) | |
| 144 | done | |
| 145 | ||
| 146 | lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m" | |
| 147 | apply (insert gcd_mult_distrib2 [of m k n]) | |
| 148 | apply simp | |
| 149 | apply (erule_tac t = m in ssubst) | |
| 150 | apply simp | |
| 151 | done | |
| 152 | ||
| 153 | lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)" | |
| 154 | apply (blast intro: relprime_dvd_mult dvd_trans) | |
| 155 | done | |
| 156 | ||
| 157 | lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)" | |
| 158 | apply (rule dvd_anti_sym) | |
| 159 | apply (rule gcd_greatest) | |
| 160 | apply (rule_tac n = k in relprime_dvd_mult) | |
| 161 | apply (simp add: gcd_assoc) | |
| 162 | apply (simp add: gcd_commute) | |
| 163 | apply (simp_all add: mult_commute) | |
| 164 | apply (blast intro: dvd_trans) | |
| 165 | done | |
| 166 | ||
| 167 | ||
| 168 | text {* \medskip Addition laws *}
 | |
| 169 | ||
| 170 | lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)" | |
| 171 | apply (case_tac "n = 0") | |
| 172 | apply (simp_all add: gcd_non_0) | |
| 173 | done | |
| 174 | ||
| 175 | lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)" | |
| 176 | proof - | |
| 22367 | 177 | have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute) | 
| 21256 | 178 | also have "... = gcd (n + m, m)" by (simp add: add_commute) | 
| 179 | also have "... = gcd (n, m)" by simp | |
| 22367 | 180 | also have "... = gcd (m, n)" by (rule gcd_commute) | 
| 21256 | 181 | finally show ?thesis . | 
| 182 | qed | |
| 183 | ||
| 184 | lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)" | |
| 185 | apply (subst add_commute) | |
| 186 | apply (rule gcd_add2) | |
| 187 | done | |
| 188 | ||
| 189 | lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)" | |
| 21263 | 190 | by (induct k) (simp_all add: add_assoc) | 
| 21256 | 191 | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 192 | lemma gcd_dvd_prod: "gcd (m, n) dvd m * n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 193 | using mult_dvd_mono [of 1] by auto | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 194 | |
| 22367 | 195 | text {*
 | 
| 196 | \medskip Division by gcd yields rrelatively primes. | |
| 197 | *} | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 198 | |
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 199 | lemma div_gcd_relprime: | 
| 22367 | 200 | assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0" | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 201 | shows "gcd (a div gcd(a,b), b div gcd(a,b)) = 1" | 
| 22367 | 202 | proof - | 
| 203 | let ?g = "gcd (a, b)" | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 204 | let ?a' = "a div ?g" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 205 | let ?b' = "b div ?g" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 206 | let ?g' = "gcd (?a', ?b')" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 207 | have dvdg: "?g dvd a" "?g dvd b" by simp_all | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 208 | have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all | 
| 22367 | 209 | from dvdg dvdg' obtain ka kb ka' kb' where | 
| 210 | kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 211 | unfolding dvd_def by blast | 
| 22367 | 212 | then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" by simp_all | 
| 213 | then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" | |
| 214 | by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] | |
| 215 | dvd_mult_div_cancel [OF dvdg(2)] dvd_def) | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 216 | have "?g \<noteq> 0" using nz by (simp add: gcd_zero) | 
| 22367 | 217 | then have gp: "?g > 0" by simp | 
| 218 | from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . | |
| 219 | with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 220 | qed | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 221 | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 222 | subsection {* LCM defined by GCD *}
 | 
| 22367 | 223 | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 224 | definition | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 225 | lcm :: "nat \<times> nat \<Rightarrow> nat" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 226 | where | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 227 | "lcm = (\<lambda>(m, n). m * n div gcd (m, n))" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 228 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 229 | lemma lcm_def: | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 230 | "lcm (m, n) = m * n div gcd (m, n)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 231 | unfolding lcm_def by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 232 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 233 | lemma prod_gcd_lcm: | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 234 | "m * n = gcd (m, n) * lcm (m, n)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 