author | wenzelm |
Fri, 17 Sep 2010 17:11:43 +0200 | |
changeset 39442 | 73bcb12fdc69 |
parent 31076 | 99fe356cbbc2 |
child 39967 | 1c6dce3ef477 |
permissions | -rw-r--r-- |
27404 | 1 |
(* Title: HOLCF/Completion.thy |
2 |
Author: Brian Huffman |
|
3 |
*) |
|
4 |
||
5 |
header {* Defining bifinite domains by ideal completion *} |
|
6 |
||
7 |
theory Completion |
|
8 |
imports Bifinite |
|
9 |
begin |
|
10 |
||
11 |
subsection {* Ideals over a preorder *} |
|
12 |
||
13 |
locale preorder = |
|
14 |
fixes r :: "'a::type \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50) |
|
15 |
assumes r_refl: "x \<preceq> x" |
|
16 |
assumes r_trans: "\<lbrakk>x \<preceq> y; y \<preceq> z\<rbrakk> \<Longrightarrow> x \<preceq> z" |
|
17 |
begin |
|
18 |
||
19 |
definition |
|
20 |
ideal :: "'a set \<Rightarrow> bool" where |
|
21 |
"ideal A = ((\<exists>x. x \<in> A) \<and> (\<forall>x\<in>A. \<forall>y\<in>A. \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z) \<and> |
|
22 |
(\<forall>x y. x \<preceq> y \<longrightarrow> y \<in> A \<longrightarrow> x \<in> A))" |
|
23 |
||
24 |
lemma idealI: |
|
25 |
assumes "\<exists>x. x \<in> A" |
|
26 |
assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z" |
|
27 |
assumes "\<And>x y. \<lbrakk>x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A" |
|
28 |
shows "ideal A" |
|
29 |
unfolding ideal_def using prems by fast |
|
30 |
||
31 |
lemma idealD1: |
|
32 |
"ideal A \<Longrightarrow> \<exists>x. x \<in> A" |
|
33 |
unfolding ideal_def by fast |
|
34 |
||
35 |
lemma idealD2: |
|
36 |
"\<lbrakk>ideal A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z" |
|
37 |
unfolding ideal_def by fast |
|
38 |
||
39 |
lemma idealD3: |
|
40 |
"\<lbrakk>ideal A; x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A" |
|
41 |
unfolding ideal_def by fast |
|
42 |
||
43 |
lemma ideal_directed_finite: |
|
44 |
assumes A: "ideal A" |
|
45 |
shows "\<lbrakk>finite U; U \<subseteq> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. \<forall>x\<in>U. x \<preceq> z" |
|
46 |
apply (induct U set: finite) |
|
47 |
apply (simp add: idealD1 [OF A]) |
|
48 |
apply (simp, clarify, rename_tac y) |
|
49 |
apply (drule (1) idealD2 [OF A]) |
|
50 |
apply (clarify, erule_tac x=z in rev_bexI) |
|
51 |
apply (fast intro: r_trans) |
|
52 |
done |
|
53 |
||
54 |
lemma ideal_principal: "ideal {x. x \<preceq> z}" |
|
55 |
apply (rule idealI) |
|
56 |
apply (rule_tac x=z in exI) |
|
57 |
apply (fast intro: r_refl) |
|
58 |
apply (rule_tac x=z in bexI, fast) |
|
59 |
apply (fast intro: r_refl) |
|
60 |
apply (fast intro: r_trans) |
|
61 |
done |
|
62 |
||
63 |
lemma ex_ideal: "\<exists>A. ideal A" |
|
64 |
by (rule exI, rule ideal_principal) |
|
65 |
||
66 |
lemma directed_image_ideal: |
|
67 |
assumes A: "ideal A" |
|
68 |
assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y" |
|
69 |
shows "directed (f ` A)" |
|
70 |
apply (rule directedI) |
|
71 |
apply (cut_tac idealD1 [OF A], fast) |
|
72 |
apply (clarify, rename_tac a b) |
|
73 |
apply (drule (1) idealD2 [OF A]) |
|
74 |
apply (clarify, rename_tac c) |
|
75 |
apply (rule_tac x="f c" in rev_bexI) |
|
76 |
apply (erule imageI) |
|
77 |
apply (simp add: f) |
|
78 |
done |
|
79 |
||
80 |
lemma lub_image_principal: |
|
81 |
assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y" |
