src/HOLCF/Adm.thy
author urbanc
Wed, 11 Jan 2006 17:10:11 +0100
changeset 18655 73cebafb9a89
parent 17814 21183d6f62b8
child 19440 b2877e230b07
permissions -rw-r--r--
merged the silly lemmas into the eqvt proof of subtype
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
     1
(*  Title:      HOLCF/Adm.thy
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
     2
    ID:         $Id$
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
     3
    Author:     Franz Regensburger
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
     4
*)
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
     5
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
     6
header {* Admissibility and compactness *}
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
     7
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
     8
theory Adm
16079
757e1c4a8081 moved adm_chfindom from Adm.thy to Fix.thy, to remove dependence on Cfun
huffman
parents: 16070
diff changeset
     9
imports Cont
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    10
begin
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    11
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    12
defaultsort cpo
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    13
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    14
subsection {* Definitions *}
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    15
16565
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
    16
constdefs
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
    17
  adm :: "('a::cpo \<Rightarrow> bool) \<Rightarrow> bool"
16623
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    18
  "adm P \<equiv> \<forall>Y. chain Y \<longrightarrow> (\<forall>i. P (Y i)) \<longrightarrow> P (\<Squnion>i. Y i)"
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    19
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    20
  compact :: "'a::cpo \<Rightarrow> bool"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    21
  "compact k \<equiv> adm (\<lambda>x. \<not> k \<sqsubseteq> x)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    22
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    23
lemma admI:
16623
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    24
   "(\<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)) \<Longrightarrow> adm P"
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    25
by (unfold adm_def, fast)
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    26
16565
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
    27
lemma triv_admI: "\<forall>x. P x \<Longrightarrow> adm P"
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    28
by (rule admI, erule spec)
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    29
16623
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    30
lemma admD: "\<lbrakk>adm P; chain Y; \<forall>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)"
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    31
by (unfold adm_def, fast)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    32
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    33
lemma compactI: "adm (\<lambda>x. \<not> k \<sqsubseteq> x) \<Longrightarrow> compact k"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    34
by (unfold compact_def)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    35
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    36
lemma compactD: "compact k \<Longrightarrow> adm (\<lambda>x. \<not> k \<sqsubseteq> x)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    37
by (unfold compact_def)
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    38
16623
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    39
text {* improved admissibility introduction *}
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    40
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    41
lemma admI2:
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    42
  "(\<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i); \<forall>i. \<exists>j>i. Y i \<noteq> Y j \<and> Y i \<sqsubseteq> Y j\<rbrakk> 
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    43
    \<Longrightarrow> P (\<Squnion>i. Y i)) \<Longrightarrow> adm P"
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    44
apply (rule admI)
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    45
apply (erule (1) increasing_chain_adm_lemma)
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    46
apply fast
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    47
done
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    48
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    49
subsection {* Admissibility on chain-finite types *}
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    50
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    51
text {* for chain-finite (easy) types every formula is admissible *}
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    52
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    53
lemma adm_max_in_chain: 
16623
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    54
  "\<forall>Y. chain (Y::nat \<Rightarrow> 'a) \<longrightarrow> (\<exists>n. max_in_chain n Y)
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    55
    \<Longrightarrow> adm (P::'a \<Rightarrow> bool)"
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    56
by (auto simp add: adm_def maxinch_is_thelub)
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    57
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    58
lemmas adm_chfin = chfin [THEN adm_max_in_chain, standard]
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    59
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    60
lemma compact_chfin: "compact (x::'a::chfin)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    61
by (rule compactI, rule adm_chfin)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    62
16623
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    63
subsection {* Admissibility of special formulae and propagation *}
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    64
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    65
lemma adm_not_free: "adm (\<lambda>x. t)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    66
by (rule admI, simp)
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    67
16565
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
    68
lemma adm_conj: "\<lbrakk>adm P; adm Q\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<and> Q x)"
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    69
by (fast elim: admD intro: admI)
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    70
16565
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
    71
lemma adm_all: "\<forall>y. adm (P y) \<Longrightarrow> adm (\<lambda>x. \<forall>y. P y x)"
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    72
by (fast intro: admI elim: admD)
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    73
17586
df8b2f0e462e added theorem adm_ball
huffman
parents: 16738
diff changeset
    74
lemma adm_ball: "\<forall>y\<in>A. adm (P y) \<Longrightarrow> adm (\<lambda>x. \<forall>y\<in>A. P y x)"
df8b2f0e462e added theorem adm_ball
huffman
parents: 16738
diff changeset
    75
by (fast intro: admI elim: admD)
df8b2f0e462e added theorem adm_ball
