| author | wenzelm | 
| Sat, 27 Nov 2021 14:03:44 +0100 | |
| changeset 74853 | 7420a7ac1a4c | 
| parent 74592 | 3c587b7c3d5c | 
| child 75669 | 43f5dfb7fa35 | 
| permissions | -rw-r--r-- | 
| 64785 | 1 | (* Title: HOL/Euclidean_Division.thy | 
| 2 | Author: Manuel Eberl, TU Muenchen | |
| 3 | Author: Florian Haftmann, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 66817 | 6 | section \<open>Division in euclidean (semi)rings\<close> | 
| 64785 | 7 | |
| 8 | theory Euclidean_Division | |
| 66817 | 9 | imports Int Lattices_Big | 
| 64785 | 10 | begin | 
| 11 | ||
| 12 | subsection \<open>Euclidean (semi)rings with explicit division and remainder\<close> | |
| 13 | ||
| 66817 | 14 | class euclidean_semiring = semidom_modulo + | 
| 64785 | 15 | fixes euclidean_size :: "'a \<Rightarrow> nat" | 
| 16 | assumes size_0 [simp]: "euclidean_size 0 = 0" | |
| 17 | assumes mod_size_less: | |
| 18 | "b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b" | |
| 19 | assumes size_mult_mono: | |
| 20 | "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (a * b)" | |
| 21 | begin | |
| 22 | ||
| 66840 | 23 | lemma euclidean_size_eq_0_iff [simp]: | 
| 24 | "euclidean_size b = 0 \<longleftrightarrow> b = 0" | |
| 25 | proof | |
| 26 | assume "b = 0" | |
| 27 | then show "euclidean_size b = 0" | |
| 28 | by simp | |
| 29 | next | |
| 30 | assume "euclidean_size b = 0" | |
| 31 | show "b = 0" | |
| 32 | proof (rule ccontr) | |
| 33 | assume "b \<noteq> 0" | |
| 34 | with mod_size_less have "euclidean_size (b mod b) < euclidean_size b" . | |
| 35 | with \<open>euclidean_size b = 0\<close> show False | |
| 36 | by simp | |
| 37 | qed | |
| 38 | qed | |
| 39 | ||
| 40 | lemma euclidean_size_greater_0_iff [simp]: | |
| 41 | "euclidean_size b > 0 \<longleftrightarrow> b \<noteq> 0" | |
| 42 | using euclidean_size_eq_0_iff [symmetric, of b] by safe simp | |
| 43 | ||
| 64785 | 44 | lemma size_mult_mono': "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (b * a)" | 
| 45 | by (subst mult.commute) (rule size_mult_mono) | |
| 46 | ||
| 47 | lemma dvd_euclidean_size_eq_imp_dvd: | |
| 48 | assumes "a \<noteq> 0" and "euclidean_size a = euclidean_size b" | |
| 49 | and "b dvd a" | |
| 50 | shows "a dvd b" | |
| 51 | proof (rule ccontr) | |
| 52 | assume "\<not> a dvd b" | |
| 53 | hence "b mod a \<noteq> 0" using mod_0_imp_dvd [of b a] by blast | |
| 54 | then have "b mod a \<noteq> 0" by (simp add: mod_eq_0_iff_dvd) | |
| 55 | from \<open>b dvd a\<close> have "b dvd b mod a" by (simp add: dvd_mod_iff) | |
| 56 | then obtain c where "b mod a = b * c" unfolding dvd_def by blast | |
| 57 | with \<open>b mod a \<noteq> 0\<close> have "c \<noteq> 0" by auto | |
| 58 | with \<open>b mod a = b * c\<close> have "euclidean_size (b mod a) \<ge> euclidean_size b" | |
| 59 | using size_mult_mono by force | |
| 60 | moreover from \<open>\<not> a dvd b\<close> and \<open>a \<noteq> 0\<close> | |
| 61 | have "euclidean_size (b mod a) < euclidean_size a" | |
| 62 | using mod_size_less by blast | |
| 63 | ultimately show False using \<open>euclidean_size a = euclidean_size b\<close> | |
| 64 | by simp | |
| 65 | qed | |
| 66 | ||
| 67 | lemma euclidean_size_times_unit: | |
| 68 | assumes "is_unit a" | |
| 69 | shows "euclidean_size (a * b) = euclidean_size b" | |
| 70 | proof (rule antisym) | |
| 71 | from assms have [simp]: "a \<noteq> 0" by auto | |
| 72 | thus "euclidean_size (a * b) \<ge> euclidean_size b" by (rule size_mult_mono') | |
| 73 | from assms have "is_unit (1 div a)" by simp | |
| 74 | hence "1 div a \<noteq> 0" by (intro notI) simp_all | |
| 75 | hence "euclidean_size (a * b) \<le> euclidean_size ((1 div a) * (a * b))" | |
| 76 | by (rule size_mult_mono') | |
| 77 | also from assms have "(1 div a) * (a * b) = b" | |
| 78 | by (simp add: algebra_simps unit_div_mult_swap) | |
| 79 | finally show "euclidean_size (a * b) \<le> euclidean_size b" . | |
| 80 | qed | |
| 81 | ||
| 82 | lemma euclidean_size_unit: | |
| 83 | "is_unit a \<Longrightarrow> euclidean_size a = euclidean_size 1" | |
| 84 | using euclidean_size_times_unit [of a 1] by simp | |
| 85 | ||
| 86 | lemma unit_iff_euclidean_size: | |
| 87 | "is_unit a \<longleftrightarrow> euclidean_size a = euclidean_size 1 \<and> a \<noteq> 0" | |
| 88 | proof safe | |
| 89 | assume A: "a \<noteq> 0" and B: "euclidean_size a = euclidean_size 1" | |
| 90 | show "is_unit a" | |
| 91 | by (rule dvd_euclidean_size_eq_imp_dvd [OF A B]) simp_all | |
| 92 | qed (auto intro: euclidean_size_unit) | |
| 93 | ||
| 94 | lemma euclidean_size_times_nonunit: | |
| 95 | assumes "a \<noteq> 0" "b \<noteq> 0" "\<not> is_unit a" | |
| 96 | shows "euclidean_size b < euclidean_size (a * b)" | |
| 97 | proof (rule ccontr) | |
| 98 | assume "\<not>euclidean_size b < euclidean_size (a * b)" | |
| 99 | with size_mult_mono'[OF assms(1), of b] | |
| 100 | have eq: "euclidean_size (a * b) = euclidean_size b" by simp | |
| 101 | have "a * b dvd b" | |
| 102 | by (rule dvd_euclidean_size_eq_imp_dvd [OF _ eq]) (insert assms, simp_all) | |
| 103 | hence "a * b dvd 1 * b" by simp | |
| 104 | with \<open>b \<noteq> 0\<close> have "is_unit a" by (subst (asm) dvd_times_right_cancel_iff) | |
| 105 | with assms(3) show False by contradiction | |
| 106 | qed | |
| 107 | ||
| 108 | lemma dvd_imp_size_le: | |
| 109 | assumes "a dvd b" "b \<noteq> 0" | |
| 110 | shows "euclidean_size a \<le> euclidean_size b" | |
| 111 | using assms by (auto elim!: dvdE simp: size_mult_mono) | |
| 112 | ||
| 113 | lemma dvd_proper_imp_size_less: | |
| 114 | assumes "a dvd b" "\<not> b dvd a" "b \<noteq> 0" | |
| 115 | shows "euclidean_size a < euclidean_size b" | |
| 116 | proof - | |
| 117 | from assms(1) obtain c where "b = a * c" by (erule dvdE) | |
| 118 | hence z: "b = c * a" by (simp add: mult.commute) | |
| 119 | from z assms have "\<not>is_unit c" by (auto simp: mult.commute mult_unit_dvd_iff) | |
| 120 | with z assms show ?thesis | |
| 121 | by (auto intro!: euclidean_size_times_nonunit) | |
| 122 | qed | |
| 123 | ||
| 66798 | 124 | lemma unit_imp_mod_eq_0: | 
| 125 | "a mod b = 0" if "is_unit b" | |
| 126 | using that by (simp add: mod_eq_0_iff_dvd unit_imp_dvd) | |
| 127 | ||
| 69695 | 128 | lemma mod_eq_self_iff_div_eq_0: | 
| 129 | "a mod b = a \<longleftrightarrow> a div b = 0" (is "?P \<longleftrightarrow> ?Q") | |
| 130 | proof | |
| 131 | assume ?P | |
| 132 | with div_mult_mod_eq [of a b] show ?Q | |
| 133 | by auto | |
| 134 | next | |
| 135 | assume ?Q | |
| 136 | with div_mult_mod_eq [of a b] show ?P | |
| 137 | by simp | |
| 138 | qed | |
| 139 | ||
| 67051 | 140 | lemma coprime_mod_left_iff [simp]: | 
| 141 | "coprime (a mod b) b \<longleftrightarrow> coprime a b" if "b \<noteq> 0" | |
| 142 | by (rule; rule coprimeI) | |
| 143 | (use that in \<open>auto dest!: dvd_mod_imp_dvd coprime_common_divisor simp add: dvd_mod_iff\<close>) | |
| 144 | ||
| 145 | lemma coprime_mod_right_iff [simp]: | |
| 146 | "coprime a (b mod a) \<longleftrightarrow> coprime a b" if "a \<noteq> 0" | |
| 147 | using that coprime_mod_left_iff [of a b] by (simp add: ac_simps) | |
| 148 | ||
| 64785 | 149 | end | 
| 150 | ||
| 151 | class euclidean_ring = idom_modulo + euclidean_semiring | |
| 66886 | 152 | begin | 
| 153 | ||
| 67087 | 154 | lemma dvd_diff_commute [ac_simps]: | 
| 66886 | 155 | "a dvd c - b \<longleftrightarrow> a dvd b - c" | 
| 156 | proof - | |
| 157 | have "a dvd c - b \<longleftrightarrow> a dvd (c - b) * - 1" | |
| 158 | by (subst dvd_mult_unit_iff) simp_all | |
| 159 | then show ?thesis | |
| 160 | by simp | |
| 161 | qed | |
| 162 | ||
| 163 | end | |
| 64785 | 164 | |
| 66840 | 165 | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 166 | subsection \<open>Euclidean (semi)rings with cancel rules\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 167 | |
| 70147 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 168 | class euclidean_semiring_cancel = euclidean_semiring + | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 169 | assumes div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 170 | and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b" | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 171 | begin | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 172 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 173 | lemma div_mult_self2 [simp]: | 
| 70147 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 174 | assumes "b \<noteq> 0" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 175 | shows "(a + b * c) div b = c + a div b" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 176 | using assms div_mult_self1 [of b a c] by (simp add: mult.commute) | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 177 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 178 | lemma div_mult_self3 [simp]: | 
| 70147 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 179 | assumes "b \<noteq> 0" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 180 | shows "(c * b + a) div b = c + a div b" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 181 | using assms by (simp add: add.commute) | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 182 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 183 | lemma div_mult_self4 [simp]: | 
| 70147 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 184 | assumes "b \<noteq> 0" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 185 | shows "(b * c + a) div b = c + a div b" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 186 | using assms by (simp add: add.commute) | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 187 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 188 | lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 189 | proof (cases "b = 0") | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 190 | case True then show ?thesis by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 191 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 192 | case False | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 193 | have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 194 | by (simp add: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 195 | also from False div_mult_self1 [of b a c] have | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 196 | "\<dots> = (c + a div b) * b + (a + c * b) mod b" | 
| 70147 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 197 | by (simp add: algebra_simps) | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 198 | finally have "a = a div b * b + (a + c * b) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 199 | by (simp add: add.commute [of a] add.assoc distrib_right) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 200 | then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 201 | by (simp add: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 202 | then show ?thesis by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 203 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 204 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 205 | lemma mod_mult_self2 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 206 | "(a + b * c) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 207 | by (simp add: mult.commute [of b]) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 208 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 209 | lemma mod_mult_self3 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 210 | "(c * b + a) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 211 | by (simp add: add.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 212 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 213 | lemma mod_mult_self4 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 214 | "(b * c + a) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 215 | by (simp add: add.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 216 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 217 | lemma mod_mult_self1_is_0 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 218 | "b * a mod b = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 219 | using mod_mult_self2 [of 0 b a] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 220 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 221 | lemma mod_mult_self2_is_0 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 222 | "a * b mod b = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 223 | using mod_mult_self1 [of 0 a b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 224 | |
| 70147 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 225 | lemma div_add_self1: | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 226 | assumes "b \<noteq> 0" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 227 | shows "(b + a) div b = a div b + 1" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 228 | using assms div_mult_self1 [of b a 1] by (simp add: add.commute) | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 229 | |
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 230 | lemma div_add_self2: | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 231 | assumes "b \<noteq> 0" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 232 | shows "(a + b) div b = a div b + 1" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 233 | using assms div_add_self1 [of b a] by (simp add: add.commute) | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 234 | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 235 | lemma mod_add_self1 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 236 | "(b + a) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 237 | using mod_mult_self1 [of a 1 b] by (simp add: add.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 238 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 239 | lemma mod_add_self2 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 240 | "(a + b) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 241 | using mod_mult_self1 [of a 1 b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 242 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 243 | lemma mod_div_trivial [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 244 | "a mod b div b = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 245 | proof (cases "b = 0") | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 246 | assume "b = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 247 | thus ?thesis by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 248 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 249 | assume "b \<noteq> 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 250 | hence "a div b + a mod b div b = (a mod b + a div b * b) div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 251 | by (rule div_mult_self1 [symmetric]) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 252 | also have "\<dots> = a div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 253 | by (simp only: mod_div_mult_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 254 | also have "\<dots> = a div b + 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 255 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 256 | finally show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 257 | by (rule add_left_imp_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 258 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 259 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 260 | lemma mod_mod_trivial [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 261 | "a mod b mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 262 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 263 | have "a mod b mod b = (a mod b + a div b * b) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 264 | by (simp only: mod_mult_self1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 265 | also have "\<dots> = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 266 | by (simp only: mod_div_mult_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 267 | finally show ?thesis . | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 268 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 269 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 270 | lemma mod_mod_cancel: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 271 | assumes "c dvd b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 272 | shows "a mod b mod c = a mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 273 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 274 | from \<open>c dvd b\<close> obtain k where "b = c * k" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 275 | by (rule dvdE) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 276 | have "a mod b mod c = a mod (c * k) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 277 | by (simp only: \<open>b = c * k\<close>) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 278 | also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 279 | by (simp only: mod_mult_self1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 280 | also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 281 | by (simp only: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 282 | also have "\<dots> = a mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 283 | by (simp only: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 284 | finally show ?thesis . | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 285 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 286 | |
| 70147 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 287 | lemma div_mult_mult2 [simp]: | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 288 | "c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 289 | by (drule div_mult_mult1) (simp add: mult.commute) | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 290 | |
