author | haftmann |
Tue, 04 May 2010 10:02:43 +0200 | |
changeset 36637 | 74a5c04bf29d |
parent 36635 | 080b755377c0 |
child 37466 | 87bf104920f2 |
permissions | -rw-r--r-- |
12396 | 1 |
(* Title: HOL/Finite_Set.thy |
2 |
Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel |
|
16775
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents:
16760
diff
changeset
|
3 |
with contributions by Jeremy Avigad |
12396 | 4 |
*) |
5 |
||
6 |
header {* Finite sets *} |
|
7 |
||
15131 | 8 |
theory Finite_Set |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
9 |
imports Power Option |
15131 | 10 |
begin |
12396 | 11 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
12 |
subsection {* Predicate for finite sets *} |
12396 | 13 |
|
23736 | 14 |
inductive finite :: "'a set => bool" |
22262 | 15 |
where |
16 |
emptyI [simp, intro!]: "finite {}" |
|
17 |
| insertI [simp, intro!]: "finite A ==> finite (insert a A)" |
|
12396 | 18 |
|
13737 | 19 |
lemma ex_new_if_finite: -- "does not depend on def of finite at all" |
14661 | 20 |
assumes "\<not> finite (UNIV :: 'a set)" and "finite A" |
21 |
shows "\<exists>a::'a. a \<notin> A" |
|
22 |
proof - |
|
28823 | 23 |
from assms have "A \<noteq> UNIV" by blast |
14661 | 24 |
thus ?thesis by blast |
25 |
qed |
|
12396 | 26 |
|
22262 | 27 |
lemma finite_induct [case_names empty insert, induct set: finite]: |
12396 | 28 |
"finite F ==> |
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
29 |
P {} ==> (!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)) ==> P F" |
12396 | 30 |
-- {* Discharging @{text "x \<notin> F"} entails extra work. *} |
31 |
proof - |
|
13421 | 32 |
assume "P {}" and |
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
33 |
insert: "!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)" |
12396 | 34 |
assume "finite F" |
35 |
thus "P F" |
|
36 |
proof induct |
|
23389 | 37 |
show "P {}" by fact |
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
38 |
fix x F assume F: "finite F" and P: "P F" |
12396 | 39 |
show "P (insert x F)" |
40 |
proof cases |
|
41 |
assume "x \<in> F" |
|
42 |
hence "insert x F = F" by (rule insert_absorb) |
|
43 |
with P show ?thesis by (simp only:) |
|
44 |
next |
|
45 |
assume "x \<notin> F" |
|
46 |
from F this P show ?thesis by (rule insert) |
|
47 |
qed |
|
48 |
qed |
|
49 |
qed |
|
50 |
||
15484 | 51 |
lemma finite_ne_induct[case_names singleton insert, consumes 2]: |
52 |
assumes fin: "finite F" shows "F \<noteq> {} \<Longrightarrow> |
|
53 |
\<lbrakk> \<And>x. P{x}; |
|
54 |
\<And>x F. \<lbrakk> finite F; F \<noteq> {}; x \<notin> F; P F \<rbrakk> \<Longrightarrow> P (insert x F) \<rbrakk> |
|
55 |
\<Longrightarrow> P F" |
|
56 |
using fin |
|
57 |
proof induct |
|
58 |
case empty thus ?case by simp |
|
59 |
next |
|
60 |
case (insert x F) |
|
61 |
show ?case |
|
62 |
proof cases |
|
23389 | 63 |
assume "F = {}" |
64 |
thus ?thesis using `P {x}` by simp |
|
15484 | 65 |
next |
23389 | 66 |
assume "F \<noteq> {}" |
67 |
thus ?thesis using insert by blast |
|
15484 | 68 |
qed |
69 |
qed |
|
70 |
||
12396 | 71 |
lemma finite_subset_induct [consumes 2, case_names empty insert]: |
23389 | 72 |
assumes "finite F" and "F \<subseteq> A" |
73 |
and empty: "P {}" |
|
74 |
and insert: "!!a F. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)" |
|
75 |
shows "P F" |
|
12396 | 76 |
proof - |
23389 | 77 |
from `finite F` and `F \<subseteq> A` |
78 |
show ?thesis |
|
12396 | 79 |
proof induct |
23389 | 80 |
show "P {}" by fact |
81 |
next |
|
82 |
fix x F |
|
83 |
assume "finite F" and "x \<notin> F" and |
|
84 |