|
82 |
shows "(\<Squnion>x\<in>{x. x \<preceq> y}. f x) = f y" |
|
83 |
apply (rule thelubI) |
|
84 |
apply (rule is_lub_maximal) |
|
85 |
apply (rule ub_imageI) |
|
86 |
apply (simp add: f) |
|
87 |
apply (rule imageI) |
|
88 |
apply (simp add: r_refl) |
|
89 |
done |
|
90 |
||
91 |
text {* The set of ideals is a cpo *} |
|
92 |
||
93 |
lemma ideal_UN: |
|
94 |
fixes A :: "nat \<Rightarrow> 'a set" |
|
95 |
assumes ideal_A: "\<And>i. ideal (A i)" |
|
96 |
assumes chain_A: "\<And>i j. i \<le> j \<Longrightarrow> A i \<subseteq> A j" |
|
97 |
shows "ideal (\<Union>i. A i)" |
|
98 |
apply (rule idealI) |
|
99 |
apply (cut_tac idealD1 [OF ideal_A], fast) |
|
100 |
apply (clarify, rename_tac i j) |
|
101 |
apply (drule subsetD [OF chain_A [OF le_maxI1]]) |
|
102 |
apply (drule subsetD [OF chain_A [OF le_maxI2]]) |
|
103 |
apply (drule (1) idealD2 [OF ideal_A]) |
|
104 |
apply blast |
|
105 |
apply clarify |
|
106 |
apply (drule (1) idealD3 [OF ideal_A]) |
|
107 |
apply fast |
|
108 |
done |
|
109 |
||
110 |
lemma typedef_ideal_po: |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
111 |
fixes Abs :: "'a set \<Rightarrow> 'b::below" |
27404 | 112 |
assumes type: "type_definition Rep Abs {S. ideal S}" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
113 |
assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y" |
27404 | 114 |
shows "OFCLASS('b, po_class)" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
115 |
apply (intro_classes, unfold below) |
27404 | 116 |
apply (rule subset_refl) |
117 |
apply (erule (1) subset_trans) |
|
118 |
apply (rule type_definition.Rep_inject [OF type, THEN iffD1]) |
|
119 |
apply (erule (1) subset_antisym) |
|
120 |
done |
|
121 |
||
122 |
lemma |
|
123 |
fixes Abs :: "'a set \<Rightarrow> 'b::po" |
|
124 |
assumes type: "type_definition Rep Abs {S. ideal S}" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
125 |
assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y" |
27404 | 126 |
assumes S: "chain S" |
127 |
shows typedef_ideal_lub: "range S <<| Abs (\<Union>i. Rep (S i))" |
|
128 |
and typedef_ideal_rep_contlub: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))" |
|
129 |
proof - |
|
130 |
have 1: "ideal (\<Union>i. Rep (S i))" |
|
131 |
apply (rule ideal_UN) |
|
132 |
apply (rule type_definition.Rep [OF type, unfolded mem_Collect_eq]) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
133 |
apply (subst below [symmetric]) |
27404 | 134 |
apply (erule chain_mono [OF S]) |
135 |
done |
|
136 |
hence 2: "Rep (Abs (\<Union>i. Rep (S i))) = (\<Union>i. Rep (S i))" |
|
137 |
by (simp add: type_definition.Abs_inverse [OF type]) |
|
138 |
show 3: "range S <<| Abs (\<Union>i. Rep (S i))" |
|
139 |
apply (rule is_lubI) |
|
140 |
apply (rule is_ubI) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
141 |
apply (simp add: below 2, fast) |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
142 |
apply (simp add: below 2 is_ub_def, fast) |
27404 | 143 |
done |
144 |
hence 4: "(\<Squnion>i. S i) = Abs (\<Union>i. Rep (S i))" |
|
145 |
by (rule thelubI) |
|
146 |
show 5: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))" |
|
147 |
by (simp add: 4 2) |
|
148 |
qed |
|
149 |
||
150 |
lemma typedef_ideal_cpo: |
|
151 |