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 291 | lemma div_mult_mult1_if [simp]: | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 292 | "(c * a) div (c * b) = (if c = 0 then 0 else a div b)" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 293 | by simp_all | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 294 | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 295 | lemma mod_mult_mult1: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 296 | "(c * a) mod (c * b) = c * (a mod b)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 297 | proof (cases "c = 0") | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 298 | case True then show ?thesis by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 299 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 300 | case False | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 301 | from div_mult_mod_eq | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 302 | have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" . | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 303 | with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 304 | = c * a + c * (a mod b)" by (simp add: algebra_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 305 | with div_mult_mod_eq show ?thesis by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 306 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 307 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 308 | lemma mod_mult_mult2: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 309 | "(a * c) mod (b * c) = (a mod b) * c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 310 | using mod_mult_mult1 [of c a b] by (simp add: mult.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 311 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 312 | lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 313 | by (fact mod_mult_mult2 [symmetric]) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 314 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 315 | lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 316 | by (fact mod_mult_mult1 [symmetric]) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 317 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 318 | lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 319 | unfolding dvd_def by (auto simp add: mod_mult_mult1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 320 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 321 | lemma div_plus_div_distrib_dvd_left: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 322 | "c dvd a \<Longrightarrow> (a + b) div c = a div c + b div c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 323 | by (cases "c = 0") (auto elim: dvdE) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 324 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 325 | lemma div_plus_div_distrib_dvd_right: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 326 | "c dvd b \<Longrightarrow> (a + b) div c = a div c + b div c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 327 | using div_plus_div_distrib_dvd_left [of c b a] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 328 | by (simp add: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 329 | |
| 71413 | 330 | lemma sum_div_partition: | 
| 331 |   \<open>(\<Sum>a\<in>A. f a) div b = (\<Sum>a\<in>A \<inter> {a. b dvd f a}. f a div b) + (\<Sum>a\<in>A \<inter> {a. \<not> b dvd f a}. f a) div b\<close>
 | |
| 332 | if \<open>finite A\<close> | |
| 333 | proof - | |
| 334 |   have \<open>A = A \<inter> {a. b dvd f a} \<union> A \<inter> {a. \<not> b dvd f a}\<close>
 | |
| 335 | by auto | |
| 336 |   then have \<open>(\<Sum>a\<in>A. f a) = (\<Sum>a\<in>A \<inter> {a. b dvd f a} \<union> A \<inter> {a. \<not> b dvd f a}. f a)\<close>
 | |
| 337 | by simp | |
| 338 |   also have \<open>\<dots> = (\<Sum>a\<in>A \<inter> {a. b dvd f a}. f a) + (\<Sum>a\<in>A \<inter> {a. \<not> b dvd f a}. f a)\<close>
 | |
| 339 | using \<open>finite A\<close> by (auto intro: sum.union_inter_neutral) | |
| 340 |   finally have *: \<open>sum f A = sum f (A \<inter> {a. b dvd f a}) + sum f (A \<inter> {a. \<not> b dvd f a})\<close> .
 | |
| 341 |   define B where B: \<open>B = A \<inter> {a. b dvd f a}\<close>
 | |
| 342 | with \<open>finite A\<close> have \<open>finite B\<close> and \<open>a \<in> B \<Longrightarrow> b dvd f a\<close> for a | |
| 343 | by simp_all | |
| 344 | then have \<open>(\<Sum>a\<in>B. f a) div b = (\<Sum>a\<in>B. f a div b)\<close> and \<open>b dvd (\<Sum>a\<in>B. f a)\<close> | |
| 345 | by induction (simp_all add: div_plus_div_distrib_dvd_left) | |
| 346 | then show ?thesis using * | |
| 347 | by (simp add: B div_plus_div_distrib_dvd_left) | |
| 348 | qed | |
| 349 | ||
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 350 | named_theorems mod_simps | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 351 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 352 | text \<open>Addition respects modular equivalence.\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 353 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 354 | lemma mod_add_left_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 355 | "(a mod c + b) mod c = (a + b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 356 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 357 | have "(a + b) mod c = (a div c * c + a mod c + b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 358 | by (simp only: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 359 | also have "\<dots> = (a mod c + b + a div c * c) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 360 | by (simp only: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 361 | also have "\<dots> = (a mod c + b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 362 | by (rule mod_mult_self1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 363 | finally show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 364 | by (rule sym) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 365 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 366 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 367 | lemma mod_add_right_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 368 | "(a + b mod c) mod c = (a + b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 369 | using mod_add_left_eq [of b c a] by (simp add: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 370 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 371 | lemma mod_add_eq: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 372 | "(a mod c + b mod c) mod c = (a + b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 373 | by (simp add: mod_add_left_eq mod_add_right_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 374 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 375 | lemma mod_sum_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 376 | "(\<Sum>i\<in>A. f i mod a) mod a = sum f A mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 377 | proof (induct A rule: infinite_finite_induct) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 378 | case (insert i A) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 379 | then have "(\<Sum>i\<in>insert i A. f i mod a) mod a | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 380 | = (f i mod a + (\<Sum>i\<in>A. f i mod a)) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 381 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 382 | also have "\<dots> = (f i + (\<Sum>i\<in>A. f i mod a) mod a) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 383 | by (simp add: mod_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 384 | also have "\<dots> = (f i + (\<Sum>i\<in>A. f i) mod a) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 385 | by (simp add: insert.hyps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 386 | finally show ?case | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 387 | by (simp add: insert.hyps mod_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 388 | qed simp_all | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 389 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 390 | lemma mod_add_cong: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 391 | assumes "a mod c = a' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 392 | assumes "b mod c = b' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 393 | shows "(a + b) mod c = (a' + b') mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 394 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 395 | have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 396 | unfolding assms .. | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 397 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 398 | by (simp add: mod_add_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 399 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 400 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 401 | text \<open>Multiplication respects modular equivalence.\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 402 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 403 | lemma mod_mult_left_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 404 | "((a mod c) * b) mod c = (a * b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 405 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 406 | have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 407 | by (simp only: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 408 | also have "\<dots> = (a mod c * b + a div c * b * c) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 409 | by (simp only: algebra_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 410 | also have "\<dots> = (a mod c * b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 411 | by (rule mod_mult_self1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 412 | finally show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 413 | by (rule sym) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 414 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 415 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 416 | lemma mod_mult_right_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 417 | "(a * (b mod c)) mod c = (a * b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 418 | using mod_mult_left_eq [of b c a] by (simp add: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 419 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 420 | lemma mod_mult_eq: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 421 | "((a mod c) * (b mod c)) mod c = (a * b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 422 | by (simp add: mod_mult_left_eq mod_mult_right_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 423 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 424 | lemma mod_prod_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 425 | "(\<Prod>i\<in>A. f i mod a) mod a = prod f A mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 426 | proof (induct A rule: infinite_finite_induct) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 427 | case (insert i A) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 428 | then have "(\<Prod>i\<in>insert i A. f i mod a) mod a | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 429 | = (f i mod a * (\<Prod>i\<in>A. f i mod a)) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 430 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 431 | also have "\<dots> = (f i * ((\<Prod>i\<in>A. f i mod a) mod a)) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 432 | by (simp add: mod_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 433 | also have "\<dots> = (f i * ((\<Prod>i\<in>A. f i) mod a)) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 434 | by (simp add: insert.hyps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 435 | finally show ?case | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 436 | by (simp add: insert.hyps mod_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 437 | qed simp_all | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 438 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 439 | lemma mod_mult_cong: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 440 | assumes "a mod c = a' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 441 | assumes "b mod c = b' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 442 | shows "(a * b) mod c = (a' * b') mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 443 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 444 | have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 445 | unfolding assms .. | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 446 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 447 | by (simp add: mod_mult_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 448 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 449 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 450 | text \<open>Exponentiation respects modular equivalence.\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 451 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 452 | lemma power_mod [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 453 | "((a mod b) ^ n) mod b = (a ^ n) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 454 | proof (induct n) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 455 | case 0 | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 456 | then show ?case by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 457 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 458 | case (Suc n) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 459 | have "(a mod b) ^ Suc n mod b = (a mod b) * ((a mod b) ^ n mod b) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 460 | by (simp add: mod_mult_right_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 461 | with Suc show ?case | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 462 | by (simp add: mod_mult_left_eq mod_mult_right_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 463 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 464 | |
| 71413 | 465 | lemma power_diff_power_eq: | 
| 466 | \<open>a ^ m div a ^ n = (if n \<le> m then a ^ (m - n) else 1 div a ^ (n - m))\<close> | |
| 467 | if \<open>a \<noteq> 0\<close> | |
| 468 | proof (cases \<open>n \<le> m\<close>) | |
| 469 | case True | |
| 470 | with that power_diff [symmetric, of a n m] show ?thesis by simp | |
| 471 | next | |
| 472 | case False | |
| 473 | then obtain q where n: \<open>n = m + Suc q\<close> | |
| 474 | by (auto simp add: not_le dest: less_imp_Suc_add) | |
| 475 | then have \<open>a ^ m div a ^ n = (a ^ m * 1) div (a ^ m * a ^ Suc q)\<close> | |
| 476 | by (simp add: power_add ac_simps) | |
| 477 | moreover from that have \<open>a ^ m \<noteq> 0\<close> | |
| 478 | by simp | |
| 479 | ultimately have \<open>a ^ m div a ^ n = 1 div a ^ Suc q\<close> | |
| 480 | by (subst (asm) div_mult_mult1) simp | |
| 481 | with False n show ?thesis | |
| 482 | by simp | |
| 483 | qed | |
| 484 | ||
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 485 | end | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 486 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 487 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 488 | class euclidean_ring_cancel = euclidean_ring + euclidean_semiring_cancel | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 489 | begin | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 490 | |
| 70147 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 491 | subclass idom_divide .. | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 492 | |
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 493 | lemma div_minus_minus [simp]: "(- a) div (- b) = a div b" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 494 | using div_mult_mult1 [of "- 1" a b] by simp | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 495 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 496 | lemma mod_minus_minus [simp]: "(- a) mod (- b) = - (a mod b)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 497 | using mod_mult_mult1 [of "- 1" a b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 498 | |
| 70147 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 499 | lemma div_minus_right: "a div (- b) = (- a) div b" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 500 | using div_minus_minus [of "- a" b] by simp | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 501 | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 502 | lemma mod_minus_right: "a mod (- b) = - ((- a) mod b)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 503 | using mod_minus_minus [of "- a" b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 504 | |
| 70147 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 505 | lemma div_minus1_right [simp]: "a div (- 1) = - a" | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 506 | using div_minus_right [of a 1] by simp | 
| 
1657688a6406
backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
 haftmann parents: 
70094diff