P: "F \<subseteq> A ==> P F" and i: "insert x F \<subseteq> A" |
|
12396 | 85 |
show "P (insert x F)" |
86 |
proof (rule insert) |
|
87 |
from i show "x \<in> A" by blast |
|
88 |
from i have "F \<subseteq> A" by blast |
|
89 |
with P show "P F" . |
|
23389 | 90 |
show "finite F" by fact |
91 |
show "x \<notin> F" by fact |
|
12396 | 92 |
qed |
93 |
qed |
|
94 |
qed |
|
95 |
||
32006 | 96 |
|
29923 | 97 |
text{* A finite choice principle. Does not need the SOME choice operator. *} |
98 |
lemma finite_set_choice: |
|
99 |
"finite A \<Longrightarrow> ALL x:A. (EX y. P x y) \<Longrightarrow> EX f. ALL x:A. P x (f x)" |
|
100 |
proof (induct set: finite) |
|
101 |
case empty thus ?case by simp |
|
102 |
next |
|
103 |
case (insert a A) |
|
104 |
then obtain f b where f: "ALL x:A. P x (f x)" and ab: "P a b" by auto |
|
105 |
show ?case (is "EX f. ?P f") |
|
106 |
proof |
|
107 |
show "?P(%x. if x = a then b else f x)" using f ab by auto |
|
108 |
qed |
|
109 |
qed |
|
110 |
||
23878 | 111 |
|
15392 | 112 |
text{* Finite sets are the images of initial segments of natural numbers: *} |
113 |
||
15510 | 114 |
lemma finite_imp_nat_seg_image_inj_on: |
115 |
assumes fin: "finite A" |
|
116 |
shows "\<exists> (n::nat) f. A = f ` {i. i<n} & inj_on f {i. i<n}" |
|
15392 | 117 |
using fin |
118 |
proof induct |
|
119 |
case empty |
|
15510 | 120 |
show ?case |
121 |
proof show "\<exists>f. {} = f ` {i::nat. i < 0} & inj_on f {i. i<0}" by simp |
|
122 |
qed |
|
15392 | 123 |
next |
124 |
case (insert a A) |
|
23389 | 125 |
have notinA: "a \<notin> A" by fact |
15510 | 126 |
from insert.hyps obtain n f |
127 |
where "A = f ` {i::nat. i < n}" "inj_on f {i. i < n}" by blast |
|
128 |
hence "insert a A = f(n:=a) ` {i. i < Suc n}" |
|
129 |
"inj_on (f(n:=a)) {i. i < Suc n}" using notinA |
|
130 |
by (auto simp add: image_def Ball_def inj_on_def less_Suc_eq) |
|
15392 | 131 |
thus ?case by blast |
132 |
qed |
|
133 |
||
134 |
lemma nat_seg_image_imp_finite: |
|
135 |
"!!f A. A = f ` {i::nat. i<n} \<Longrightarrow> finite A" |
|
136 |
proof (induct n) |
|
137 |
case 0 thus ?case by simp |
|
138 |
next |
|
139 |
case (Suc n) |
|
140 |
let ?B = "f ` {i. i < n}" |
|
141 |
have finB: "finite ?B" by(rule Suc.hyps[OF refl]) |
|
142 |
show ?case |
|
143 |
proof cases |
|
144 |
assume "\<exists>k<n. f n = f k" |
|
145 |
hence "A = ?B" using Suc.prems by(auto simp:less_Suc_eq) |
|
146 |
thus ?thesis using finB by simp |
|
147 |
next |
|
148 |
assume "\<not>(\<exists> k<n. f n = f k)" |
|
149 |
hence "A = insert (f n) ?B" using Suc.prems by(auto simp:less_Suc_eq) |
|
150 |
thus ?thesis using finB by simp |
|
151 |
qed |
|
152 |
qed |
|
153 |
||
154 |
lemma finite_conv_nat_seg_image: |
|
155 |
"finite A = (\<exists> (n::nat) f. A = f ` {i::nat. i<n})" |
|
15510 | 156 |
by(blast intro: nat_seg_image_imp_finite dest: finite_imp_nat_seg_image_inj_on) |
15392 | 157 |
|
32988 | 158 |
lemma finite_imp_inj_to_nat_seg: |
159 |
assumes "finite A" |
|
160 |
shows "EX f n::nat. f`A = {i. i<n} & inj_on f A" |
|
161 |
proof - |
|
162 |
from finite_imp_nat_seg_image_inj_on[OF `finite A`] |
|
163 |
obtain f and n::nat where bij: "bij_betw f {i. i<n} A" |
|
164 |
by (auto simp:bij_betw_def) |
|
33057 | 165 |
let ?f = "the_inv_into {i. i<n} f" |
32988 | 166 |
have "inj_on ?f A & ?f ` A = {i. i<n}" |
33057 | 167 |
by (fold bij_betw_def) (rule bij_betw_the_inv_into[OF bij]) |
32988 | 168 |
thus ?thesis by blast |
169 |
qed |
|
170 |
||
29920 | 171 |
lemma finite_Collect_less_nat[iff]: "finite{n::nat. n<k}" |
172 |
by(fastsimp simp: finite_conv_nat_seg_image) |
|
173 |
||
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