fixes Abs :: "'a set \<Rightarrow> 'b::po" |
|
152 |
assumes type: "type_definition Rep Abs {S. ideal S}" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
153 |
assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y" |
27404 | 154 |
shows "OFCLASS('b, cpo_class)" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
155 |
by (default, rule exI, erule typedef_ideal_lub [OF type below]) |
27404 | 156 |
|
157 |
end |
|
158 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
159 |
interpretation below: preorder "below :: 'a::po \<Rightarrow> 'a \<Rightarrow> bool" |
27404 | 160 |
apply unfold_locales |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
161 |
apply (rule below_refl) |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
162 |
apply (erule (1) below_trans) |
27404 | 163 |
done |
164 |
||
28133 | 165 |
subsection {* Lemmas about least upper bounds *} |
27404 | 166 |
|
167 |
lemma finite_directed_contains_lub: |
|
168 |
"\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u\<in>S. S <<| u" |
|
169 |
apply (drule (1) directed_finiteD, rule subset_refl) |
|
170 |
apply (erule bexE) |
|
171 |
apply (rule rev_bexI, assumption) |
|
172 |
apply (erule (1) is_lub_maximal) |
|
173 |
done |
|
174 |
||
175 |
lemma lub_finite_directed_in_self: |
|
176 |
"\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> lub S \<in> S" |
|
177 |
apply (drule (1) finite_directed_contains_lub, clarify) |
|
178 |
apply (drule thelubI, simp) |
|
179 |
done |
|
180 |
||
181 |
lemma finite_directed_has_lub: "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u. S <<| u" |
|
182 |
by (drule (1) finite_directed_contains_lub, fast) |
|
183 |
||
184 |
lemma is_ub_thelub0: "\<lbrakk>\<exists>u. S <<| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> lub S" |
|
185 |
apply (erule exE, drule lubI) |
|
186 |
apply (drule is_lubD1) |
|
187 |
apply (erule (1) is_ubD) |
|
188 |
done |
|
189 |
||
190 |
lemma is_lub_thelub0: "\<lbrakk>\<exists>u. S <<| u; S <| x\<rbrakk> \<Longrightarrow> lub S \<sqsubseteq> x" |
|
191 |
by (erule exE, drule lubI, erule is_lub_lub) |
|
192 |
||
28133 | 193 |
subsection {* Locale for ideal completion *} |
194 |
||
27404 | 195 |
locale basis_take = preorder + |
196 |
fixes take :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'a" |
|
197 |
assumes take_less: "take n a \<preceq> a" |
|
198 |
assumes take_take: "take n (take n a) = take n a" |
|
199 |
assumes take_mono: "a \<preceq> b \<Longrightarrow> take n a \<preceq> take n b" |
|
200 |
assumes take_chain: "take n a \<preceq> take (Suc n) a" |
|
201 |
assumes finite_range_take: "finite (range (take n))" |
|
202 |
assumes take_covers: "\<exists>n. take n a = a" |
|
203 |
begin |
|
204 |
||
205 |
lemma take_chain_less: "m < n \<Longrightarrow> take m a \<preceq> take n a" |
|
206 |
by (erule less_Suc_induct, rule take_chain, erule (1) r_trans) |
|
207 |
||
208 |
lemma take_chain_le: "m \<le> n \<Longrightarrow> take m a \<preceq> take n a" |
|
209 |
by (cases "m = n", simp add: r_refl, simp add: take_chain_less) |
|
210 |
||
211 |
end |
|
212 |
||
213 |
locale ideal_completion = basis_take + |
|
214 |
fixes principal :: "'a::type \<Rightarrow> 'b::cpo" |
|
215 |
fixes rep :: "'b::cpo \<Rightarrow> 'a::type set" |
|
216 |
assumes ideal_rep: "\<And>x. preorder.ideal r (rep x)" |