changeset | 507 | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 508 | lemma mod_minus1_right [simp]: "a mod (- 1) = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 509 | using mod_minus_right [of a 1] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 510 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 511 | text \<open>Negation respects modular equivalence.\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 512 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 513 | lemma mod_minus_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 514 | "(- (a mod b)) mod b = (- a) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 515 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 516 | have "(- a) mod b = (- (a div b * b + a mod b)) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 517 | by (simp only: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 518 | also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 519 | by (simp add: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 520 | also have "\<dots> = (- (a mod b)) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 521 | by (rule mod_mult_self1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 522 | finally show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 523 | by (rule sym) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 524 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 525 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 526 | lemma mod_minus_cong: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 527 | assumes "a mod b = a' mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 528 | shows "(- a) mod b = (- a') mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 529 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 530 | have "(- (a mod b)) mod b = (- (a' mod b)) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 531 | unfolding assms .. | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 532 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 533 | by (simp add: mod_minus_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 534 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 535 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 536 | text \<open>Subtraction respects modular equivalence.\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 537 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 538 | lemma mod_diff_left_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 539 | "(a mod c - b) mod c = (a - b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 540 | using mod_add_cong [of a c "a mod c" "- b" "- b"] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 541 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 542 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 543 | lemma mod_diff_right_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 544 | "(a - b mod c) mod c = (a - b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 545 | using mod_add_cong [of a c a "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 546 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 547 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 548 | lemma mod_diff_eq: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 549 | "(a mod c - b mod c) mod c = (a - b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 550 | using mod_add_cong [of a c "a mod c" "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 551 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 552 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 553 | lemma mod_diff_cong: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 554 | assumes "a mod c = a' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 555 | assumes "b mod c = b' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 556 | shows "(a - b) mod c = (a' - b') mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 557 | using assms mod_add_cong [of a c a' "- b" "- b'"] mod_minus_cong [of b c "b'"] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 558 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 559 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 560 | lemma minus_mod_self2 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 561 | "(a - b) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 562 | using mod_diff_right_eq [of a b b] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 563 | by (simp add: mod_diff_right_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 564 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 565 | lemma minus_mod_self1 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 566 | "(b - a) mod b = - a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 567 | using mod_add_self2 [of "- a" b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 568 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 569 | lemma mod_eq_dvd_iff: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 570 | "a mod c = b mod c \<longleftrightarrow> c dvd a - b" (is "?P \<longleftrightarrow> ?Q") | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 571 | proof | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 572 | assume ?P | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 573 | then have "(a mod c - b mod c) mod c = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 574 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 575 | then show ?Q | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 576 | by (simp add: dvd_eq_mod_eq_0 mod_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 577 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 578 | assume ?Q | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 579 | then obtain d where d: "a - b = c * d" .. | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 580 | then have "a = c * d + b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 581 | by (simp add: algebra_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 582 | then show ?P by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 583 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 584 | |
| 66837 | 585 | lemma mod_eqE: | 
| 586 | assumes "a mod c = b mod c" | |
| 587 | obtains d where "b = a + c * d" | |
| 588 | proof - | |
| 589 | from assms have "c dvd a - b" | |
| 590 | by (simp add: mod_eq_dvd_iff) | |
| 591 | then obtain d where "a - b = c * d" .. | |
| 592 | then have "b = a + c * - d" | |
| 593 | by (simp add: algebra_simps) | |
| 594 | with that show thesis . | |
| 595 | qed | |
| 596 | ||
| 67051 | 597 | lemma invertible_coprime: | 
| 598 | "coprime a c" if "a * b mod c = 1" | |
| 599 | by (rule coprimeI) (use that dvd_mod_iff [of _ c "a * b"] in auto) | |
| 600 | ||
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 601 | end | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 602 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 603 | |
| 64785 | 604 | subsection \<open>Uniquely determined division\<close> | 
| 605 | ||
| 606 | class unique_euclidean_semiring = euclidean_semiring + | |
| 66840 | 607 | assumes euclidean_size_mult: "euclidean_size (a * b) = euclidean_size a * euclidean_size b" | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 608 | fixes division_segment :: "'a \<Rightarrow> 'a" | 
| 66839 | 609 | assumes is_unit_division_segment [simp]: "is_unit (division_segment a)" | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 610 | and division_segment_mult: | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 611 | "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> division_segment (a * b) = division_segment a * division_segment b" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 612 | and division_segment_mod: | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 613 | "b \<noteq> 0 \<Longrightarrow> \<not> b dvd a \<Longrightarrow> division_segment (a mod b) = division_segment b" | 
| 64785 | 614 | assumes div_bounded: | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 615 | "b \<noteq> 0 \<Longrightarrow> division_segment r = division_segment b | 
| 64785 | 616 | \<Longrightarrow> euclidean_size r < euclidean_size b | 
| 617 | \<Longrightarrow> (q * b + r) div b = q" | |
| 618 | begin | |
| 619 | ||
| 66839 | 620 | lemma division_segment_not_0 [simp]: | 
| 621 | "division_segment a \<noteq> 0" | |
| 622 | using is_unit_division_segment [of a] is_unitE [of "division_segment a"] by blast | |
| 623 | ||
| 64785 | 624 | lemma divmod_cases [case_names divides remainder by0]: | 
| 625 | obtains | |
| 626 | (divides) q where "b \<noteq> 0" | |
| 627 | and "a div b = q" | |
| 628 | and "a mod b = 0" | |
| 629 | and "a = q * b" | |
| 66814 | 630 | | (remainder) q r where "b \<noteq> 0" | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 631 | and "division_segment r = division_segment b" | 
| 64785 | 632 | and "euclidean_size r < euclidean_size b" | 
| 66814 | 633 | and "r \<noteq> 0" | 
| 64785 | 634 | and "a div b = q" | 
| 635 | and "a mod b = r" | |
| 636 | and "a = q * b + r" | |
| 637 | | (by0) "b = 0" | |
| 638 | proof (cases "b = 0") | |
| 639 | case True | |
| 640 | then show thesis | |
| 641 | by (rule by0) | |
| 642 | next | |
| 643 | case False | |
| 644 | show thesis | |
| 645 | proof (cases "b dvd a") | |
| 646 | case True | |
| 647 | then obtain q where "a = b * q" .. | |
| 648 | with \<open>b \<noteq> 0\<close> divides | |
| 649 | show thesis | |
| 650 | by (simp add: ac_simps) | |
| 651 | next | |
| 652 | case False | |
| 653 | then have "a mod b \<noteq> 0" | |
| 654 | by (simp add: mod_eq_0_iff_dvd) | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 655 | moreover from \<open>b \<noteq> 0\<close> \<open>\<not> b dvd a\<close> have "division_segment (a mod b) = division_segment b" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 656 | by (rule division_segment_mod) | 
| 64785 | 657 | moreover have "euclidean_size (a mod b) < euclidean_size b" | 
| 658 | using \<open>b \<noteq> 0\<close> by (rule mod_size_less) | |
| 659 | moreover have "a = a div b * b + a mod b" | |
| 660 | by (simp add: div_mult_mod_eq) | |
| 661 | ultimately show thesis | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 662 | using \<open>b \<noteq> 0\<close> by (blast intro!: remainder) | 
| 64785 | 663 | qed | 
| 664 | qed | |
| 665 | ||
| 666 | lemma div_eqI: | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 667 | "a div b = q" if "b \<noteq> 0" "division_segment r = division_segment b" | 
| 64785 | 668 | "euclidean_size r < euclidean_size b" "q * b + r = a" | 
| 669 | proof - | |
| 670 | from that have "(q * b + r) div b = q" | |
| 671 | by (auto intro: div_bounded) | |
| 672 | with that show ?thesis | |
| 673 | by simp | |
| 674 | qed | |
| 675 | ||
| 676 | lemma mod_eqI: | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 677 | "a mod b = r" if "b \<noteq> 0" "division_segment r = division_segment b" | 
| 64785 | 678 | "euclidean_size r < euclidean_size b" "q * b + r = a" | 
| 679 | proof - | |
| 680 | from that have "a div b = q" | |
| 681 | by (rule div_eqI) | |
| 682 | moreover have "a div b * b + a mod b = a" | |
| 683 | by (fact div_mult_mod_eq) | |
| 684 | ultimately have "a div b * b + a mod b = a div b * b + r" | |
| 685 | using \<open>q * b + r = a\<close> by simp | |
| 686 | then show ?thesis | |
| 687 | by simp | |
| 688 | qed | |
| 689 | ||
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 690 | subclass euclidean_semiring_cancel | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 691 | proof | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 692 | show "(a + c * b) div b = c + a div b" if "b \<noteq> 0" for a b c | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 693 | proof (cases a b rule: divmod_cases) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 694 | case by0 | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 695 | with \<open>b \<noteq> 0\<close> show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 696 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 697 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 698 | case (divides q) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 699 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 700 | by (simp add: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 701 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 702 | case (remainder q r) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 703 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 704 | by (auto intro: div_eqI simp add: algebra_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 705 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 706 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 707 | show"(c * a) div (c * b) = a div b" if "c \<noteq> 0" for a b c | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 708 | proof (cases a b rule: divmod_cases) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 709 | case by0 | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 710 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 711 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 712 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 713 | case (divides q) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 714 | with \<open>c \<noteq> 0\<close> show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 715 | by (simp add: mult.left_commute [of c]) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 716 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 717 | case (remainder q r) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 718 | from \<open>b \<noteq> 0\<close> \<open>c \<noteq> 0\<close> have "b * c \<noteq> 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 719 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 720 | from remainder \<open>c \<noteq> 0\<close> | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 721 | have "division_segment (r * c) = division_segment (b * c)" | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 722 | and "euclidean_size (r * c) < euclidean_size (b * c)" | 
| 66840 | 723 | by (simp_all add: division_segment_mult division_segment_mod euclidean_size_mult) | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 724 | with remainder show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 725 | by (auto intro!: div_eqI [of _ "c * (a mod b)"] simp add: algebra_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 726 | (use \<open>b * c \<noteq> 0\<close> in simp) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 727 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 728 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 729 | |
| 66814 | 730 | lemma div_mult1_eq: | 
| 731 | "(a * b) div c = a * (b div c) + a * (b mod c) div c" | |
| 732 | proof (cases "a * (b mod c)" c rule: divmod_cases) | |
| 733 | case (divides q) | |
| 734 | have "a * b = a * (b div c * c + b mod c)" | |
| 735 | by (simp add: div_mult_mod_eq) | |
| 736 | also have "\<dots> = (a * (b div c) + q) * c" | |
| 737 | using divides by (simp add: algebra_simps) | |
| 738 | finally have "(a * b) div c = \<dots> div c" | |
| 739 | by simp | |
| 740 | with divides show ?thesis | |
| 741 | by simp | |
| 742 | next | |
| 743 | case (remainder q r) | |
| 744 | from remainder(1-3) show ?thesis | |
| 745 | proof (rule div_eqI) | |
| 746 | have "a * b = a * (b div c * c + b mod c)" | |
| 747 | by (simp add: div_mult_mod_eq) | |
| 748 | also have "\<dots> = a * c * (b div c) + q * c + r" | |
| 749 | using remainder by (simp add: algebra_simps) | |
| 750 | finally show "(a * (b div c) + a * (b mod c) div c) * c + r = a * b" | |
| 751 | using remainder(5-7) by (simp add: algebra_simps) | |
| 752 | qed | |
| 753 | next | |
| 754 | case by0 | |
| 755 | then show ?thesis | |
| 756 | by simp | |
| 757 | qed | |
| 758 | ||
| 759 | lemma div_add1_eq: | |
| 760 | "(a + b) div c = a div c + b div c + (a mod c + b mod c) div c" | |
| 761 | proof (cases "a mod c + b mod c" c rule: divmod_cases) | |
| 762 | case (divides q) | |
| 763 | have "a + b = (a div c * c + a mod c) + (b div c * c + b mod c)" | |
| 764 | using mod_mult_div_eq [of a c] mod_mult_div_eq [of b c] by (simp add: ac_simps) | |
| 765 | also have "\<dots> = (a div c + b div c) * c + (a mod c + b mod c)" | |
| 766 | by (simp add: algebra_simps) | |
| 767 | also have "\<dots> = (a div c + b div c + q) * c" | |
| 768 | using divides by (simp add: algebra_simps) | |
| 769 | finally have "(a + b) div c = (a div c + b div c + q) * c div c" | |
| 770 | by simp | |
| 771 | with divides show ?thesis | |
| 772 | by simp | |
| 773 | next | |
| 774 | case (remainder q r) | |
| 775 | from remainder(1-3) show ?thesis | |
| 776 | proof (rule div_eqI) | |
| 777 | have "(a div c + b div c + q) * c + r + (a mod c + b mod c) = | |
| 778 | (a div c * c + a mod c) + (b div c * c + b mod c) + q * c + r" | |
| 779 | by (simp add: algebra_simps) | |
| 780 | also have "\<dots> = a + b + (a mod c + b mod c)" | |
| 781 | by (simp add: div_mult_mod_eq remainder) (simp add: ac_simps) | |
| 782 | finally show "(a div c + b div c + (a mod c + b mod c) div c) * c + r = a + b" | |
| 783 | using remainder by simp | |
| 784 | qed | |
| 785 | next | |
| 786 | case by0 | |
| 787 | then show ?thesis | |
| 788 | by simp | |
| 789 | qed | |
| 790 | ||
| 66886 | 791 | lemma div_eq_0_iff: | 
| 792 | "a div b = 0 \<longleftrightarrow> euclidean_size a < euclidean_size b \<or> b = 0" (is "_ \<longleftrightarrow> ?P") | |
| 793 | if "division_segment a = division_segment b" | |
| 794 | proof | |
| 795 | assume ?P | |
| 796 | with that show "a div b = 0" | |
| 797 | by (cases "b = 0") (auto intro: div_eqI) | |
| 798 | next | |
| 799 | assume "a div b = 0" | |
| 800 | then have "a mod b = a" | |
| 801 | using div_mult_mod_eq [of a b] by simp | |
| 802 | with mod_size_less [of b a] show ?P | |
| 803 | by auto | |
| 804 | qed | |
| 805 | ||
| 64785 | 806 | end | 
| 807 | ||
| 808 | class unique_euclidean_ring = euclidean_ring + unique_euclidean_semiring | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 809 | begin | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 810 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 811 | subclass euclidean_ring_cancel .. | 
| 64785 | 812 | |
| 813 | end | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 814 | |
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 815 | |
| 69593 | 816 | subsection \<open>Euclidean division on \<^typ>\<open>nat\<close>\<close> | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 817 | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 818 | instantiation nat :: normalization_semidom | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 819 | begin | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 820 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 821 | definition normalize_nat :: "nat \<Rightarrow> nat" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 822 | where [simp]: "normalize = (id :: nat \<Rightarrow> nat)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 823 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 824 | definition unit_factor_nat :: "nat \<Rightarrow> nat" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 825 | where "unit_factor n = (if n = 0 then 0 else 1 :: nat)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 826 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 827 | lemma unit_factor_simps [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 828 | "unit_factor 0 = (0::nat)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 829 | "unit_factor (Suc n) = 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 830 | by (simp_all add: unit_factor_nat_def) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 831 | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 832 | definition divide_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 833 |   where "m div n = (if n = 0 then 0 else Max {k::nat. k * n \<le> m})"
 | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 834 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 835 | instance | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 836 | by standard (auto simp add: divide_nat_def ac_simps unit_factor_nat_def intro: Max_eqI) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 837 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 838 | end | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 839 | |
| 67051 | 840 | lemma coprime_Suc_0_left [simp]: | 
| 841 | "coprime (Suc 0) n" | |
| 842 | using coprime_1_left [of n] by simp | |
| 843 | ||
| 844 | lemma coprime_Suc_0_right [simp]: | |
| 845 | "coprime n (Suc 0)" | |
| 846 | using coprime_1_right [of n] by simp | |
| 847 | ||
| 848 | lemma coprime_common_divisor_nat: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> x = 1" | |
| 849 | for a b :: nat | |
| 850 | by (drule coprime_common_divisor [of _ _ x]) simp_all | |
| 851 | ||
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 852 | instantiation nat :: unique_euclidean_semiring | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 853 | begin | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 854 | |
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 855 | definition euclidean_size_nat :: "nat \<Rightarrow> nat" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 856 | where [simp]: "euclidean_size_nat = id" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 857 | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 858 | definition division_segment_nat :: "nat \<Rightarrow> nat" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 859 | where [simp]: "division_segment_nat n = 1" | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 860 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 861 | definition modulo_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 862 | where "m mod n = m - (m div n * (n::nat))" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 863 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 864 | instance proof | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 865 | fix m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 866 | have ex: "\<exists>k. k * n \<le> l" for l :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 867 | by (rule exI [of _ 0]) simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 868 |   have fin: "finite {k. k * n \<le> l}" if "n > 0" for l
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 869 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 870 |     from that have "{k. k * n \<le> l} \<subseteq> {k. k \<le> l}"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 871 | by (cases n) auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 872 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 873 | by (rule finite_subset) simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 874 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 875 |   have mult_div_unfold: "n * (m div n) = Max {l. l \<le> m \<and> n dvd l}"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 876 | proof (cases "n = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 877 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 878 |     moreover have "{l. l = 0 \<and> l \<le> m} = {0::nat}"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 879 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 880 | ultimately show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 881 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 882 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 883 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 884 |     with ex [of m] fin have "n * Max {k. k * n \<le> m} = Max (times n ` {k. k * n \<le> m})"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 885 | by (auto simp add: nat_mult_max_right intro: hom_Max_commute) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 886 |     also have "times n ` {k. k * n \<le> m} = {l. l \<le> m \<and> n dvd l}"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 887 | by (auto simp add: ac_simps elim!: dvdE) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 888 | finally show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 889 | using False by (simp add: divide_nat_def ac_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 890 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 891 | have less_eq: "m div n * n \<le> m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 892 | by (auto simp add: mult_div_unfold ac_simps intro: Max.boundedI) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 893 | then show "m div n * n + m mod n = m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 894 | by (simp add: modulo_nat_def) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 895 | assume "n \<noteq> 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 896 | show "euclidean_size (m mod n) < euclidean_size n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 897 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 898 | have "m < Suc (m div n) * n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 899 | proof (rule ccontr) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 900 | assume "\<not> m < Suc (m div n) * n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 901 | then have "Suc (m div n) * n \<le> m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 902 | by (simp add: not_less) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 903 |       moreover from \<open>n \<noteq> 0\<close> have "Max {k. k * n \<le> m} < Suc (m div n)"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 904 | by (simp add: divide_nat_def) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 905 | with \<open>n \<noteq> 0\<close> ex fin have "\<And>k. k * n \<le> m \<Longrightarrow> k < Suc (m div n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 906 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 907 | ultimately have "Suc (m div n) < Suc (m div n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 908 | by blast | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 909 | then show False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 910 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 911 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 912 | with \<open>n \<noteq> 0\<close> show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 913 | by (simp add: modulo_nat_def) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 914 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 915 | show "euclidean_size m \<le> euclidean_size (m * n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 916 | using \<open>n \<noteq> 0\<close> by (cases n) simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 917 | fix q r :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 918 | show "(q * n + r) div n = q" if "euclidean_size r < euclidean_size n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 919 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 920 | from that have "r < n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 921 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 922 | have "k \<le> q" if "k * n \<le> q * n + r" for k | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 923 | proof (rule ccontr) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 924 | assume "\<not> k \<le> q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 925 | then have "q < k" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 926 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 927 | then obtain l where "k = Suc (q + l)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 928 | by (auto simp add: less_iff_Suc_add) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 929 | with \<open>r < n\<close> that show False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 930 | by (simp add: algebra_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 931 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 932 | with \<open>n \<noteq> 0\<close> ex fin show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 933 | by (auto simp add: divide_nat_def Max_eq_iff) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 934 | qed | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 935 | qed simp_all | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 936 | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 937 | end | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 938 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 939 | text \<open>Tool support\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 940 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 941 | ML \<open> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 942 | structure Cancel_Div_Mod_Nat = Cancel_Div_Mod | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 943 | ( | 
| 69593 | 944 | val div_name = \<^const_name>\<open>divide\<close>; | 
| 945 | val mod_name = \<^const_name>\<open>modulo\<close>; | |
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 946 | val mk_binop = HOLogic.mk_binop; | 
| 69593 | 947 | val dest_plus = HOLogic.dest_bin \<^const_name>\<open>Groups.plus\<close> HOLogic.natT; | 
| 66813 | 948 | val mk_sum = Arith_Data.mk_sum; | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 949 | fun dest_sum tm = | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 950 | if HOLogic.is_zero tm then [] | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 951 | else | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 952 | (case try HOLogic.dest_Suc tm of | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 953 | SOME t => HOLogic.Suc_zero :: dest_sum t | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 954 | | NONE => | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 955 | (case try dest_plus tm of | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 956 | SOME (t, u) => dest_sum t @ dest_sum u | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 957 | | NONE => [tm])); | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 958 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 959 |   val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 960 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 961 | val prove_eq_sums = Arith_Data.prove_conv2 all_tac | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 962 |     (Arith_Data.simp_all_tac @{thms add_0_left add_0_right ac_simps})
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 963 | ) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 964 | \<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 965 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 966 | simproc_setup cancel_div_mod_nat ("(m::nat) + n") =
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 967 | \<open>K Cancel_Div_Mod_Nat.proc\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 968 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 969 | lemma div_nat_eqI: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 970 | "m div n = q" if "n * q \<le> m" and "m < n * Suc q" for m n q :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 971 | by (rule div_eqI [of _ "m - n * q"]) (use that in \<open>simp_all add: algebra_simps\<close>) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 972 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 973 | lemma mod_nat_eqI: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 974 | "m mod n = r" if "r < n" and "r \<le> m" and "n dvd m - r" for m n r :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 975 | by (rule mod_eqI [of _ _ "(m - r) div n"]) (use that in \<open>simp_all add: algebra_simps\<close>) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 976 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 977 | lemma div_mult_self_is_m [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 978 | "m * n div n = m" if "n > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 979 | using that by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 980 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 981 | lemma div_mult_self1_is_m [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 982 | "n * m div n = m" if "n > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 983 | using that by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 984 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 985 | lemma mod_less_divisor [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 986 | "m mod n < n" if "n > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 987 | using mod_size_less [of n m] that by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 988 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 989 | lemma mod_le_divisor [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 990 | "m mod n \<le> n" if "n > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 991 | using that by (auto simp add: le_less) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 992 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 993 | lemma div_times_less_eq_dividend [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 994 | "m div n * n \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 995 | by (simp add: minus_mod_eq_div_mult [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 996 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 997 | lemma times_div_less_eq_dividend [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 998 | "n * (m div n) \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 999 | using div_times_less_eq_dividend [of m n] | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1000 | by (simp add: ac_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1001 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1002 | lemma dividend_less_div_times: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1003 | "m < n + (m div n) * n" if "0 < n" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1004 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1005 | from that have "m mod n < n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1006 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1007 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1008 | by (simp add: minus_mod_eq_div_mult [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1009 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1010 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1011 | lemma dividend_less_times_div: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1012 | "m < n + n * (m div n)" if "0 < n" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1013 | using dividend_less_div_times [of n m] that | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1014 | by (simp add: ac_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1015 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1016 | lemma mod_Suc_le_divisor [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1017 | "m mod Suc n \<le> n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1018 | using mod_less_divisor [of "Suc n" m] by arith | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1019 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1020 | lemma mod_less_eq_dividend [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1021 | "m mod n \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1022 | proof (rule add_leD2) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1023 | from div_mult_mod_eq have "m div n * n + m mod n = m" . | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1024 | then show "m div n * n + m mod n \<le> m" by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1025 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1026 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1027 | lemma | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1028 | div_less [simp]: "m div n = 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1029 | and mod_less [simp]: "m mod n = m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1030 | if "m < n" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1031 | using that by (auto intro: div_eqI mod_eqI) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1032 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1033 | lemma le_div_geq: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1034 | "m div n = Suc ((m - n) div n)" if "0 < n" and "n \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1035 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1036 | from \<open>n \<le> m\<close> obtain q where "m = n + q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1037 | by (auto simp add: le_iff_add) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1038 | with \<open>0 < n\<close> show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1039 | by (simp add: div_add_self1) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1040 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1041 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1042 | lemma le_mod_geq: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1043 | "m mod n = (m - n) mod n" if "n \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1044 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1045 | from \<open>n \<le> m\<close> obtain q where "m = n + q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1046 | by (auto simp add: le_iff_add) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1047 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1048 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1049 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1050 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1051 | lemma div_if: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1052 | "m div n = (if m < n \<or> n = 0 then 0 else Suc ((m - n) div n))" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1053 | by (simp add: le_div_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1054 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1055 | lemma mod_if: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1056 | "m mod n = (if m < n then m else (m - n) mod n)" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1057 | by (simp add: le_mod_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1058 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1059 | lemma div_eq_0_iff: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1060 | "m div n = 0 \<longleftrightarrow> m < n \<or> n = 0" for m n :: nat | 