174 |
text {* Finiteness and set theoretic constructions *} |
15392 | 175 |
|
12396 | 176 |
lemma finite_UnI: "finite F ==> finite G ==> finite (F Un G)" |
29901 | 177 |
by (induct set: finite) simp_all |
12396 | 178 |
|
179 |
lemma finite_subset: "A \<subseteq> B ==> finite B ==> finite A" |
|
180 |
-- {* Every subset of a finite set is finite. *} |
|
181 |
proof - |
|
182 |
assume "finite B" |
|
183 |
thus "!!A. A \<subseteq> B ==> finite A" |
|
184 |
proof induct |
|
185 |
case empty |
|
186 |
thus ?case by simp |
|
187 |
next |
|
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
188 |
case (insert x F A) |
23389 | 189 |
have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F ==> finite (A - {x})" by fact+ |
12396 | 190 |
show "finite A" |
191 |
proof cases |
|
192 |
assume x: "x \<in> A" |
|
193 |
with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff) |
|
194 |
with r have "finite (A - {x})" . |
|
195 |
hence "finite (insert x (A - {x}))" .. |
|
23389 | 196 |
also have "insert x (A - {x}) = A" using x by (rule insert_Diff) |
12396 | 197 |
finally show ?thesis . |
198 |
next |
|
23389 | 199 |
show "A \<subseteq> F ==> ?thesis" by fact |
12396 | 200 |
assume "x \<notin> A" |
201 |
with A show "A \<subseteq> F" by (simp add: subset_insert_iff) |
|
202 |
qed |
|
203 |
qed |
|
204 |
qed |
|
205 |
||
34111
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
206 |
lemma rev_finite_subset: "finite B ==> A \<subseteq> B ==> finite A" |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
207 |
by (rule finite_subset) |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
208 |
|
12396 | 209 |
lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)" |
29901 | 210 |
by (blast intro: finite_subset [of _ "X Un Y", standard] finite_UnI) |
211 |
||
29916 | 212 |
lemma finite_Collect_disjI[simp]: |
29901 | 213 |
"finite{x. P x | Q x} = (finite{x. P x} & finite{x. Q x})" |
214 |
by(simp add:Collect_disj_eq) |
|
12396 | 215 |
|
216 |
lemma finite_Int [simp, intro]: "finite F | finite G ==> finite (F Int G)" |
|
217 |
-- {* The converse obviously fails. *} |
|
29901 | 218 |
by (blast intro: finite_subset) |
219 |
||
29916 | 220 |
lemma finite_Collect_conjI [simp, intro]: |
29901 | 221 |
"finite{x. P x} | finite{x. Q x} ==> finite{x. P x & Q x}" |
222 |
-- {* The converse obviously fails. *} |
|
223 |
by(simp add:Collect_conj_eq) |
|
12396 | 224 |
|
29920 | 225 |
lemma finite_Collect_le_nat[iff]: "finite{n::nat. n<=k}" |
226 |
by(simp add: le_eq_less_or_eq) |
|
227 |
||
12396 | 228 |
lemma finite_insert [simp]: "finite (insert a A) = finite A" |
229 |
apply (subst insert_is_Un) |
|
14208 | 230 |
apply (simp only: finite_Un, blast) |
12396 | 231 |
done |
232 |
||
15281 | 233 |
lemma finite_Union[simp, intro]: |
234 |
"\<lbrakk> finite A; !!M. M \<in> A \<Longrightarrow> finite M \<rbrakk> \<Longrightarrow> finite(\<Union>A)" |
|
235 |
by (induct rule:finite_induct) simp_all |
|
236 |
||
31992 | 237 |
lemma finite_Inter[intro]: "EX A:M. finite(A) \<Longrightarrow> finite(Inter M)" |
238 |
by (blast intro: Inter_lower finite_subset) |
|
239 |
||
240 |
lemma finite_INT[intro]: "EX x:I. finite(A x) \<Longrightarrow> finite(INT x:I. A x)" |
|
241 |
by (blast intro: INT_lower finite_subset) |
|
242 |
||
12396 | 243 |
lemma finite_empty_induct: |
23389 | 244 |
assumes "finite A" |
245 |
and "P A" |
|
246 |
and "!!a A. finite A ==> a:A ==> P A ==> P (A - {a})" |
|
247 |
shows "P {}" |
|
12396 | 248 |
proof - |
249 |
have "P (A - A)" |
|
250 |
proof - |
|
23389 | 251 |
{ |
252 |
fix c b :: "'a set" |
|
253 |