|
217 |
assumes rep_contlub: "\<And>Y. chain Y \<Longrightarrow> rep (\<Squnion>i. Y i) = (\<Union>i. rep (Y i))" |
|
218 |
assumes rep_principal: "\<And>a. rep (principal a) = {b. b \<preceq> a}" |
|
219 |
assumes subset_repD: "\<And>x y. rep x \<subseteq> rep y \<Longrightarrow> x \<sqsubseteq> y" |
|
220 |
begin |
|
221 |
||
222 |
lemma finite_take_rep: "finite (take n ` rep x)" |
|
223 |
by (rule finite_subset [OF image_mono [OF subset_UNIV] finite_range_take]) |
|
224 |
||
28133 | 225 |
lemma rep_mono: "x \<sqsubseteq> y \<Longrightarrow> rep x \<subseteq> rep y" |
226 |
apply (frule bin_chain) |
|
227 |
apply (drule rep_contlub) |
|
228 |
apply (simp only: thelubI [OF lub_bin_chain]) |
|
229 |
apply (rule subsetI, rule UN_I [where a=0], simp_all) |
|
230 |
done |
|
231 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
232 |
lemma below_def: "x \<sqsubseteq> y \<longleftrightarrow> rep x \<subseteq> rep y" |
28133 | 233 |
by (rule iffI [OF rep_mono subset_repD]) |
234 |
||
235 |
lemma rep_eq: "rep x = {a. principal a \<sqsubseteq> x}" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
236 |
unfolding below_def rep_principal |
28133 | 237 |
apply safe |
238 |
apply (erule (1) idealD3 [OF ideal_rep]) |
|
239 |
apply (erule subsetD, simp add: r_refl) |
|
240 |
done |
|
241 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
242 |
lemma mem_rep_iff_principal_below: "a \<in> rep x \<longleftrightarrow> principal a \<sqsubseteq> x" |
28133 | 243 |
by (simp add: rep_eq) |
244 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
245 |
lemma principal_below_iff_mem_rep: "principal a \<sqsubseteq> x \<longleftrightarrow> a \<in> rep x" |
28133 | 246 |
by (simp add: rep_eq) |
247 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
248 |
lemma principal_below_iff [simp]: "principal a \<sqsubseteq> principal b \<longleftrightarrow> a \<preceq> b" |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
249 |
by (simp add: principal_below_iff_mem_rep rep_principal) |
28133 | 250 |
|
251 |
lemma principal_eq_iff: "principal a = principal b \<longleftrightarrow> a \<preceq> b \<and> b \<preceq> a" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
252 |
unfolding po_eq_conv [where 'a='b] principal_below_iff .. |
28133 | 253 |
|
254 |
lemma repD: "a \<in> rep x \<Longrightarrow> principal a \<sqsubseteq> x" |
|
255 |
by (simp add: rep_eq) |
|
256 |
||
257 |
lemma principal_mono: "a \<preceq> b \<Longrightarrow> principal a \<sqsubseteq> principal b" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
258 |
by (simp only: principal_below_iff) |
28133 | 259 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
260 |
lemma belowI: "(\<And>a. principal a \<sqsubseteq> x \<Longrightarrow> principal a \<sqsubseteq> u) \<Longrightarrow> x \<sqsubseteq> u" |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
261 |
unfolding principal_below_iff_mem_rep |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
262 |
by (simp add: below_def subset_eq) |
28133 | 263 |
|
264 |
lemma lub_principal_rep: "principal ` rep x <<| x" |
|
265 |
apply (rule is_lubI) |
|
266 |
apply (rule ub_imageI) |
|
267 |
apply (erule repD) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
268 |
apply (subst below_def) |
28133 | 269 |