| 66886 | 1061 | by (simp add: div_eq_0_iff) | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1062 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1063 | lemma div_greater_zero_iff: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1064 | "m div n > 0 \<longleftrightarrow> n \<le> m \<and> n > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1065 | using div_eq_0_iff [of m n] by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1066 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1067 | lemma mod_greater_zero_iff_not_dvd: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1068 | "m mod n > 0 \<longleftrightarrow> \<not> n dvd m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1069 | by (simp add: dvd_eq_mod_eq_0) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1070 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1071 | lemma div_by_Suc_0 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1072 | "m div Suc 0 = m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1073 | using div_by_1 [of m] by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1074 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1075 | lemma mod_by_Suc_0 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1076 | "m mod Suc 0 = 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1077 | using mod_by_1 [of m] by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1078 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1079 | lemma div2_Suc_Suc [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1080 | "Suc (Suc m) div 2 = Suc (m div 2)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1081 | by (simp add: numeral_2_eq_2 le_div_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1082 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1083 | lemma Suc_n_div_2_gt_zero [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1084 | "0 < Suc n div 2" if "n > 0" for n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1085 | using that by (cases n) simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1086 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1087 | lemma div_2_gt_zero [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1088 | "0 < n div 2" if "Suc 0 < n" for n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1089 | using that Suc_n_div_2_gt_zero [of "n - 1"] by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1090 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1091 | lemma mod2_Suc_Suc [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1092 | "Suc (Suc m) mod 2 = m mod 2" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1093 | by (simp add: numeral_2_eq_2 le_mod_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1094 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1095 | lemma add_self_div_2 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1096 | "(m + m) div 2 = m" for m :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1097 | by (simp add: mult_2 [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1098 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1099 | lemma add_self_mod_2 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1100 | "(m + m) mod 2 = 0" for m :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1101 | by (simp add: mult_2 [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1102 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1103 | lemma mod2_gr_0 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1104 | "0 < m mod 2 \<longleftrightarrow> m mod 2 = 1" for m :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1105 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1106 | have "m mod 2 < 2" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1107 | by (rule mod_less_divisor) simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1108 | then have "m mod 2 = 0 \<or> m mod 2 = 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1109 | by arith | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1110 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1111 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1112 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1113 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1114 | lemma mod_Suc_eq [mod_simps]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1115 | "Suc (m mod n) mod n = Suc m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1116 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1117 | have "(m mod n + 1) mod n = (m + 1) mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1118 | by (simp only: mod_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1119 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1120 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1121 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1122 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1123 | lemma mod_Suc_Suc_eq [mod_simps]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1124 | "Suc (Suc (m mod n)) mod n = Suc (Suc m) mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1125 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1126 | have "(m mod n + 2) mod n = (m + 2) mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1127 | by (simp only: mod_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1128 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1129 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1130 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1131 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1132 | lemma | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1133 | Suc_mod_mult_self1 [simp]: "Suc (m + k * n) mod n = Suc m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1134 | and Suc_mod_mult_self2 [simp]: "Suc (m + n * k) mod n = Suc m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1135 | and Suc_mod_mult_self3 [simp]: "Suc (k * n + m) mod n = Suc m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1136 | and Suc_mod_mult_self4 [simp]: "Suc (n * k + m) mod n = Suc m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1137 | by (subst mod_Suc_eq [symmetric], simp add: mod_simps)+ | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1138 | |
| 67083 | 1139 | lemma Suc_0_mod_eq [simp]: | 
| 1140 | "Suc 0 mod n = of_bool (n \<noteq> Suc 0)" | |
| 1141 | by (cases n) simp_all | |
| 1142 | ||
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1143 | context | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1144 | fixes m n q :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1145 | begin | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1146 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1147 | private lemma eucl_rel_mult2: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1148 | "m mod n + n * (m div n mod q) < n * q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1149 | if "n > 0" and "q > 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1150 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1151 | from \<open>n > 0\<close> have "m mod n < n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1152 | by (rule mod_less_divisor) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1153 | from \<open>q > 0\<close> have "m div n mod q < q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1154 | by (rule mod_less_divisor) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1155 | then obtain s where "q = Suc (m div n mod q + s)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1156 | by (blast dest: less_imp_Suc_add) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1157 | moreover have "m mod n + n * (m div n mod q) < n * Suc (m div n mod q + s)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1158 | using \<open>m mod n < n\<close> by (simp add: add_mult_distrib2) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1159 | ultimately show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1160 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1161 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1162 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1163 | lemma div_mult2_eq: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1164 | "m div (n * q) = (m div n) div q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1165 | proof (cases "n = 0 \<or> q = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1166 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1167 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1168 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1169 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1170 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1171 | with eucl_rel_mult2 show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1172 | by (auto intro: div_eqI [of _ "n * (m div n mod q) + m mod n"] | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1173 | simp add: algebra_simps add_mult_distrib2 [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1174 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1175 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1176 | lemma mod_mult2_eq: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1177 | "m mod (n * q) = n * (m div n mod q) + m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1178 | proof (cases "n = 0 \<or> q = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1179 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1180 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1181 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1182 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1183 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1184 | with eucl_rel_mult2 show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1185 | by (auto intro: mod_eqI [of _ _ "(m div n) div q"] | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1186 | simp add: algebra_simps add_mult_distrib2 [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1187 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1188 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1189 | end | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1190 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1191 | lemma div_le_mono: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1192 | "m div k \<le> n div k" if "m \<le> n" for m n k :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1193 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1194 | from that obtain q where "n = m + q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1195 | by (auto simp add: le_iff_add) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1196 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1197 | by (simp add: div_add1_eq [of m q k]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1198 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1199 | |
| 69593 | 1200 | text \<open>Antimonotonicity of \<^const>\<open>divide\<close> in second argument\<close> | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1201 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1202 | lemma div_le_mono2: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1203 | "k div n \<le> k div m" if "0 < m" and "m \<le> n" for m n k :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1204 | using that proof (induct k arbitrary: m rule: less_induct) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1205 | case (less k) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1206 | show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1207 | proof (cases "n \<le> k") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1208 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1209 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1210 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1211 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1212 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1213 | have "(k - n) div n \<le> (k - m) div n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1214 | using less.prems | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1215 | by (blast intro: div_le_mono diff_le_mono2) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1216 | also have "\<dots> \<le> (k - m) div m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1217 | using \<open>n \<le> k\<close> less.prems less.hyps [of "k - m" m] | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1218 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1219 | finally show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1220 | using \<open>n \<le> k\<close> less.prems | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1221 | by (simp add: le_div_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1222 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1223 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1224 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1225 | lemma div_le_dividend [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1226 | "m div n \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1227 | using div_le_mono2 [of 1 n m] by (cases "n = 0") simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1228 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1229 | lemma div_less_dividend [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1230 | "m div n < m" if "1 < n" and "0 < m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1231 | using that proof (induct m rule: less_induct) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1232 | case (less m) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1233 | show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1234 | proof (cases "n < m") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1235 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1236 | with less show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1237 | by (cases "n = m") simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1238 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1239 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1240 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1241 | using less.hyps [of "m - n"] less.prems | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1242 | by (simp add: le_div_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1243 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1244 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1245 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1246 | lemma div_eq_dividend_iff: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1247 | "m div n = m \<longleftrightarrow> n = 1" if "m > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1248 | proof | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1249 | assume "n = 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1250 | then show "m div n = m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1251 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1252 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1253 | assume P: "m div n = m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1254 | show "n = 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1255 | proof (rule ccontr) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1256 | have "n \<noteq> 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1257 | by (rule ccontr) (use that P in auto) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1258 | moreover assume "n \<noteq> 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1259 | ultimately have "n > 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1260 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1261 | with that have "m div n < m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1262 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1263 | with P show False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1264 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1265 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1266 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1267 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1268 | lemma less_mult_imp_div_less: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1269 | "m div n < i" if "m < i * n" for m n i :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1270 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1271 | from that have "i * n > 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1272 | by (cases "i * n = 0") simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1273 | then have "i > 0" and "n > 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1274 | by simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1275 | have "m div n * n \<le> m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1276 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1277 | then have "m div n * n < i * n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1278 | using that by (rule le_less_trans) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1279 | with \<open>n > 0\<close> show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1280 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1281 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1282 | |
| 73853 | 1283 | lemma div_less_iff_less_mult: | 
| 1284 | \<open>m div q < n \<longleftrightarrow> m < n * q\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>) | |
| 1285 | if \<open>q > 0\<close> for m n q :: nat | |
| 1286 | proof | |
| 1287 | assume ?Q then show ?P | |