assume c: "finite c" and b: "finite b" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32705
diff
changeset
|
254 |
and P1: "P b" and P2: "!!x y. finite y ==> x \<in> y ==> P y ==> P (y - {x})" |
23389 | 255 |
have "c \<subseteq> b ==> P (b - c)" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32705
diff
changeset
|
256 |
using c |
23389 | 257 |
proof induct |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32705
diff
changeset
|
258 |
case empty |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32705
diff
changeset
|
259 |
from P1 show ?case by simp |
23389 | 260 |
next |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32705
diff
changeset
|
261 |
case (insert x F) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32705
diff
changeset
|
262 |
have "P (b - F - {x})" |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32705
diff
changeset
|
263 |
proof (rule P2) |
23389 | 264 |
from _ b show "finite (b - F)" by (rule finite_subset) blast |
265 |
from insert show "x \<in> b - F" by simp |
|
266 |
from insert show "P (b - F)" by simp |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32705
diff
changeset
|
267 |
qed |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32705
diff
changeset
|
268 |
also have "b - F - {x} = b - insert x F" by (rule Diff_insert [symmetric]) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32705
diff
changeset
|
269 |
finally show ?case . |
12396 | 270 |
qed |
23389 | 271 |
} |
272 |
then show ?thesis by this (simp_all add: assms) |
|
12396 | 273 |
qed |
23389 | 274 |
then show ?thesis by simp |
12396 | 275 |
qed |
276 |
||
29901 | 277 |
lemma finite_Diff [simp]: "finite A ==> finite (A - B)" |
278 |
by (rule Diff_subset [THEN finite_subset]) |
|
279 |
||
280 |
lemma finite_Diff2 [simp]: |
|
281 |
assumes "finite B" shows "finite (A - B) = finite A" |
|
282 |
proof - |
|
283 |
have "finite A \<longleftrightarrow> finite((A-B) Un (A Int B))" by(simp add: Un_Diff_Int) |
|
284 |
also have "\<dots> \<longleftrightarrow> finite(A-B)" using `finite B` by(simp) |
|
285 |
finally show ?thesis .. |
|
286 |
qed |
|
287 |
||
288 |
lemma finite_compl[simp]: |
|
289 |
"finite(A::'a set) \<Longrightarrow> finite(-A) = finite(UNIV::'a set)" |
|
290 |
by(simp add:Compl_eq_Diff_UNIV) |
|
12396 | 291 |
|
29916 | 292 |
lemma finite_Collect_not[simp]: |
29903 | 293 |
"finite{x::'a. P x} \<Longrightarrow> finite{x. ~P x} = finite(UNIV::'a set)" |
294 |
by(simp add:Collect_neg_eq) |
|
295 |
||
12396 | 296 |
lemma finite_Diff_insert [iff]: "finite (A - insert a B) = finite (A - B)" |
297 |
apply (subst Diff_insert) |
|
298 |
apply (case_tac "a : A - B") |
|
299 |
apply (rule finite_insert [symmetric, THEN trans]) |
|
14208 | 300 |
apply (subst insert_Diff, simp_all) |
12396 | 301 |
done |
302 |
||
303 |
||
15392 | 304 |
text {* Image and Inverse Image over Finite Sets *} |
13825 | 305 |
|
306 |
lemma finite_imageI[simp]: "finite F ==> finite (h ` F)" |
|
307 |
-- {* The image of a finite set is finite. *} |
|
22262 | 308 |
by (induct set: finite) simp_all |
13825 | 309 |
|
31768 | 310 |
lemma finite_image_set [simp]: |
311 |
"finite {x. P x} \<Longrightarrow> finite { f x | x. P x }" |
|
312 |
by (simp add: image_Collect [symmetric]) |
|
313 |
||
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
314 |
lemma finite_surj: "finite A ==> B <= f ` A ==> finite B" |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
315 |
apply (frule finite_imageI) |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
316 |
apply (erule finite_subset, assumption) |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
317 |