huffman
parents: 16738
diff changeset
    76
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    77
lemmas adm_all2 = adm_all [rule_format]
17586
df8b2f0e462e added theorem adm_ball
huffman
parents: 16738
diff changeset
    78
lemmas adm_ball2 = adm_ball [rule_format]
df8b2f0e462e added theorem adm_ball
huffman
parents: 16738
diff changeset
    79
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    80
text {* Admissibility for disjunction is hard to prove. It takes 5 Lemmas *}
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    81
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    82
lemma adm_disj_lemma1: 
16623
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    83
  "\<lbrakk>chain (Y::nat \<Rightarrow> 'a::cpo); \<forall>i. \<exists>j\<ge>i. P (Y j)\<rbrakk>
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    84
    \<Longrightarrow> chain (\<lambda>i. Y (LEAST j. i \<le> j \<and> P (Y j)))"
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    85
apply (rule chainI)
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    86
apply (erule chain_mono3)
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    87
apply (rule Least_le)
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    88
apply (rule LeastI2_ex)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    89
apply simp_all
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    90
done
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    91
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    92
lemmas adm_disj_lemma2 = LeastI_ex [of "\<lambda>j. i \<le> j \<and> P (Y j)", standard]
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    93
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    94
lemma adm_disj_lemma3: 
16623
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
    95
  "\<lbrakk>chain (Y::nat \<Rightarrow> 'a::cpo); \<forall>i. \<exists>j\<ge>i. P (Y j)\<rbrakk> \<Longrightarrow> 
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    96
    (\<Squnion>i. Y i) = (\<Squnion>i. Y (LEAST j. i \<le> j \<and> P (Y j)))"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    97
 apply (frule (1) adm_disj_lemma1)
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
    98
 apply (rule antisym_less)
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
    99
  apply (rule lub_mono [rule_format], assumption+)
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   100
  apply (erule chain_mono3)
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   101
  apply (simp add: adm_disj_lemma2)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   102
 apply (rule lub_range_mono, fast, assumption+)
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   103
done
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   104
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   105
lemma adm_disj_lemma4:
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   106
  "\<lbrakk>adm P; chain Y; \<forall>i. \<exists>j\<ge>i. P (Y j)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   107
apply (subst adm_disj_lemma3, assumption+)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   108
apply (erule admD)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   109
apply (simp add: adm_disj_lemma1)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   110
apply (simp add: adm_disj_lemma2)
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   111
done
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   112
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   113
lemma adm_disj_lemma5:
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   114
  "\<forall>n::nat. P n \<or> Q n \<Longrightarrow> (\<forall>i. \<exists>j\<ge>i. P j) \<or> (\<forall>i. \<exists>j\<ge>i. Q j)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   115
apply (erule contrapos_pp)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   116
apply (clarsimp, rename_tac a b)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   117
apply (rule_tac x="max a b" in exI)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   118
apply (simp add: le_maxI1 le_maxI2)
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   119
done
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   120
16623
f3fcfa388ecb cleaned up; added adm_less to adm_lemmas; added subsection headings
huffman
parents: 16565
diff changeset
   121
lemma adm_disj: "\<lbrakk>adm P; adm Q\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<or> Q x)"
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   122
apply (rule admI)
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   123
apply (erule adm_disj_lemma5 [THEN disjE])
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   124
apply (erule (2) adm_disj_lemma4 [THEN disjI1])
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   125
apply (erule (2) adm_disj_lemma4 [THEN disjI2])
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   126
done
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   127
16565
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
   128
lemma adm_imp: "\<lbrakk>adm (\<lambda>x. \<not> P x); adm Q\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<longrightarrow> Q x)"
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   129
by (subst imp_conv_disj, rule adm_disj)
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   130
16565
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
   131
lemma adm_iff:
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
   132
  "\<lbrakk>adm (\<lambda>x. P x \<longrightarrow> Q x); adm (\<lambda>x. Q x \<longrightarrow> P x)\<rbrakk>  
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
   133
    \<Longrightarrow> adm (\<lambda>x. P x = Q x)"
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   134
by (subst iff_conv_conj_imp, rule adm_conj)
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   135
16565
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
   136
lemma adm_not_conj:
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
   137
  "\<lbrakk>adm (\<lambda>x. \<not> P x); adm (\<lambda>x. \<not> Q x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. \<not> (P x \<and> Q x))"
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   138
by (simp add: adm_imp)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   139
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   140
text {* admissibility and continuity *}
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   141
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   142
lemma adm_less: "\<lbrakk>cont u; cont v\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x \<sqsubseteq> v x)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   143
apply (rule admI)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   144
apply (simp add: cont2contlubE)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   145
apply (rule lub_mono)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   146
apply (erule (1) ch2ch_cont)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   147
apply (erule (1) ch2ch_cont)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   148
apply assumption
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   149
done
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   150
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   151