apply (rule subsetI) |
270 |
apply (drule (1) ub_imageD) |
|
271 |
apply (simp add: rep_eq) |
|
272 |
done |
|
273 |
||
274 |
subsection {* Defining functions in terms of basis elements *} |
|
275 |
||
276 |
definition |
|
277 |
basis_fun :: "('a::type \<Rightarrow> 'c::cpo) \<Rightarrow> 'b \<rightarrow> 'c" where |
|
278 |
"basis_fun = (\<lambda>f. (\<Lambda> x. lub (f ` rep x)))" |
|
279 |
||
27404 | 280 |
lemma basis_fun_lemma0: |
281 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
282 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
|
283 |
shows "\<exists>u. f ` take i ` rep x <<| u" |
|
284 |
apply (rule finite_directed_has_lub) |
|
285 |
apply (rule finite_imageI) |
|
286 |
apply (rule finite_take_rep) |
|
287 |
apply (subst image_image) |
|
288 |
apply (rule directed_image_ideal) |
|
289 |
apply (rule ideal_rep) |
|
290 |
apply (rule f_mono) |
|
291 |
apply (erule take_mono) |
|
292 |
done |
|
293 |
||
294 |
lemma basis_fun_lemma1: |
|
295 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
296 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
|
297 |
shows "chain (\<lambda>i. lub (f ` take i ` rep x))" |
|
298 |
apply (rule chainI) |
|
299 |
apply (rule is_lub_thelub0) |
|
300 |
apply (rule basis_fun_lemma0, erule f_mono) |
|
301 |
apply (rule is_ubI, clarsimp, rename_tac a) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
302 |
apply (rule below_trans [OF f_mono [OF take_chain]]) |
27404 | 303 |
apply (rule is_ub_thelub0) |
304 |
apply (rule basis_fun_lemma0, erule f_mono) |
|
305 |
apply simp |
|
306 |
done |
|
307 |
||
308 |
lemma basis_fun_lemma2: |
|
309 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
310 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
|
311 |
shows "f ` rep x <<| (\<Squnion>i. lub (f ` take i ` rep x))" |
|
312 |
apply (rule is_lubI) |
|
313 |
apply (rule ub_imageI, rename_tac a) |
|
314 |
apply (cut_tac a=a in take_covers, erule exE, rename_tac i) |
|
315 |
apply (erule subst) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
316 |
apply (rule rev_below_trans) |
27404 | 317 |
apply (rule_tac x=i in is_ub_thelub) |
318 |
apply (rule basis_fun_lemma1, erule f_mono) |
|
319 |
apply (rule is_ub_thelub0) |
|
320 |
apply (rule basis_fun_lemma0, erule f_mono) |
|
321 |
apply simp |
|
322 |
apply (rule is_lub_thelub [OF _ ub_rangeI]) |
|
323 |
apply (rule basis_fun_lemma1, erule f_mono) |
|
324 |
apply (rule is_lub_thelub0) |
|
325 |
apply (rule basis_fun_lemma0, erule f_mono) |
|
326 |
apply (rule is_ubI, clarsimp, rename_tac a) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
327 |
apply (rule below_trans [OF f_mono [OF take_less]]) |
27404 | 328 |
apply (erule (1) ub_imageD) |
329 |
done |
|
330 |
||
331 |
lemma basis_fun_lemma: |
|
332 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
333 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
|
334 |
shows "\<exists>u. f ` rep x <<| u" |
|
335 |
by (rule exI, rule basis_fun_lemma2, erule f_mono) |
|
336 |
||
337 |
lemma basis_fun_beta: |
|
338 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
339 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
|
340 |
shows "basis_fun f\<cdot>x = lub (f ` rep x)" |
|
341 |
unfolding basis_fun_def |
|
342 |
proof (rule beta_cfun) |
|
343 |