done |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
318 |
|
13825 | 319 |
lemma finite_range_imageI: |
320 |
"finite (range g) ==> finite (range (%x. f (g x)))" |
|
27418 | 321 |
apply (drule finite_imageI, simp add: range_composition) |
13825 | 322 |
done |
323 |
||
12396 | 324 |
lemma finite_imageD: "finite (f`A) ==> inj_on f A ==> finite A" |
325 |
proof - |
|
326 |
have aux: "!!A. finite (A - {}) = finite A" by simp |
|
327 |
fix B :: "'a set" |
|
328 |
assume "finite B" |
|
329 |
thus "!!A. f`A = B ==> inj_on f A ==> finite A" |
|
330 |
apply induct |
|
331 |
apply simp |
|
332 |
apply (subgoal_tac "EX y:A. f y = x & F = f ` (A - {y})") |
|
333 |
apply clarify |
|
334 |
apply (simp (no_asm_use) add: inj_on_def) |
|
14208 | 335 |
apply (blast dest!: aux [THEN iffD1], atomize) |
12396 | 336 |
apply (erule_tac V = "ALL A. ?PP (A)" in thin_rl) |
14208 | 337 |
apply (frule subsetD [OF equalityD2 insertI1], clarify) |
12396 | 338 |
apply (rule_tac x = xa in bexI) |
339 |
apply (simp_all add: inj_on_image_set_diff) |
|
340 |
done |
|
341 |
qed (rule refl) |
|
342 |
||
343 |
||
13825 | 344 |
lemma inj_vimage_singleton: "inj f ==> f-`{a} \<subseteq> {THE x. f x = a}" |
345 |
-- {* The inverse image of a singleton under an injective function |
|
346 |
is included in a singleton. *} |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
347 |
apply (auto simp add: inj_on_def) |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
348 |
apply (blast intro: the_equality [symmetric]) |
13825 | 349 |
done |
350 |
||
351 |
lemma finite_vimageI: "[|finite F; inj h|] ==> finite (h -` F)" |
|
352 |
-- {* The inverse image of a finite set under an injective function |
|
353 |
is finite. *} |
|
22262 | 354 |
apply (induct set: finite) |
21575 | 355 |
apply simp_all |
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
356 |
apply (subst vimage_insert) |
35216 | 357 |
apply (simp add: finite_subset [OF inj_vimage_singleton]) |
13825 | 358 |
done |
359 |
||
34111
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
360 |
lemma finite_vimageD: |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
361 |
assumes fin: "finite (h -` F)" and surj: "surj h" |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
362 |
shows "finite F" |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
363 |
proof - |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
364 |
have "finite (h ` (h -` F))" using fin by (rule finite_imageI) |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
365 |
also have "h ` (h -` F) = F" using surj by (rule surj_image_vimage_eq) |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
366 |
finally show "finite F" . |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
367 |
qed |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
368 |
|
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
369 |
lemma finite_vimage_iff: "bij h \<Longrightarrow> finite (h -` F) \<longleftrightarrow> finite F" |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
370 |
unfolding bij_def by (auto elim: finite_vimageD finite_vimageI) |
1b015caba46c
add lemmas rev_finite_subset, finite_vimageD, finite_vimage_iff
huffman
parents:
34007
diff
changeset
|
371 |
|
13825 | 372 |
|
15392 | 373 |
text {* The finite UNION of finite sets *} |
12396 | 374 |
|
375 |
lemma finite_UN_I: "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (UN a:A. B a)" |
|
22262 | 376 |
by (induct set: finite) simp_all |
12396 | 377 |
|
378 |
text {* |
|
379 |
Strengthen RHS to |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
380 |
@{prop "((ALL x:A. finite (B x)) & finite {x. x:A & B x \<noteq> {}})"}? |