235 | unfolding lcm_def by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod]) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 236 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 237 | lemma lcm_0 [simp]: "lcm (m, 0) = 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 238 | unfolding lcm_def by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 239 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 240 | lemma lcm_1 [simp]: "lcm (m, 1) = m" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 241 | unfolding lcm_def by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 242 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 243 | lemma lcm_0_left [simp]: "lcm (0, n) = 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 244 | unfolding lcm_def by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 245 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 246 | lemma lcm_1_left [simp]: "lcm (1, m) = m" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 247 | unfolding lcm_def by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 248 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 249 | lemma dvd_pos: | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 250 | fixes n m :: nat | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 251 | assumes "n > 0" and "m dvd n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 252 | shows "m > 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 253 | using assms by (cases m) auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 254 | |
| 23951 | 255 | lemma lcm_least: | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 256 | assumes "m dvd k" and "n dvd k" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 257 | shows "lcm (m, n) dvd k" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 258 | proof (cases k) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 259 | case 0 then show ?thesis by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 260 | next | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 261 | case (Suc _) then have pos_k: "k > 0" by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 262 | from assms dvd_pos [OF this] have pos_mn: "m > 0" "n > 0" by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 263 | with gcd_zero [of m n] have pos_gcd: "gcd (m, n) > 0" by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 264 | from assms obtain p where k_m: "k = m * p" using dvd_def by blast | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 265 | from assms obtain q where k_n: "k = n * q" using dvd_def by blast | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 266 | from pos_k k_m have pos_p: "p > 0" by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 267 | from pos_k k_n have pos_q: "q > 0" by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 268 | have "k * k * gcd (q, p) = k * gcd (k * q, k * p)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 269 | by (simp add: mult_ac gcd_mult_distrib2) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 270 | also have "\<dots> = k * gcd (m * p * q, n * q * p)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 271 | by (simp add: k_m [symmetric] k_n [symmetric]) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 272 | also have "\<dots> = k * p * q * gcd (m, n)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 273 | by (simp add: mult_ac gcd_mult_distrib2) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 274 | finally have "(m * p) * (n * q) * gcd (q, p) = k * p * q * gcd (m, n)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 275 | by (simp only: k_m [symmetric] k_n [symmetric]) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 276 | then have "p * q * m * n * gcd (q, p) = p * q * k * gcd (m, n)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 277 | by (simp add: mult_ac) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 278 | with pos_p pos_q have "m * n * gcd (q, p) = k * gcd (m, n)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 279 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 280 | with prod_gcd_lcm [of m n] | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 281 | have "lcm (m, n) * gcd (q, p) * gcd (m, n) = k * gcd (m, n)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 282 | by (simp add: mult_ac) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 283 | with pos_gcd have "lcm (m, n) * gcd (q, p) = k" by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 284 | then show ?thesis using dvd_def by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 285 | qed | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 286 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 287 | lemma lcm_dvd1 [iff]: | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 288 | "m dvd lcm (m, n)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 289 | proof (cases m) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 290 | case 0 then show ?thesis by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 291 | next | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 292 | case (Suc _) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 293 | then have mpos: "m > 0" by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 294 | show ?thesis | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 295 | proof (cases n) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 296 | case 0 then show ?thesis by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 297 | next | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 298 | case (Suc _) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 299 | then have npos: "n > 0" by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 300 | have "gcd (m, n) dvd n" by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 301 | then obtain k where "n = gcd (m, n) * k" using dvd_def by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 302 | then have "m * n div gcd (m, n) = m * (gcd (m, n) * k) div gcd (m, n)" by (simp add: mult_ac) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 303 | also have "\<dots> = m * k" using mpos npos gcd_zero by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 304 | finally show ?thesis by (simp add: lcm_def) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 305 | qed | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 306 | qed | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 307 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 308 | lemma lcm_dvd2 [iff]: | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 309 | "n dvd lcm (m, n)" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 310 | proof (cases n) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 311 | case 0 then show ?thesis by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 312 | next | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 313 | case (Suc _) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 314 | then have npos: "n > 0" by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 315 | show ?thesis | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 316 | proof (cases m) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 317 | case 0 then show ?thesis by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 318 | next | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 319 | case (Suc _) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 320 | then have mpos: "m > 0" by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 321 | have "gcd (m, n) dvd m" by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 322 | then obtain k where "m = gcd (m, n) * k" using dvd_def by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 323 | then have "m * n div gcd (m, n) = (gcd (m, n) * k) * n div gcd (m, n)" by (simp add: mult_ac) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 324 | also have "\<dots> = n * k" using mpos npos gcd_zero by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 325 | finally show ?thesis by (simp add: lcm_def) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 326 | qed | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 327 | qed | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 328 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 329 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 330 | subsection {* GCD and LCM on integers *}
 | 
| 22367 | 331 | |
| 332 | definition | |
| 333 | igcd :: "int \<Rightarrow> int \<Rightarrow> int" where | |
| 334 | "igcd i j = int (gcd (nat (abs i), nat (abs j)))" | |
| 335 | ||
| 336 | lemma igcd_dvd1 [simp]: "igcd i j dvd i" | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 337 | by (simp add: igcd_def int_dvd_iff) | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 338 | |
| 22367 | 339 | lemma igcd_dvd2 [simp]: "igcd i j dvd j" | 
| 340 | by (simp add: igcd_def int_dvd_iff) | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 341 | |
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 342 | lemma igcd_pos: "igcd i j \<ge> 0" | 
| 22367 | 343 | by (simp add: igcd_def) | 
| 344 | ||
| 345 | lemma igcd0 [simp]: "(igcd i j = 0) = (i = 0 \<and> j = 0)" | |
| 346 | by (simp add: igcd_def gcd_zero) arith | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 347 | |
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 348 | lemma igcd_commute: "igcd i j = igcd j i" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 349 | unfolding igcd_def by (simp add: gcd_commute) | 
| 22367 | 350 | |
| 351 | lemma igcd_neg1 [simp]: "igcd (- i) j = igcd i j" | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 352 | unfolding igcd_def by simp | 
| 22367 | 353 | |
| 354 | lemma igcd_neg2 [simp]: "igcd i (- j) = igcd i j" | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 355 | unfolding igcd_def by simp | 