| 1288 | by (rule less_mult_imp_div_less) | |
| 1289 | next | |
| 1290 | assume ?P | |
| 1291 | then obtain h where \<open>n = Suc (m div q + h)\<close> | |
| 1292 | using less_natE by blast | |
| 1293 | moreover have \<open>m < m + (Suc h * q - m mod q)\<close> | |
| 1294 | using that by (simp add: trans_less_add1) | |
| 1295 | ultimately show ?Q | |
| 1296 | by (simp add: algebra_simps flip: minus_mod_eq_mult_div) | |
| 1297 | qed | |
| 1298 | ||
| 1299 | lemma less_eq_div_iff_mult_less_eq: | |
| 1300 | \<open>m \<le> n div q \<longleftrightarrow> m * q \<le> n\<close> if \<open>q > 0\<close> for m n q :: nat | |
| 1301 | using div_less_iff_less_mult [of q n m] that by auto | |
| 1302 | ||
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1303 | text \<open>A fact for the mutilated chess board\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1304 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1305 | lemma mod_Suc: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1306 | "Suc m mod n = (if Suc (m mod n) = n then 0 else Suc (m mod n))" (is "_ = ?rhs") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1307 | proof (cases "n = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1308 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1309 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1310 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1311 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1312 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1313 | have "Suc m mod n = Suc (m mod n) mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1314 | by (simp add: mod_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1315 | also have "\<dots> = ?rhs" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1316 | using False by (auto intro!: mod_nat_eqI intro: neq_le_trans simp add: Suc_le_eq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1317 | finally show ?thesis . | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1318 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1319 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1320 | lemma Suc_times_mod_eq: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1321 | "Suc (m * n) mod m = 1" if "Suc 0 < m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1322 | using that by (simp add: mod_Suc) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1323 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1324 | lemma Suc_times_numeral_mod_eq [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1325 | "Suc (numeral k * n) mod numeral k = 1" if "numeral k \<noteq> (1::nat)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1326 | by (rule Suc_times_mod_eq) (use that in simp) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1327 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1328 | lemma Suc_div_le_mono [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1329 | "m div n \<le> Suc m div n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1330 | by (simp add: div_le_mono) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1331 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1332 | text \<open>These lemmas collapse some needless occurrences of Suc: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1333 | at least three Sucs, since two and fewer are rewritten back to Suc again! | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1334 | We already have some rules to simplify operands smaller than 3.\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1335 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1336 | lemma div_Suc_eq_div_add3 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1337 | "m div Suc (Suc (Suc n)) = m div (3 + n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1338 | by (simp add: Suc3_eq_add_3) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1339 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1340 | lemma mod_Suc_eq_mod_add3 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1341 | "m mod Suc (Suc (Suc n)) = m mod (3 + n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1342 | by (simp add: Suc3_eq_add_3) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1343 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1344 | lemma Suc_div_eq_add3_div: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1345 | "Suc (Suc (Suc m)) div n = (3 + m) div n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1346 | by (simp add: Suc3_eq_add_3) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1347 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1348 | lemma Suc_mod_eq_add3_mod: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1349 | "Suc (Suc (Suc m)) mod n = (3 + m) mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1350 | by (simp add: Suc3_eq_add_3) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1351 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1352 | lemmas Suc_div_eq_add3_div_numeral [simp] = | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1353 | Suc_div_eq_add3_div [of _ "numeral v"] for v | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1354 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1355 | lemmas Suc_mod_eq_add3_mod_numeral [simp] = | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1356 | Suc_mod_eq_add3_mod [of _ "numeral v"] for v | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1357 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1358 | lemma (in field_char_0) of_nat_div: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1359 | "of_nat (m div n) = ((of_nat m - of_nat (m mod n)) / of_nat n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1360 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1361 | have "of_nat (m div n) = ((of_nat (m div n * n + m mod n) - of_nat (m mod n)) / of_nat n :: 'a)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1362 | unfolding of_nat_add by (cases "n = 0") simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1363 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1364 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1365 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1366 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1367 | text \<open>An ``induction'' law for modulus arithmetic.\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1368 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1369 | lemma mod_induct [consumes 3, case_names step]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1370 | "P m" if "P n" and "n < p" and "m < p" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1371 | and step: "\<And>n. n < p \<Longrightarrow> P n \<Longrightarrow> P (Suc n mod p)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1372 | using \<open>m < p\<close> proof (induct m) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1373 | case 0 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1374 | show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1375 | proof (rule ccontr) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1376 | assume "\<not> P 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1377 | from \<open>n < p\<close> have "0 < p" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1378 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1379 | from \<open>n < p\<close> obtain m where "0 < m" and "p = n + m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1380 | by (blast dest: less_imp_add_positive) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1381 | with \<open>P n\<close> have "P (p - m)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1382 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1383 | moreover have "\<not> P (p - m)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1384 | using \<open>0 < m\<close> proof (induct m) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1385 | case 0 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1386 | then show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1387 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1388 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1389 | case (Suc m) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1390 | show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1391 | proof | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1392 | assume P: "P (p - Suc m)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1393 | with \<open>\<not> P 0\<close> have "Suc m < p" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1394 | by (auto intro: ccontr) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1395 | then have "Suc (p - Suc m) = p - m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1396 | by arith | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1397 | moreover from \<open>0 < p\<close> have "p - Suc m < p" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1398 | by arith | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1399 | with P step have "P ((Suc (p - Suc m)) mod p)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1400 | by blast | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1401 | ultimately show False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1402 | using \<open>\<not> P 0\<close> Suc.hyps by (cases "m = 0") simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1403 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1404 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1405 | ultimately show False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1406 | by blast | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1407 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1408 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1409 | case (Suc m) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1410 | then have "m < p" and mod: "Suc m mod p = Suc m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1411 | by simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1412 | from \<open>m < p\<close> have "P m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1413 | by (rule Suc.hyps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1414 | with \<open>m < p\<close> have "P (Suc m mod p)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1415 | by (rule step) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1416 | with mod show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1417 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1418 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1419 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1420 | lemma split_div: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1421 | "P (m div n) \<longleftrightarrow> (n = 0 \<longrightarrow> P 0) \<and> (n \<noteq> 0 \<longrightarrow> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1422 | (\<forall>i j. j < n \<longrightarrow> m = n * i + j \<longrightarrow> P i))" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1423 | (is "?P = ?Q") for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1424 | proof (cases "n = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1425 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1426 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1427 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1428 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1429 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1430 | show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1431 | proof | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1432 | assume ?P | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1433 | with False show ?Q | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1434 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1435 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1436 | assume ?Q | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1437 | with False have *: "\<And>i j. j < n \<Longrightarrow> m = n * i + j \<Longrightarrow> P i" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1438 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1439 | with False show ?P | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1440 | by (auto intro: * [of "m mod n"]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1441 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1442 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1443 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1444 | lemma split_div': | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1445 | "P (m div n) \<longleftrightarrow> n = 0 \<and> P 0 \<or> (\<exists>q. (n * q \<le> m \<and> m < n * Suc q) \<and> P q)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1446 | proof (cases "n = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1447 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1448 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1449 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1450 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1451 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1452 | then have "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> m div n = q" for q | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1453 | by (auto intro: div_nat_eqI dividend_less_times_div) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1454 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1455 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1456 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1457 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1458 | lemma split_mod: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1459 | "P (m mod n) \<longleftrightarrow> (n = 0 \<longrightarrow> P m) \<and> (n \<noteq> 0 \<longrightarrow> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1460 | (\<forall>i j. j < n \<longrightarrow> m = n * i + j \<longrightarrow> P j))" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1461 | (is "?P \<longleftrightarrow> ?Q") for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1462 | proof (cases "n = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1463 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1464 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1465 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1466 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1467 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1468 | show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1469 | proof | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1470 | assume ?P | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1471 | with False show ?Q | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1472 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1473 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1474 | assume ?Q | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1475 | with False have *: "\<And>i j. j < n \<Longrightarrow> m = n * i + j \<Longrightarrow> P j" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1476 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1477 | with False show ?P | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1478 | by (auto intro: * [of _ "m div n"]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1479 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1480 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1481 | |
| 73555 | 1482 | lemma funpow_mod_eq: \<^marker>\<open>contributor \<open>Lars Noschinski\<close>\<close> | 
| 1483 | \<open>(f ^^ (m mod n)) x = (f ^^ m) x\<close> if \<open>(f ^^ n) x = x\<close> | |
| 1484 | proof - | |
| 1485 | have \<open>(f ^^ m) x = (f ^^ (m mod n + m div n * n)) x\<close> | |
| 1486 | by simp | |
| 1487 | also have \<open>\<dots> = (f ^^ (m mod n)) (((f ^^ n) ^^ (m div n)) x)\<close> | |
| 1488 | by (simp only: funpow_add funpow_mult ac_simps) simp | |
| 1489 | also have \<open>((f ^^ n) ^^ q) x = x\<close> for q | |
| 1490 | by (induction q) (use \<open>(f ^^ n) x = x\<close> in simp_all) | |
| 1491 | finally show ?thesis | |
| 1492 | by simp | |
| 1493 | qed | |
| 1494 | ||
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1495 | |
| 69593 | 1496 | subsection \<open>Euclidean division on \<^typ>\<open>int\<close>\<close> | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1497 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1498 | instantiation int :: normalization_semidom | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1499 | begin | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1500 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1501 | definition normalize_int :: "int \<Rightarrow> int" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1502 | where [simp]: "normalize = (abs :: int \<Rightarrow> int)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1503 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1504 | definition unit_factor_int :: "int \<Rightarrow> int" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1505 | where [simp]: "unit_factor = (sgn :: int \<Rightarrow> int)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1506 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1507 | definition divide_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1508 | where "k div l = (if l = 0 then 0 | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1509 | else if sgn k = sgn l | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1510 | then int (nat \<bar>k\<bar> div nat \<bar>l\<bar>) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1511 | else - int (nat \<bar>k\<bar> div nat \<bar>l\<bar> + of_bool (\<not> l dvd k)))" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1512 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1513 | lemma divide_int_unfold: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1514 | "(sgn k * int m) div (sgn l * int n) = | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1515 | (if sgn l = 0 \<or> sgn k = 0 \<or> n = 0 then 0 | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1516 | else if sgn k = sgn l | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1517 | then int (m div n) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1518 | else - int (m div n + of_bool (\<not> n dvd m)))" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1519 | by (auto simp add: divide_int_def sgn_0_0 sgn_1_pos sgn_mult abs_mult | 