12396 | 381 |
|
382 |
We'd need to prove |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
383 |
@{prop "finite C ==> ALL A B. (UNION A B) <= C --> finite {x. x:A & B x \<noteq> {}}"} |
12396 | 384 |
by induction. *} |
385 |
||
29918 | 386 |
lemma finite_UN [simp]: |
387 |
"finite A ==> finite (UNION A B) = (ALL x:A. finite (B x))" |
|
388 |
by (blast intro: finite_UN_I finite_subset) |
|
12396 | 389 |
|
29920 | 390 |
lemma finite_Collect_bex[simp]: "finite A \<Longrightarrow> |
391 |
finite{x. EX y:A. Q x y} = (ALL y:A. finite{x. Q x y})" |
|
392 |
apply(subgoal_tac "{x. EX y:A. Q x y} = UNION A (%y. {x. Q x y})") |
|
393 |
apply auto |
|
394 |
done |
|
395 |
||
396 |
lemma finite_Collect_bounded_ex[simp]: "finite{y. P y} \<Longrightarrow> |
|
397 |
finite{x. EX y. P y & Q x y} = (ALL y. P y \<longrightarrow> finite{x. Q x y})" |
|
398 |
apply(subgoal_tac "{x. EX y. P y & Q x y} = UNION {y. P y} (%y. {x. Q x y})") |
|
399 |
apply auto |
|
400 |
done |
|
401 |
||
402 |
||
17022 | 403 |
lemma finite_Plus: "[| finite A; finite B |] ==> finite (A <+> B)" |
404 |
by (simp add: Plus_def) |
|
405 |
||
31080 | 406 |
lemma finite_PlusD: |
407 |
fixes A :: "'a set" and B :: "'b set" |
|
408 |
assumes fin: "finite (A <+> B)" |
|
409 |
shows "finite A" "finite B" |
|
410 |
proof - |
|
411 |
have "Inl ` A \<subseteq> A <+> B" by auto |
|
412 |
hence "finite (Inl ` A :: ('a + 'b) set)" using fin by(rule finite_subset) |
|
413 |
thus "finite A" by(rule finite_imageD)(auto intro: inj_onI) |
|
414 |
next |
|
415 |
have "Inr ` B \<subseteq> A <+> B" by auto |
|
416 |
hence "finite (Inr ` B :: ('a + 'b) set)" using fin by(rule finite_subset) |
|
417 |
thus "finite B" by(rule finite_imageD)(auto intro: inj_onI) |
|
418 |
qed |
|
419 |
||
420 |
lemma finite_Plus_iff[simp]: "finite (A <+> B) \<longleftrightarrow> finite A \<and> finite B" |
|
421 |
by(auto intro: finite_PlusD finite_Plus) |
|
422 |
||
423 |
lemma finite_Plus_UNIV_iff[simp]: |
|
424 |
"finite (UNIV :: ('a + 'b) set) = |
|
425 |
(finite (UNIV :: 'a set) & finite (UNIV :: 'b set))" |
|
426 |
by(subst UNIV_Plus_UNIV[symmetric])(rule finite_Plus_iff) |
|
427 |
||
428 |
||
15392 | 429 |
text {* Sigma of finite sets *} |
12396 | 430 |
|
431 |
lemma finite_SigmaI [simp]: |
|
432 |
"finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (SIGMA a:A. B a)" |
|
433 |
by (unfold Sigma_def) (blast intro!: finite_UN_I) |
|
434 |
||
15402 | 435 |
lemma finite_cartesian_product: "[| finite A; finite B |] ==> |
436 |
finite (A <*> B)" |
|
437 |
by (rule finite_SigmaI) |
|
438 |
||
12396 | 439 |
lemma finite_Prod_UNIV: |
440 |
"finite (UNIV::'a set) ==> finite (UNIV::'b set) ==> finite (UNIV::('a * 'b) set)" |
|
441 |
apply (subgoal_tac "(UNIV:: ('a * 'b) set) = Sigma UNIV (%x. UNIV)") |
|
442 |
apply (erule ssubst) |
|
14208 | 443 |
apply (erule finite_SigmaI, auto) |
12396 | 444 |
done |
445 |
||
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
446 |
lemma finite_cartesian_productD1: |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
447 |
"[| finite (A <*> B); B \<noteq> {} |] ==> finite A" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
448 |
apply (auto simp add: finite_conv_nat_seg_image) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
449 |
apply (drule_tac x=n in spec) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
450 |
apply (drule_tac x="fst o f" in spec) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
451 |
apply (auto simp add: o_def) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
452 |
prefer 2 apply (force dest!: equalityD2) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