have lub: "\<And>x. \<exists>u. f ` rep x <<| u" |
|
344 |
using f_mono by (rule basis_fun_lemma) |
|
345 |
show cont: "cont (\<lambda>x. lub (f ` rep x))" |
|
346 |
apply (rule contI2) |
|
347 |
apply (rule monofunI) |
|
348 |
apply (rule is_lub_thelub0 [OF lub ub_imageI]) |
|
349 |
apply (rule is_ub_thelub0 [OF lub imageI]) |
|
350 |
apply (erule (1) subsetD [OF rep_mono]) |
|
351 |
apply (rule is_lub_thelub0 [OF lub ub_imageI]) |
|
352 |
apply (simp add: rep_contlub, clarify) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
353 |
apply (erule rev_below_trans [OF is_ub_thelub]) |
27404 | 354 |
apply (erule is_ub_thelub0 [OF lub imageI]) |
355 |
done |
|
356 |
qed |
|
357 |
||
358 |
lemma basis_fun_principal: |
|
359 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
360 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
|
361 |
shows "basis_fun f\<cdot>(principal a) = f a" |
|
362 |
apply (subst basis_fun_beta, erule f_mono) |
|
363 |
apply (subst rep_principal) |
|
364 |
apply (rule lub_image_principal, erule f_mono) |
|
365 |
done |
|
366 |
||
367 |
lemma basis_fun_mono: |
|
368 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
|
369 |
assumes g_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> g a \<sqsubseteq> g b" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
370 |
assumes below: "\<And>a. f a \<sqsubseteq> g a" |
27404 | 371 |
shows "basis_fun f \<sqsubseteq> basis_fun g" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
372 |
apply (rule below_cfun_ext) |
27404 | 373 |
apply (simp only: basis_fun_beta f_mono g_mono) |
374 |
apply (rule is_lub_thelub0) |
|
375 |
apply (rule basis_fun_lemma, erule f_mono) |
|
376 |
apply (rule ub_imageI, rename_tac a) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
377 |
apply (rule below_trans [OF below]) |
27404 | 378 |
apply (rule is_ub_thelub0) |
379 |
apply (rule basis_fun_lemma, erule g_mono) |
|
380 |
apply (erule imageI) |
|
381 |
done |
|
382 |
||
383 |
lemma compact_principal [simp]: "compact (principal a)" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
384 |
by (rule compactI2, simp add: principal_below_iff_mem_rep rep_contlub) |
27404 | 385 |
|
28133 | 386 |
subsection {* Bifiniteness of ideal completions *} |
387 |
||
27404 | 388 |
definition |
389 |
completion_approx :: "nat \<Rightarrow> 'b \<rightarrow> 'b" where |
|
390 |
"completion_approx = (\<lambda>i. basis_fun (\<lambda>a. principal (take i a)))" |
|
391 |
||
392 |
lemma completion_approx_beta: |
|
393 |
"completion_approx i\<cdot>x = (\<Squnion>a\<in>rep x. principal (take i a))" |
|
394 |
unfolding completion_approx_def |
|
395 |
by (simp add: basis_fun_beta principal_mono take_mono) |
|
396 |
||
397 |
lemma completion_approx_principal: |
|
398 |
"completion_approx i\<cdot>(principal a) = principal (take i a)" |
|
399 |
unfolding completion_approx_def |
|
400 |
by (simp add: basis_fun_principal principal_mono take_mono) |
|
401 |
||
402 |
lemma chain_completion_approx: "chain completion_approx" |
|
403 |
unfolding completion_approx_def |
|
404 |
apply (rule chainI) |
|
405 |
apply (rule basis_fun_mono) |
|
406 |
apply (erule principal_mono [OF take_mono]) |
|
407 |
apply (erule principal_mono [OF take_mono]) |
|
408 |
apply (rule principal_mono [OF take_chain]) |
|
409 |
done |
|
410 |
||