| 67118 | 1520 | nat_mult_distrib) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1521 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1522 | instance proof | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1523 | fix k :: int show "k div 0 = 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1524 | by (simp add: divide_int_def) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1525 | next | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1526 | fix k l :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1527 | assume "l \<noteq> 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1528 | obtain n m and s t where k: "k = sgn s * int n" and l: "l = sgn t * int m" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1529 | by (blast intro: int_sgnE elim: that) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1530 | then have "k * l = sgn (s * t) * int (n * m)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1531 | by (simp add: ac_simps sgn_mult) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1532 | with k l \<open>l \<noteq> 0\<close> show "k * l div l = k" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1533 | by (simp only: divide_int_unfold) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1534 | (auto simp add: algebra_simps sgn_mult sgn_1_pos sgn_0_0) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1535 | qed (auto simp add: sgn_mult mult_sgn_abs abs_eq_iff') | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1536 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1537 | end | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1538 | |
| 67051 | 1539 | lemma coprime_int_iff [simp]: | 
| 1540 | "coprime (int m) (int n) \<longleftrightarrow> coprime m n" (is "?P \<longleftrightarrow> ?Q") | |
| 1541 | proof | |
| 1542 | assume ?P | |
| 1543 | show ?Q | |
| 1544 | proof (rule coprimeI) | |
| 1545 | fix q | |
| 1546 | assume "q dvd m" "q dvd n" | |
| 1547 | then have "int q dvd int m" "int q dvd int n" | |
| 67118 | 1548 | by simp_all | 
| 67051 | 1549 | with \<open>?P\<close> have "is_unit (int q)" | 
| 1550 | by (rule coprime_common_divisor) | |
| 1551 | then show "is_unit q" | |
| 1552 | by simp | |
| 1553 | qed | |
| 1554 | next | |
| 1555 | assume ?Q | |
| 1556 | show ?P | |
| 1557 | proof (rule coprimeI) | |
| 1558 | fix k | |
| 1559 | assume "k dvd int m" "k dvd int n" | |
| 1560 | then have "nat \<bar>k\<bar> dvd m" "nat \<bar>k\<bar> dvd n" | |
| 67118 | 1561 | by simp_all | 
| 67051 | 1562 | with \<open>?Q\<close> have "is_unit (nat \<bar>k\<bar>)" | 
| 1563 | by (rule coprime_common_divisor) | |
| 1564 | then show "is_unit k" | |
| 1565 | by simp | |
| 1566 | qed | |
| 1567 | qed | |
| 1568 | ||
| 1569 | lemma coprime_abs_left_iff [simp]: | |
| 1570 | "coprime \<bar>k\<bar> l \<longleftrightarrow> coprime k l" for k l :: int | |
| 1571 | using coprime_normalize_left_iff [of k l] by simp | |
| 1572 | ||
| 1573 | lemma coprime_abs_right_iff [simp]: | |
| 1574 | "coprime k \<bar>l\<bar> \<longleftrightarrow> coprime k l" for k l :: int | |
| 1575 | using coprime_abs_left_iff [of l k] by (simp add: ac_simps) | |
| 1576 | ||
| 1577 | lemma coprime_nat_abs_left_iff [simp]: | |
| 1578 | "coprime (nat \<bar>k\<bar>) n \<longleftrightarrow> coprime k (int n)" | |
| 1579 | proof - | |
| 1580 | define m where "m = nat \<bar>k\<bar>" | |
| 1581 | then have "\<bar>k\<bar> = int m" | |
| 1582 | by simp | |
| 1583 | moreover have "coprime k (int n) \<longleftrightarrow> coprime \<bar>k\<bar> (int n)" | |
| 1584 | by simp | |
| 1585 | ultimately show ?thesis | |
| 1586 | by simp | |
| 1587 | qed | |
| 1588 | ||
| 1589 | lemma coprime_nat_abs_right_iff [simp]: | |
| 1590 | "coprime n (nat \<bar>k\<bar>) \<longleftrightarrow> coprime (int n) k" | |
| 1591 | using coprime_nat_abs_left_iff [of k n] by (simp add: ac_simps) | |
| 1592 | ||
| 1593 | lemma coprime_common_divisor_int: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> \<bar>x\<bar> = 1" | |
| 1594 | for a b :: int | |
| 1595 | by (drule coprime_common_divisor [of _ _ x]) simp_all | |
| 1596 | ||
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1597 | instantiation int :: idom_modulo | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1598 | begin | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1599 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1600 | definition modulo_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1601 | where "k mod l = (if l = 0 then k | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1602 | else if sgn k = sgn l | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1603 | then sgn l * int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1604 | else sgn l * (\<bar>l\<bar> * of_bool (\<not> l dvd k) - int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>)))" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1605 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1606 | lemma modulo_int_unfold: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1607 | "(sgn k * int m) mod (sgn l * int n) = | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1608 | (if sgn l = 0 \<or> sgn k = 0 \<or> n = 0 then sgn k * int m | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1609 | else if sgn k = sgn l | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1610 | then sgn l * int (m mod n) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1611 | else sgn l * (int (n * of_bool (\<not> n dvd m)) - int (m mod n)))" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1612 | by (auto simp add: modulo_int_def sgn_0_0 sgn_1_pos sgn_mult abs_mult | 
| 67118 | 1613 | nat_mult_distrib) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1614 | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1615 | instance proof | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1616 | fix k l :: int | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1617 | obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1618 | by (blast intro: int_sgnE elim: that) | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1619 | then show "k div l * l + k mod l = k" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1620 | by (auto simp add: divide_int_unfold modulo_int_unfold algebra_simps dest!: sgn_not_eq_imp) | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1621 | (simp_all add: of_nat_mult [symmetric] of_nat_add [symmetric] | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1622 | distrib_left [symmetric] minus_mult_right | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1623 | del: of_nat_mult minus_mult_right [symmetric]) | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1624 | qed | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1625 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1626 | end | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1627 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1628 | instantiation int :: unique_euclidean_ring | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1629 | begin | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1630 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1631 | definition euclidean_size_int :: "int \<Rightarrow> nat" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1632 | where [simp]: "euclidean_size_int = (nat \<circ> abs :: int \<Rightarrow> nat)" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1633 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1634 | definition division_segment_int :: "int \<Rightarrow> int" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1635 | where "division_segment_int k = (if k \<ge> 0 then 1 else - 1)" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1636 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1637 | lemma division_segment_eq_sgn: | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1638 | "division_segment k = sgn k" if "k \<noteq> 0" for k :: int | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1639 | using that by (simp add: division_segment_int_def) | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1640 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1641 | lemma abs_division_segment [simp]: | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1642 | "\<bar>division_segment k\<bar> = 1" for k :: int | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1643 | by (simp add: division_segment_int_def) | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1644 | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1645 | lemma abs_mod_less: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1646 | "\<bar>k mod l\<bar> < \<bar>l\<bar>" if "l \<noteq> 0" for k l :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1647 | proof - | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1648 | obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1649 | by (blast intro: int_sgnE elim: that) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1650 | with that show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1651 | by (simp add: modulo_int_unfold sgn_0_0 sgn_1_pos sgn_1_neg | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1652 | abs_mult mod_greater_zero_iff_not_dvd) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1653 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1654 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1655 | lemma sgn_mod: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1656 | "sgn (k mod l) = sgn l" if "l \<noteq> 0" "\<not> l dvd k" for k l :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1657 | proof - | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1658 | obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1659 | by (blast intro: int_sgnE elim: that) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1660 | with that show ?thesis | 
| 73535 | 1661 | by (simp add: modulo_int_unfold sgn_0_0 sgn_1_pos sgn_1_neg sgn_mult) | 
| 1662 | (simp add: dvd_eq_mod_eq_0) | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1663 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1664 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1665 | instance proof | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1666 | fix k l :: int | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1667 | show "division_segment (k mod l) = division_segment l" if | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1668 | "l \<noteq> 0" and "\<not> l dvd k" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1669 | using that by (simp add: division_segment_eq_sgn dvd_eq_mod_eq_0 sgn_mod) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1670 | next | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1671 | fix l q r :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1672 | obtain n m and s t | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1673 | where l: "l = sgn s * int n" and q: "q = sgn t * int m" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1674 | by (blast intro: int_sgnE elim: that) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1675 | assume \<open>l \<noteq> 0\<close> | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1676 | with l have "s \<noteq> 0" and "n > 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1677 | by (simp_all add: sgn_0_0) | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1678 | assume "division_segment r = division_segment l" | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1679 | moreover have "r = sgn r * \<bar>r\<bar>" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1680 | by (simp add: sgn_mult_abs) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1681 | moreover define u where "u = nat \<bar>r\<bar>" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1682 | ultimately have "r = sgn l * int u" | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1683 | using division_segment_eq_sgn \<open>l \<noteq> 0\<close> by (cases "r = 0") simp_all | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1684 | with l \<open>n > 0\<close> have r: "r = sgn s * int u" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1685 | by (simp add: sgn_mult) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1686 | assume "euclidean_size r < euclidean_size l" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1687 | with l r \<open>s \<noteq> 0\<close> have "u < n" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1688 | by (simp add: abs_mult) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1689 | show "(q * l + r) div l = q" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1690 | proof (cases "q = 0 \<or> r = 0") | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1691 | case True | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1692 | then show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1693 | proof | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1694 | assume "q = 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1695 | then show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1696 | using l r \<open>u < n\<close> by (simp add: divide_int_unfold) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1697 | next | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1698 | assume "r = 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1699 | from \<open>r = 0\<close> have *: "q * l + r = sgn (t * s) * int (n * m)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1700 | using q l by (simp add: ac_simps sgn_mult) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1701 | from \<open>s \<noteq> 0\<close> \<open>n > 0\<close> show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1702 | by (simp only: *, simp only: q l divide_int_unfold) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1703 | (auto simp add: sgn_mult sgn_0_0 sgn_1_pos) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1704 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1705 | next | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1706 | case False | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1707 | with q r have "t \<noteq> 0" and "m > 0" and "s \<noteq> 0" and "u > 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1708 | by (simp_all add: sgn_0_0) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1709 | moreover from \<open>0 < m\<close> \<open>u < n\<close> have "u \<le> m * n" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1710 | using mult_le_less_imp_less [of 1 m u n] by simp | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1711 | ultimately have *: "q * l + r = sgn (s * t) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1712 | * int (if t < 0 then m * n - u else m * n + u)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1713 | using l q r | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1714 | by (simp add: sgn_mult algebra_simps of_nat_diff) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1715 | have "(m * n - u) div n = m - 1" if "u > 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1716 | using \<open>0 < m\<close> \<open>u < n\<close> that | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1717 | by (auto intro: div_nat_eqI simp add: algebra_simps) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1718 | moreover have "n dvd m * n - u \<longleftrightarrow> n dvd u" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1719 | using \<open>u \<le> m * n\<close> dvd_diffD1 [of n "m * n" u] | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1720 | by auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1721 | ultimately show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1722 | using \<open>s \<noteq> 0\<close> \<open>m > 0\<close> \<open>u > 0\<close> \<open>u < n\<close> \<open>u \<le> m * n\<close> | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1723 | by (simp only: *, simp only: l q divide_int_unfold) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1724 | (auto simp add: sgn_mult sgn_0_0 sgn_1_pos algebra_simps dest: dvd_imp_le) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1725 | qed | 
| 68536 | 1726 | qed (use mult_le_mono2 [of 1] in \<open>auto simp add: division_segment_int_def not_le zero_less_mult_iff mult_less_0_iff abs_mult sgn_mult abs_mod_less sgn_mod nat_mult_distrib\<close>) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1727 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1728 | end | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1729 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1730 | lemma pos_mod_bound [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1731 | "k mod l < l" if "l > 0" for k l :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1732 | proof - | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1733 | obtain m and s where "k = sgn s * int m" | 
| 69695 | 1734 | by (rule int_sgnE) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1735 | moreover from that obtain n where "l = sgn 1 * int n" | 
| 69695 | 1736 | by (cases l) simp_all | 
| 1737 | moreover from this that have "n > 0" | |
| 1738 | by simp | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1739 | ultimately show ?thesis | 
| 69695 | 1740 | by (simp only: modulo_int_unfold) | 
| 1741 | (simp add: mod_greater_zero_iff_not_dvd) | |
| 1742 | qed | |
| 1743 | ||
| 1744 | lemma neg_mod_bound [simp]: | |
| 1745 | "l < k mod l" if "l < 0" for k l :: int | |
| 1746 | proof - | |
| 1747 | obtain m and s where "k = sgn s * int m" | |
| 1748 | by (rule int_sgnE) | |
| 1749 | moreover from that obtain q where "l = sgn (- 1) * int (Suc q)" | |
| 1750 | by (cases l) simp_all | |
| 1751 | moreover define n where "n = Suc q" | |
| 1752 | then have "Suc q = n" | |
| 1753 | by simp | |
| 1754 | ultimately show ?thesis | |