453 |
apply (drule equalityD1) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
454 |
apply (rename_tac y x) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
455 |
apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
456 |
prefer 2 apply force |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
457 |
apply clarify |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
458 |
apply (rule_tac x=k in image_eqI, auto) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
459 |
done |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
460 |
|
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
461 |
lemma finite_cartesian_productD2: |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
462 |
"[| finite (A <*> B); A \<noteq> {} |] ==> finite B" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
463 |
apply (auto simp add: finite_conv_nat_seg_image) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
464 |
apply (drule_tac x=n in spec) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
465 |
apply (drule_tac x="snd o f" in spec) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
466 |
apply (auto simp add: o_def) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
467 |
prefer 2 apply (force dest!: equalityD2) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
468 |
apply (drule equalityD1) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
469 |
apply (rename_tac x y) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
470 |
apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
471 |
prefer 2 apply force |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
472 |
apply clarify |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
473 |
apply (rule_tac x=k in image_eqI, auto) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
474 |
done |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
475 |
|
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
476 |
|
15392 | 477 |
text {* The powerset of a finite set *} |
12396 | 478 |
|
479 |
lemma finite_Pow_iff [iff]: "finite (Pow A) = finite A" |
|
480 |
proof |
|
481 |
assume "finite (Pow A)" |
|
482 |
with _ have "finite ((%x. {x}) ` A)" by (rule finite_subset) blast |
|
483 |
thus "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp |
|
484 |
next |
|
485 |
assume "finite A" |
|
486 |
thus "finite (Pow A)" |
|
35216 | 487 |
by induct (simp_all add: Pow_insert) |
12396 | 488 |
qed |
489 |
||
29916 | 490 |
lemma finite_Collect_subsets[simp,intro]: "finite A \<Longrightarrow> finite{B. B \<subseteq> A}" |
491 |
by(simp add: Pow_def[symmetric]) |
|
15392 | 492 |
|
29918 | 493 |
|
15392 | 494 |
lemma finite_UnionD: "finite(\<Union>A) \<Longrightarrow> finite A" |
495 |
by(blast intro: finite_subset[OF subset_Pow_Union]) |
|
496 |
||
497 |
||
31441 | 498 |
lemma finite_subset_image: |
499 |
assumes "finite B" |
|
500 |
shows "B \<subseteq> f ` A \<Longrightarrow> \<exists>C\<subseteq>A. finite C \<and> B = f ` C" |
|
501 |
using assms proof(induct) |
|
502 |
case empty thus ?case by simp |
|
503 |
next |
|
504 |
case insert thus ?case |
|
505 |
by (clarsimp simp del: image_insert simp add: image_insert[symmetric]) |
|
506 |
blast |
|
507 |
qed |
|
508 |
||
509 |
||
26441 | 510 |
subsection {* Class @{text finite} *} |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
511 |
|
29797 | 512 |
class finite = |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
513 |
assumes finite_UNIV: "finite (UNIV \<Colon> 'a set)" |
27430 | 514 |
begin |
515 |
||
516 |
lemma finite [simp]: "finite (A \<Colon> 'a set)" |
|
26441 | 517 |