411 |
lemma lub_completion_approx: "(\<Squnion>i. completion_approx i\<cdot>x) = x" |
|
412 |
unfolding completion_approx_beta |
|
413 |
apply (subst image_image [where f=principal, symmetric]) |
|
414 |
apply (rule unique_lub [OF _ lub_principal_rep]) |
|
415 |
apply (rule basis_fun_lemma2, erule principal_mono) |
|
416 |
done |
|
417 |
||
418 |
lemma completion_approx_eq_principal: |
|
419 |
"\<exists>a\<in>rep x. completion_approx i\<cdot>x = principal (take i a)" |
|
420 |
unfolding completion_approx_beta |
|
421 |
apply (subst image_image [where f=principal, symmetric]) |
|
422 |
apply (subgoal_tac "finite (principal ` take i ` rep x)") |
|
423 |
apply (subgoal_tac "directed (principal ` take i ` rep x)") |
|
424 |
apply (drule (1) lub_finite_directed_in_self, fast) |
|
425 |
apply (subst image_image) |
|
426 |
apply (rule directed_image_ideal) |
|
427 |
apply (rule ideal_rep) |
|
428 |
apply (erule principal_mono [OF take_mono]) |
|
429 |
apply (rule finite_imageI) |
|
430 |
apply (rule finite_take_rep) |
|
431 |
done |
|
432 |
||
433 |
lemma completion_approx_idem: |
|
434 |
"completion_approx i\<cdot>(completion_approx i\<cdot>x) = completion_approx i\<cdot>x" |
|
435 |
using completion_approx_eq_principal [where i=i and x=x] |
|
436 |
by (auto simp add: completion_approx_principal take_take) |
|
437 |
||
438 |
lemma finite_fixes_completion_approx: |
|
439 |
"finite {x. completion_approx i\<cdot>x = x}" (is "finite ?S") |
|
440 |
apply (subgoal_tac "?S \<subseteq> principal ` range (take i)") |
|
441 |
apply (erule finite_subset) |
|
442 |
apply (rule finite_imageI) |
|
443 |
apply (rule finite_range_take) |
|
444 |
apply (clarify, erule subst) |
|
445 |
apply (cut_tac x=x and i=i in completion_approx_eq_principal) |
|
446 |
apply fast |
|
447 |
done |
|
448 |
||
449 |
lemma principal_induct: |
|
450 |
assumes adm: "adm P" |
|
451 |
assumes P: "\<And>a. P (principal a)" |
|
452 |
shows "P x" |
|
453 |
apply (subgoal_tac "P (\<Squnion>i. completion_approx i\<cdot>x)") |
|
454 |
apply (simp add: lub_completion_approx) |
|
455 |
apply (rule admD [OF adm]) |
|
456 |
apply (simp add: chain_completion_approx) |
|
457 |
apply (cut_tac x=x and i=i in completion_approx_eq_principal) |
|
458 |
apply (clarify, simp add: P) |
|
459 |
done |
|
460 |
||
461 |
lemma principal_induct2: |
|
462 |
"\<lbrakk>\<And>y. adm (\<lambda>x. P x y); \<And>x. adm (\<lambda>y. P x y); |
|
463 |
\<And>a b. P (principal a) (principal b)\<rbrakk> \<Longrightarrow> P x y" |
|
464 |
apply (rule_tac x=y in spec) |
|
465 |
apply (rule_tac x=x in principal_induct, simp) |
|
466 |
apply (rule allI, rename_tac y) |
|
467 |
apply (rule_tac x=y in principal_induct, simp) |
|
468 |
apply simp |
|
469 |
done |
|
470 |
||
471 |
lemma compact_imp_principal: "compact x \<Longrightarrow> \<exists>a. x = principal a" |
|
472 |
apply (drule adm_compact_neq [OF _ cont_id]) |
|
473 |
apply (drule admD2 [where Y="\<lambda>n. completion_approx n\<cdot>x"]) |
|
474 |
apply (simp add: chain_completion_approx) |
|
475 |
apply (simp add: lub_completion_approx) |
|
476 |
apply (erule exE, erule ssubst) |
|
477 |
apply (cut_tac i=i and x=x in completion_approx_eq_principal) |
|
478 |
apply (clarify, erule exI) |
|
479 |
done |
|
480 |
||
481 |
end |
|
482 |
||
483 |
end |