| 22367 | 356 | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 357 | lemma zrelprime_dvd_mult: "igcd i j = 1 \<Longrightarrow> i dvd k * j \<Longrightarrow> i dvd k" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 358 | unfolding igcd_def | 
| 22367 | 359 | proof - | 
| 360 | assume "int (gcd (nat \<bar>i\<bar>, nat \<bar>j\<bar>)) = 1" "i dvd k * j" | |
| 361 | then have g: "gcd (nat \<bar>i\<bar>, nat \<bar>j\<bar>) = 1" by simp | |
| 362 | from `i dvd k * j` obtain h where h: "k*j = i*h" unfolding dvd_def by blast | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 363 | have th: "nat \<bar>i\<bar> dvd nat \<bar>k\<bar> * nat \<bar>j\<bar>" | 
| 22367 | 364 | unfolding dvd_def | 
| 365 | by (rule_tac x= "nat \<bar>h\<bar>" in exI, simp add: h nat_abs_mult_distrib [symmetric]) | |
| 366 | from relprime_dvd_mult [OF g th] obtain h' where h': "nat \<bar>k\<bar> = nat \<bar>i\<bar> * h'" | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 367 | unfolding dvd_def by blast | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 368 | from h' have "int (nat \<bar>k\<bar>) = int (nat \<bar>i\<bar> * h')" by simp | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23365diff
changeset | 369 | then have "\<bar>k\<bar> = \<bar>i\<bar> * int h'" by (simp add: int_mult) | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 370 | then show ?thesis | 
| 22367 | 371 | apply (subst zdvd_abs1 [symmetric]) | 
| 372 | apply (subst zdvd_abs2 [symmetric]) | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 373 | apply (unfold dvd_def) | 
| 22367 | 374 | apply (rule_tac x = "int h'" in exI, simp) | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 375 | done | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 376 | qed | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 377 | |
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 378 | lemma int_nat_abs: "int (nat (abs x)) = abs x" by arith | 
| 22367 | 379 | |
| 380 | lemma igcd_greatest: | |
| 381 | assumes "k dvd m" and "k dvd n" | |
| 382 | shows "k dvd igcd m n" | |
| 383 | proof - | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 384 | let ?k' = "nat \<bar>k\<bar>" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 385 | let ?m' = "nat \<bar>m\<bar>" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 386 | let ?n' = "nat \<bar>n\<bar>" | 
| 22367 | 387 | from `k dvd m` and `k dvd n` have dvd': "?k' dvd ?m'" "?k' dvd ?n'" | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 388 | unfolding zdvd_int by (simp_all only: int_nat_abs zdvd_abs1 zdvd_abs2) | 
| 22367 | 389 | from gcd_greatest [OF dvd'] have "int (nat \<bar>k\<bar>) dvd igcd m n" | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 390 | unfolding igcd_def by (simp only: zdvd_int) | 
| 22367 | 391 | then have "\<bar>k\<bar> dvd igcd m n" by (simp only: int_nat_abs) | 
| 392 | then show "k dvd igcd m n" by (simp add: zdvd_abs1) | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 393 | qed | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 394 | |
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 395 | lemma div_igcd_relprime: | 
| 22367 | 396 | assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0" | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 397 | shows "igcd (a div (igcd a b)) (b div (igcd a b)) = 1" | 
| 22367 | 398 | proof - | 
| 25112 | 399 | from nz have nz': "nat \<bar>a\<bar> \<noteq> 0 \<or> nat \<bar>b\<bar> \<noteq> 0" by arith | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 400 | let ?g = "igcd a b" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 401 | let ?a' = "a div ?g" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 402 | let ?b' = "b div ?g" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 403 | let ?g' = "igcd ?a' ?b'" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 404 | have dvdg: "?g dvd a" "?g dvd b" by (simp_all add: igcd_dvd1 igcd_dvd2) | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 405 | have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by (simp_all add: igcd_dvd1 igcd_dvd2) | 
| 22367 | 406 | from dvdg dvdg' obtain ka kb ka' kb' where | 
| 407 | kab: "a = ?g*ka" "b = ?g*kb" "?a' = ?g'*ka'" "?b' = ?g' * kb'" | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 408 | unfolding dvd_def by blast | 
| 22367 | 409 | then have "?g* ?a' = (?g * ?g') * ka'" "?g* ?b' = (?g * ?g') * kb'" by simp_all | 
| 410 | then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" | |
| 411 | by (auto simp add: zdvd_mult_div_cancel [OF dvdg(1)] | |
| 412 | zdvd_mult_div_cancel [OF dvdg(2)] dvd_def) | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 413 | have "?g \<noteq> 0" using nz by simp | 
| 22367 | 414 | then have gp: "?g \<noteq> 0" using igcd_pos[where i="a" and j="b"] by arith | 
| 415 | from igcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . | |
| 416 | with zdvd_mult_cancel1 [OF gp] have "\<bar>?g'\<bar> = 1" by simp | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 417 | with igcd_pos show "?g' = 1" by simp | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 418 | qed | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 419 | |