lemma adm_eq: "\<lbrakk>cont u; cont v\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x = v x)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   152
by (simp add: po_eq_conv adm_conj adm_less)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   153
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   154
lemma adm_subst: "\<lbrakk>cont t; adm P\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P (t x))"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   155
apply (rule admI)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   156
apply (simp add: cont2contlubE)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   157
apply (erule admD)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   158
apply (erule (1) ch2ch_cont)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   159
apply assumption
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   160
done
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   161
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   162
lemma adm_not_less: "cont t \<Longrightarrow> adm (\<lambda>x. \<not> t x \<sqsubseteq> u)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   163
apply (rule admI)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   164
apply (drule_tac x=0 in spec)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   165
apply (erule contrapos_nn)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   166
apply (erule rev_trans_less)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   167
apply (erule cont2mono [THEN monofun_fun_arg])
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   168
apply (erule is_ub_thelub)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   169
done
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   170
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   171
text {* admissibility and compactness *}
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   172
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   173
lemma adm_compact_not_less: "\<lbrakk>compact k; cont t\<rbrakk> \<Longrightarrow> adm (\<lambda>x. \<not> k \<sqsubseteq> t x)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   174
by (unfold compact_def, erule adm_subst)
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   175
17814
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   176
lemma adm_neq_compact: "\<lbrakk>compact k; cont t\<rbrakk> \<Longrightarrow> adm (\<lambda>x. t x \<noteq> k)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   177
by (simp add: po_eq_conv adm_imp adm_not_less adm_compact_not_less)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   178
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   179
lemma adm_compact_neq: "\<lbrakk>compact k; cont t\<rbrakk> \<Longrightarrow> adm (\<lambda>x. k \<noteq> t x)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   180
by (simp add: po_eq_conv adm_imp adm_not_less adm_compact_not_less)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   181
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   182
lemma compact_UU [simp, intro]: "compact \<bottom>"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   183
by (rule compactI, simp add: adm_not_free)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   184
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   185
lemma adm_not_UU: "cont t \<Longrightarrow> adm (\<lambda>x. \<not> t x = \<bottom>)"
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   186
by (simp add: eq_UU_iff adm_not_less)
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   187
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   188
lemmas adm_lemmas [simp] =
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   189
  adm_not_free adm_conj adm_all2 adm_ball2 adm_disj adm_imp adm_iff
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   190
  adm_less adm_eq adm_not_less
21183d6f62b8 added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
huffman
parents: 17586
diff changeset
   191
  adm_compact_not_less adm_compact_neq adm_neq_compact adm_not_UU
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   192
16062
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   193
(* legacy ML bindings *)
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   194
ML
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   195
{*
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   196
val adm_def = thm "adm_def";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   197
val admI = thm "admI";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   198
val triv_admI = thm "triv_admI";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   199
val admD = thm "admD";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   200
val adm_max_in_chain = thm "adm_max_in_chain";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   201
val adm_chfin = thm "adm_chfin";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   202
val admI2 = thm "admI2";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   203
val adm_less = thm "adm_less";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   204
val adm_conj = thm "adm_conj";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   205
val adm_not_free = thm "adm_not_free";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   206
val adm_not_less = thm "adm_not_less";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   207
val adm_all = thm "adm_all";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   208
val adm_all2 = thm "adm_all2";
17586
df8b2f0e462e added theorem adm_ball
huffman
parents: 16738
diff changeset
   209
val adm_ball = thm "adm_ball";
df8b2f0e462e added theorem adm_ball
huffman
parents: 16738
diff changeset
   210
val adm_ball2 = thm "adm_ball2";
16062
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   211
val adm_subst = thm "adm_subst";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   212
val adm_not_UU = thm "adm_not_UU";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   213
val adm_eq = thm "adm_eq";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   214
val adm_disj_lemma1 = thm "adm_disj_lemma1";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   215
val adm_disj_lemma2 = thm "adm_disj_lemma2";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   216
val adm_disj_lemma3 = thm "adm_disj_lemma3";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   217
val adm_disj_lemma4 = thm "adm_disj_lemma4";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   218
val adm_disj_lemma5 = thm "adm_disj_lemma5";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   219
val adm_disj = thm "adm_disj";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   220
val adm_imp = thm "adm_imp";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   221
val adm_iff = thm "adm_iff";
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   222
val adm_not_conj = thm "adm_not_conj";
16565
00a3bf006881 cleaned up
huffman
parents: 16207
diff changeset
   223
val adm_lemmas = thms "adm_lemmas";
16062
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   224
*}
f8110bd9957f cannot have files named adm.ML and Adm.ML on Macs, so deleted one and renamed the other
paulson
parents: 16056
diff changeset
   225
16056
32c3b7188c28 Moved admissibility definitions and lemmas to a separate theory
huffman
parents:
diff changeset
   226
end