| 1755 | by (simp only: modulo_int_unfold) | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1756 | (simp add: mod_greater_zero_iff_not_dvd) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1757 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1758 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1759 | lemma pos_mod_sign [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1760 | "0 \<le> k mod l" if "l > 0" for k l :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1761 | proof - | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1762 | obtain m and s where "k = sgn s * int m" | 
| 69695 | 1763 | by (rule int_sgnE) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1764 | moreover from that obtain n where "l = sgn 1 * int n" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1765 | by (cases l) auto | 
| 69695 | 1766 | moreover from this that have "n > 0" | 
| 1767 | by simp | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1768 | ultimately show ?thesis | 
| 69695 | 1769 | by (simp only: modulo_int_unfold) simp | 
| 1770 | qed | |
| 1771 | ||
| 1772 | lemma neg_mod_sign [simp]: | |
| 1773 | "k mod l \<le> 0" if "l < 0" for k l :: int | |
| 1774 | proof - | |
| 1775 | obtain m and s where "k = sgn s * int m" | |
| 1776 | by (rule int_sgnE) | |
| 1777 | moreover from that obtain q where "l = sgn (- 1) * int (Suc q)" | |
| 1778 | by (cases l) simp_all | |
| 1779 | moreover define n where "n = Suc q" | |
| 1780 | then have "Suc q = n" | |
| 1781 | by simp | |
| 1782 | ultimately show ?thesis | |
| 1783 | by (simp only: modulo_int_unfold) simp | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1784 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1785 | |
| 72187 | 1786 | lemma div_pos_pos_trivial [simp]: | 
| 1787 | "k div l = 0" if "k \<ge> 0" and "k < l" for k l :: int | |
| 1788 | using that by (simp add: unique_euclidean_semiring_class.div_eq_0_iff division_segment_int_def) | |
| 1789 | ||
| 1790 | lemma mod_pos_pos_trivial [simp]: | |
| 1791 | "k mod l = k" if "k \<ge> 0" and "k < l" for k l :: int | |
| 1792 | using that by (simp add: mod_eq_self_iff_div_eq_0) | |
| 1793 | ||
| 1794 | lemma div_neg_neg_trivial [simp]: | |
| 1795 | "k div l = 0" if "k \<le> 0" and "l < k" for k l :: int | |
| 1796 | using that by (cases "k = 0") (simp, simp add: unique_euclidean_semiring_class.div_eq_0_iff division_segment_int_def) | |
| 1797 | ||
| 1798 | lemma mod_neg_neg_trivial [simp]: | |
| 1799 | "k mod l = k" if "k \<le> 0" and "l < k" for k l :: int | |
| 1800 | using that by (simp add: mod_eq_self_iff_div_eq_0) | |
| 1801 | ||
| 1802 | lemma div_pos_neg_trivial: | |
| 1803 | "k div l = - 1" if "0 < k" and "k + l \<le> 0" for k l :: int | |
| 1804 | proof (cases \<open>l = - k\<close>) | |
| 1805 | case True | |
| 1806 | with that show ?thesis | |
| 1807 | by (simp add: divide_int_def) | |
| 1808 | next | |
| 1809 | case False | |
| 1810 | show ?thesis | |
| 1811 | apply (rule div_eqI [of _ "k + l"]) | |
| 1812 | using False that apply (simp_all add: division_segment_int_def) | |
| 1813 | done | |
| 1814 | qed | |
| 1815 | ||
| 1816 | lemma mod_pos_neg_trivial: | |
| 1817 | "k mod l = k + l" if "0 < k" and "k + l \<le> 0" for k l :: int | |
| 1818 | proof (cases \<open>l = - k\<close>) | |
| 1819 | case True | |
| 1820 | with that show ?thesis | |
| 1821 | by (simp add: divide_int_def) | |
| 1822 | next | |
| 1823 | case False | |
| 1824 | show ?thesis | |
| 1825 | apply (rule mod_eqI [of _ _ \<open>- 1\<close>]) | |
| 1826 | using False that apply (simp_all add: division_segment_int_def) | |
| 1827 | done | |
| 1828 | qed | |
| 1829 | ||
| 1830 | text \<open>There is neither \<open>div_neg_pos_trivial\<close> nor \<open>mod_neg_pos_trivial\<close> | |
| 1831 | because \<^term>\<open>0 div l = 0\<close> would supersede it.\<close> | |
| 1832 | ||
| 1833 | text \<open>Distributive laws for function \<open>nat\<close>.\<close> | |
| 1834 | ||
| 1835 | lemma nat_div_distrib: | |
| 1836 | \<open>nat (x div y) = nat x div nat y\<close> if \<open>0 \<le> x\<close> | |
| 1837 | using that by (simp add: divide_int_def sgn_if) | |
| 1838 | ||
| 1839 | lemma nat_div_distrib': | |
| 1840 | \<open>nat (x div y) = nat x div nat y\<close> if \<open>0 \<le> y\<close> | |
| 1841 | using that by (simp add: divide_int_def sgn_if) | |
| 1842 | ||
| 1843 | lemma nat_mod_distrib: \<comment> \<open>Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't\<close> | |
| 1844 | \<open>nat (x mod y) = nat x mod nat y\<close> if \<open>0 \<le> x\<close> \<open>0 \<le> y\<close> | |
| 1845 | using that by (simp add: modulo_int_def sgn_if) | |
| 1846 | ||
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1847 | |
| 71157 | 1848 | subsection \<open>Special case: euclidean rings containing the natural numbers\<close> | 
| 1849 | ||
| 1850 | class unique_euclidean_semiring_with_nat = semidom + semiring_char_0 + unique_euclidean_semiring + | |
| 1851 | assumes of_nat_div: "of_nat (m div n) = of_nat m div of_nat n" | |
| 1852 | and division_segment_of_nat [simp]: "division_segment (of_nat n) = 1" | |
| 1853 | and division_segment_euclidean_size [simp]: "division_segment a * of_nat (euclidean_size a) = a" | |
| 1854 | begin | |
| 1855 | ||
| 1856 | lemma division_segment_eq_iff: | |
| 1857 | "a = b" if "division_segment a = division_segment b" | |
| 1858 | and "euclidean_size a = euclidean_size b" | |
| 1859 | using that division_segment_euclidean_size [of a] by simp | |
| 1860 | ||
| 1861 | lemma euclidean_size_of_nat [simp]: | |
| 1862 | "euclidean_size (of_nat n) = n" | |
| 1863 | proof - | |
| 1864 | have "division_segment (of_nat n) * of_nat (euclidean_size (of_nat n)) = of_nat n" | |
| 1865 | by (fact division_segment_euclidean_size) | |
| 1866 | then show ?thesis by simp | |
| 1867 | qed | |
| 1868 | ||
| 1869 | lemma of_nat_euclidean_size: | |
| 1870 | "of_nat (euclidean_size a) = a div division_segment a" | |
| 1871 | proof - | |
| 1872 | have "of_nat (euclidean_size a) = division_segment a * of_nat (euclidean_size a) div division_segment a" | |
| 1873 | by (subst nonzero_mult_div_cancel_left) simp_all | |
| 1874 | also have "\<dots> = a div division_segment a" | |
| 1875 | by simp | |
| 1876 | finally show ?thesis . | |
| 1877 | qed | |
| 1878 | ||
| 1879 | lemma division_segment_1 [simp]: | |
| 1880 | "division_segment 1 = 1" | |
| 1881 | using division_segment_of_nat [of 1] by simp | |
| 1882 | ||
| 1883 | lemma division_segment_numeral [simp]: | |
| 1884 | "division_segment (numeral k) = 1" | |
| 1885 | using division_segment_of_nat [of "numeral k"] by simp | |
| 1886 | ||
| 1887 | lemma euclidean_size_1 [simp]: | |
| 1888 | "euclidean_size 1 = 1" | |
| 1889 | using euclidean_size_of_nat [of 1] by simp | |
| 1890 | ||
| 1891 | lemma euclidean_size_numeral [simp]: | |
| 1892 | "euclidean_size (numeral k) = numeral k" | |
| 1893 | using euclidean_size_of_nat [of "numeral k"] by simp | |
| 1894 | ||
| 1895 | lemma of_nat_dvd_iff: | |
| 1896 | "of_nat m dvd of_nat n \<longleftrightarrow> m dvd n" (is "?P \<longleftrightarrow> ?Q") | |
| 1897 | proof (cases "m = 0") | |
| 1898 | case True | |
| 1899 | then show ?thesis | |
| 1900 | by simp | |
| 1901 | next | |
| 1902 | case False | |
| 1903 | show ?thesis | |
| 1904 | proof | |
| 1905 | assume ?Q | |
| 1906 | then show ?P | |
| 1907 | by auto | |
| 1908 | next | |
| 1909 | assume ?P | |
| 1910 | with False have "of_nat n = of_nat n div of_nat m * of_nat m" | |
| 1911 | by simp | |
| 1912 | then have "of_nat n = of_nat (n div m * m)" | |
| 1913 | by (simp add: of_nat_div) | |
| 1914 | then have "n = n div m * m" | |
| 1915 | by (simp only: of_nat_eq_iff) | |
| 1916 | then have "n = m * (n div m)" | |
| 1917 | by (simp add: ac_simps) | |
| 1918 | then show ?Q .. | |
| 1919 | qed | |
| 1920 | qed | |
| 1921 | ||
| 1922 | lemma of_nat_mod: | |
| 1923 | "of_nat (m mod n) = of_nat m mod of_nat n" | |
| 1924 | proof - | |
| 1925 | have "of_nat m div of_nat n * of_nat n + of_nat m mod of_nat n = of_nat m" | |
| 1926 | by (simp add: div_mult_mod_eq) | |
| 1927 | also have "of_nat m = of_nat (m div n * n + m mod n)" | |
| 1928 | by simp | |
| 1929 | finally show ?thesis | |
| 1930 | by (simp only: of_nat_div of_nat_mult of_nat_add) simp | |
| 1931 | qed | |
| 1932 | ||
| 1933 | lemma one_div_two_eq_zero [simp]: | |
| 1934 | "1 div 2 = 0" | |
| 1935 | proof - | |
| 1936 | from of_nat_div [symmetric] have "of_nat 1 div of_nat 2 = of_nat 0" | |
| 1937 | by (simp only:) simp | |
| 1938 | then show ?thesis | |
| 1939 | by simp | |
| 1940 | qed | |
| 1941 | ||
| 1942 | lemma one_mod_two_eq_one [simp]: | |
| 1943 | "1 mod 2 = 1" | |
| 1944 | proof - | |
| 1945 | from of_nat_mod [symmetric] have "of_nat 1 mod of_nat 2 = of_nat 1" | |
| 1946 | by (simp only:) simp | |
| 1947 | then show ?thesis | |
| 1948 | by simp | |
| 1949 | qed | |
| 1950 | ||
| 1951 | lemma one_mod_2_pow_eq [simp]: | |
| 1952 | "1 mod (2 ^ n) = of_bool (n > 0)" | |
| 1953 | proof - | |
| 1954 | have "1 mod (2 ^ n) = of_nat (1 mod (2 ^ n))" | |
| 1955 | using of_nat_mod [of 1 "2 ^ n"] by simp | |
| 1956 | also have "\<dots> = of_bool (n > 0)" | |
| 1957 | by simp | |
| 1958 | finally show ?thesis . | |
| 1959 | qed | |
| 1960 | ||
| 1961 | lemma one_div_2_pow_eq [simp]: | |
| 1962 | "1 div (2 ^ n) = of_bool (n = 0)" | |
| 1963 | using div_mult_mod_eq [of 1 "2 ^ n"] by auto | |
| 1964 | ||
| 1965 | lemma div_mult2_eq': | |
| 1966 | "a div (of_nat m * of_nat n) = a div of_nat m div of_nat n" | |
| 1967 | proof (cases a "of_nat m * of_nat n" rule: divmod_cases) | |
| 1968 | case (divides q) | |
| 1969 | then show ?thesis | |
| 1970 | using nonzero_mult_div_cancel_right [of "of_nat m" "q * of_nat n"] | |
| 1971 | by (simp add: ac_simps) | |
| 1972 | next | |
| 1973 | case (remainder q r) | |
| 1974 | then have "division_segment r = 1" | |
| 1975 | using division_segment_of_nat [of "m * n"] by simp | |
| 1976 | with division_segment_euclidean_size [of r] | |
| 1977 | have "of_nat (euclidean_size r) = r" | |
| 1978 | by simp | |
| 1979 | have "a mod (of_nat m * of_nat n) div (of_nat m * of_nat n) = 0" | |
| 1980 | by simp | |
| 1981 | with remainder(6) have "r div (of_nat m * of_nat n) = 0" | |
| 1982 | by simp | |
| 1983 | with \<open>of_nat (euclidean_size r) = r\<close> | |
| 1984 | have "of_nat (euclidean_size r) div (of_nat m * of_nat n) = 0" | |
| 1985 | by simp | |
| 1986 | then have "of_nat (euclidean_size r div (m * n)) = 0" | |
| 1987 | by (simp add: of_nat_div) | |
| 1988 | then have "of_nat (euclidean_size r div m div n) = 0" | |
| 1989 | by (simp add: div_mult2_eq) | |
| 1990 | with \<open>of_nat (euclidean_size r) = r\<close> have "r div of_nat m div of_nat n = 0" | |
| 1991 | by (simp add: of_nat_div) | |
| 1992 | with remainder(1) | |
| 1993 | have "q = (r div of_nat m + q * of_nat n * of_nat m div of_nat m) div of_nat n" | |
| 1994 | by simp | |
| 1995 | with remainder(5) remainder(7) show ?thesis | |
| 1996 | using div_plus_div_distrib_dvd_right [of "of_nat m" "q * (of_nat m * of_nat n)" r] | |
| 1997 | by (simp add: ac_simps) | |
| 1998 | next | |
| 1999 | case by0 | |
| 2000 | then show ?thesis | |
| 2001 | by auto | |
| 2002 | qed | |
| 2003 | ||
| 2004 | lemma mod_mult2_eq': | |
| 2005 | "a mod (of_nat m * of_nat n) = of_nat m * (a div of_nat m mod of_nat n) + a mod of_nat m" | |
| 2006 | proof - | |
| 2007 | have "a div (of_nat m * of_nat n) * (of_nat m * of_nat n) + a mod (of_nat m * of_nat n) = a div of_nat m div of_nat n * of_nat n * of_nat m + (a div of_nat m mod of_nat n * of_nat m + a mod of_nat m)" | |
| 2008 | by (simp add: combine_common_factor div_mult_mod_eq) | |
| 2009 | moreover have "a div of_nat m div of_nat n * of_nat n * of_nat m = of_nat n * of_nat m * (a div of_nat m div of_nat n)" | |
| 2010 | by (simp add: ac_simps) | |
| 2011 | ultimately show ?thesis | |
| 2012 | by (simp add: div_mult2_eq' mult_commute) | |
| 2013 | qed | |
| 2014 | ||
| 2015 | lemma div_mult2_numeral_eq: | |
| 2016 | "a div numeral k div numeral l = a div numeral (k * l)" (is "?A = ?B") | |
| 2017 | proof - | |
| 2018 | have "?A = a div of_nat (numeral k) div of_nat (numeral l)" | |
| 2019 | by simp | |
| 2020 | also have "\<dots> = a div (of_nat (numeral k) * of_nat (numeral l))" | |
| 2021 | by (fact div_mult2_eq' [symmetric]) | |
| 2022 | also have "\<dots> = ?B" | |
| 2023 | by simp | |
| 2024 | finally show ?thesis . | |
| 2025 | qed | |
| 2026 | ||
| 2027 | lemma numeral_Bit0_div_2: | |
| 2028 | "numeral (num.Bit0 n) div 2 = numeral n" | |
| 2029 | proof - | |
| 2030 | have "numeral (num.Bit0 n) = numeral n + numeral n" | |
| 2031 | by (simp only: numeral.simps) | |
| 2032 | also have "\<dots> = numeral n * 2" | |
| 2033 | by (simp add: mult_2_right) | |
| 2034 | finally have "numeral (num.Bit0 n) div 2 = numeral n * 2 div 2" | |
| 2035 | by simp | |
| 2036 | also have "\<dots> = numeral n" | |
| 2037 | by (rule nonzero_mult_div_cancel_right) simp | |
| 2038 | finally show ?thesis . | |
| 2039 | qed | |
| 2040 | ||
| 2041 | lemma numeral_Bit1_div_2: | |
| 2042 | "numeral (num.Bit1 n) div 2 = numeral n" | |
| 2043 | proof - | |
| 2044 | have "numeral (num.Bit1 n) = numeral n + numeral n + 1" | |
| 2045 | by (simp only: numeral.simps) | |
| 2046 | also have "\<dots> = numeral n * 2 + 1" | |
| 2047 | by (simp add: mult_2_right) | |
| 2048 | finally have "numeral (num.Bit1 n) div 2 = (numeral n * 2 + 1) div 2" | |
| 2049 | by simp | |
| 2050 | also have "\<dots> = numeral n * 2 div 2 + 1 div 2" | |
| 2051 | using dvd_triv_right by (rule div_plus_div_distrib_dvd_left) | |
| 2052 | also have "\<dots> = numeral n * 2 div 2" | |
| 2053 | by simp | |
| 2054 | also have "\<dots> = numeral n" | |
| 2055 | by (rule nonzero_mult_div_cancel_right) simp | |
| 2056 | finally show ?thesis . | |
| 2057 | qed | |
| 2058 | ||
| 2059 | lemma exp_mod_exp: | |
| 2060 | \<open>2 ^ m mod 2 ^ n = of_bool (m < n) * 2 ^ m\<close> | |
| 2061 | proof - | |
| 2062 | have \<open>(2::nat) ^ m mod 2 ^ n = of_bool (m < n) * 2 ^ m\<close> (is \<open>?lhs = ?rhs\<close>) | |
| 2063 | by (auto simp add: not_less monoid_mult_class.power_add dest!: le_Suc_ex) | |
| 2064 | then have \<open>of_nat ?lhs = of_nat ?rhs\<close> | |
| 2065 | by simp | |
| 2066 | then show ?thesis | |
| 2067 | by (simp add: of_nat_mod) | |
| 2068 | qed | |
| 2069 | ||
| 71412 | 2070 | lemma mask_mod_exp: | 
| 71408 | 2071 | \<open>(2 ^ n - 1) mod 2 ^ m = 2 ^ min m n - 1\<close> | 
| 2072 | proof - | |
| 2073 | have \<open>(2 ^ n - 1) mod 2 ^ m = 2 ^ min m n - (1::nat)\<close> (is \<open>?lhs = ?rhs\<close>) | |
| 2074 | proof (cases \<open>n \<le> m\<close>) | |
| 2075 | case True | |
| 2076 | then show ?thesis | |
| 2077 | by (simp add: Suc_le_lessD min.absorb2) | |
| 2078 | next | |
| 2079 | case False | |
| 2080 | then have \<open>m < n\<close> | |
| 2081 | by simp | |
| 2082 | then obtain q where n: \<open>n = Suc q + m\<close> | |
| 2083 | by (auto dest: less_imp_Suc_add) | |
| 2084 | then have \<open>min m n = m\<close> | |
| 2085 | by simp | |
| 2086 | moreover have \<open>(2::nat) ^ m \<le> 2 * 2 ^ q * 2 ^ m\<close> | |
| 2087 | using mult_le_mono1 [of 1 \<open>2 * 2 ^ q\<close> \<open>2 ^ m\<close>] by simp | |
| 2088 | with n have \<open>2 ^ n - 1 = (2 ^ Suc q - 1) * 2 ^ m + (2 ^ m - (1::nat))\<close> | |
| 2089 | by (simp add: monoid_mult_class.power_add algebra_simps) | |
| 2090 | ultimately show ?thesis | |
| 2091 | by (simp only: euclidean_semiring_cancel_class.mod_mult_self3) simp | |
| 2092 | qed | |
| 2093 | then have \<open>of_nat ?lhs = of_nat ?rhs\<close> | |
| 2094 | by simp | |
| 2095 | then show ?thesis | |
| 2096 | by (simp add: of_nat_mod of_nat_diff) | |
| 2097 | qed | |
| 2098 | ||
| 71535 
b612edee9b0c
more frugal simp rules for bit operations; more pervasive use of bit selector
 haftmann parents: 
71413diff
changeset | 2099 | lemma of_bool_half_eq_0 [simp]: | 
| 
b612edee9b0c
more frugal simp rules for bit operations; more pervasive use of bit selector
 haftmann parents: 
71413diff
changeset | 2100 | \<open>of_bool b div 2 = 0\<close> | 
| 
b612edee9b0c
more frugal simp rules for bit operations; more pervasive use of bit selector
 haftmann parents: 
71413diff
changeset | 2101 | by simp | 
| 
b612edee9b0c
more frugal simp rules for bit operations; more pervasive use of bit selector
 haftmann parents: 
71413diff
changeset | 2102 | |
| 71157 | 2103 | end | 
| 2104 | ||
| 2105 | class unique_euclidean_ring_with_nat = ring + unique_euclidean_semiring_with_nat | |
| 2106 | ||
| 2107 | instance nat :: unique_euclidean_semiring_with_nat | |
| 2108 | by standard (simp_all add: dvd_eq_mod_eq_0) | |
| 2109 | ||
| 2110 | instance int :: unique_euclidean_ring_with_nat | |
| 2111 | by standard (simp_all add: dvd_eq_mod_eq_0 divide_int_def division_segment_int_def) | |
| 2112 | ||
| 74592 | 2113 | lemma zdiv_zmult2_eq: | 
| 2114 | \<open>a div (b * c) = (a div b) div c\<close> if \<open>c \<ge> 0\<close> for a b c :: int | |
| 2115 | proof (cases \<open>b \<ge> 0\<close>) | |
| 2116 | case True | |
| 2117 | with that show ?thesis | |
| 2118 | using div_mult2_eq' [of a \<open>nat b\<close> \<open>nat c\<close>] by simp | |
| 2119 | next | |
| 2120 | case False | |
| 2121 | with that show ?thesis | |
| 2122 | using div_mult2_eq' [of \<open>- a\<close> \<open>nat (- b)\<close> \<open>nat c\<close>] by simp | |
| 2123 | qed | |
| 2124 | ||
| 2125 | lemma zmod_zmult2_eq: | |
| 2126 | \<open>a mod (b * c) = b * (a div b mod c) + a mod b\<close> if \<open>c \<ge> 0\<close> for a b c :: int | |
| 2127 | proof (cases \<open>b \<ge> 0\<close>) | |
| 2128 | case True | |
| 2129 | with that show ?thesis | |
| 2130 | using mod_mult2_eq' [of a \<open>nat b\<close> \<open>nat c\<close>] by simp | |
| 2131 | next | |
| 2132 | case False | |
| 2133 | with that show ?thesis | |
| 2134 | using mod_mult2_eq' [of \<open>- a\<close> \<open>nat (- b)\<close> \<open>nat c\<close>] by simp | |
| 2135 | qed | |
| 2136 | ||
| 71157 | 2137 | |
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 2138 | subsection \<open>Code generation\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 2139 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 2140 | code_identifier | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 2141 | code_module Euclidean_Division \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 2142 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 2143 | end |