| 23244 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 420 | definition "ilcm = (\<lambda>i j. int (lcm(nat(abs i),nat(abs j))))" | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 421 | |
| 23983 | 422 | lemma dvd_ilcm_self1[simp]: "i dvd ilcm i j" | 
| 423 | by(simp add:ilcm_def dvd_int_iff) | |
| 424 | ||
| 425 | lemma dvd_ilcm_self2[simp]: "j dvd ilcm i j" | |
| 426 | by(simp add:ilcm_def dvd_int_iff) | |
| 427 | ||
| 23244 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 428 | |
| 23983 | 429 | lemma dvd_imp_dvd_ilcm1: | 
| 430 | assumes "k dvd i" shows "k dvd (ilcm i j)" | |
| 431 | proof - | |
| 432 | have "nat(abs k) dvd nat(abs i)" using `k dvd i` | |
| 23994 | 433 | by(simp add:int_dvd_iff[symmetric] dvd_int_iff[symmetric] zdvd_abs1) | 
| 23983 | 434 | thus ?thesis by(simp add:ilcm_def dvd_int_iff)(blast intro: dvd_trans) | 
| 435 | qed | |
| 436 | ||
| 437 | lemma dvd_imp_dvd_ilcm2: | |
| 438 | assumes "k dvd j" shows "k dvd (ilcm i j)" | |
| 439 | proof - | |
| 440 | have "nat(abs k) dvd nat(abs j)" using `k dvd j` | |
| 23994 | 441 | by(simp add:int_dvd_iff[symmetric] dvd_int_iff[symmetric] zdvd_abs1) | 
| 23983 | 442 | thus ?thesis by(simp add:ilcm_def dvd_int_iff)(blast intro: dvd_trans) | 
| 443 | qed | |
| 444 | ||
| 23994 | 445 | |
| 23244 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 446 | lemma zdvd_self_abs1: "(d::int) dvd (abs d)" | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 447 | by (case_tac "d <0", simp_all) | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 448 | |
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 449 | lemma zdvd_self_abs2: "(abs (d::int)) dvd d" | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 450 | by (case_tac "d<0", simp_all) | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 451 | |
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 452 | (* lcm a b is positive for positive a and b *) | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 453 | |
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 454 | lemma lcm_pos: | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 455 | assumes mpos: "m > 0" | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 456 | and npos: "n>0" | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 457 | shows "lcm (m,n) > 0" | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 458 | proof(rule ccontr, simp add: lcm_def gcd_zero) | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 459 | assume h:"m*n div gcd(m,n) = 0" | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 460 | from mpos npos have "gcd (m,n) \<noteq> 0" using gcd_zero by simp | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 461 | hence gcdp: "gcd(m,n) > 0" by simp | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 462 | with h | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 463 | have "m*n < gcd(m,n)" | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 464 | by (cases "m * n < gcd (m, n)") (auto simp add: div_if[OF gcdp, where m="m*n"]) | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 465 | moreover | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 466 | have "gcd(m,n) dvd m" by simp | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 467 | with mpos dvd_imp_le have t1:"gcd(m,n) \<le> m" by simp | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 468 | with npos have t1:"gcd(m,n)*n \<le> m*n" by simp | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 469 | have "gcd(m,n) \<le> gcd(m,n)*n" using npos by simp | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 470 | with t1 have "gcd(m,n) \<le> m*n" by arith | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 471 | ultimately show "False" by simp | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 472 | qed | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 473 | |
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 474 | lemma ilcm_pos: | 
| 23983 | 475 | assumes anz: "a \<noteq> 0" | 
| 476 | and bnz: "b \<noteq> 0" | |
| 477 | shows "0 < ilcm a b" | |
| 23244 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 478 | proof- | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 479 | let ?na = "nat (abs a)" | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 480 | let ?nb = "nat (abs b)" | 
| 23983 | 481 | have nap: "?na >0" using anz by simp | 
| 482 | have nbp: "?nb >0" using bnz by simp | |
| 23244 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 483 | have "0 < lcm (?na,?nb)" by (rule lcm_pos[OF nap nbp]) | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 484 | thus ?thesis by (simp add: ilcm_def) | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 485 | qed | 
| 
1630951f0512
added lcm, ilcm (lcm for integers) and some lemmas about them;
 chaieb parents: 
22367diff
changeset | 486 | |
| 21256 | 487 | end |