by (rule subset_UNIV finite_UNIV finite_subset)+ |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
518 |
|
27430 | 519 |
end |
520 |
||
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35796
diff
changeset
|
521 |
lemma UNIV_unit [no_atp]: |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
522 |
"UNIV = {()}" by auto |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
523 |
|
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
524 |
instance unit :: finite proof |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
525 |
qed (simp add: UNIV_unit) |
26146 | 526 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35796
diff
changeset
|
527 |
lemma UNIV_bool [no_atp]: |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
528 |
"UNIV = {False, True}" by auto |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
529 |
|
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
530 |
instance bool :: finite proof |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
531 |
qed (simp add: UNIV_bool) |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
532 |
|
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
533 |
instance * :: (finite, finite) finite proof |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
534 |
qed (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product finite) |
26146 | 535 |
|
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
536 |
lemma finite_option_UNIV [simp]: |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
537 |
"finite (UNIV :: 'a option set) = finite (UNIV :: 'a set)" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
538 |
by (auto simp add: UNIV_option_conv elim: finite_imageD intro: inj_Some) |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
539 |
|
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
540 |
instance option :: (finite) finite proof |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
541 |
qed (simp add: UNIV_option_conv) |
26146 | 542 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
543 |
lemma inj_graph: "inj (%f. {(x, y). y = f x})" |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
544 |
by (rule inj_onI, auto simp add: expand_set_eq expand_fun_eq) |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
545 |
|
26146 | 546 |
instance "fun" :: (finite, finite) finite |
547 |
proof |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
548 |
show "finite (UNIV :: ('a => 'b) set)" |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
549 |
proof (rule finite_imageD) |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
550 |
let ?graph = "%f::'a => 'b. {(x, y). y = f x}" |
26792 | 551 |
have "range ?graph \<subseteq> Pow UNIV" by simp |
552 |
moreover have "finite (Pow (UNIV :: ('a * 'b) set))" |
|
553 |
by (simp only: finite_Pow_iff finite) |
|
554 |
ultimately show "finite (range ?graph)" |
|
555 |
by (rule finite_subset) |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
556 |
show "inj ?graph" by (rule inj_graph) |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
557 |
qed |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
558 |
qed |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
559 |
|
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
560 |
instance "+" :: (finite, finite) finite proof |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
561 |
qed (simp only: UNIV_Plus_UNIV [symmetric] finite_Plus finite) |
27981 | 562 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
563 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
564 |
subsection {* A basic fold functional for finite sets *} |
15392 | 565 |
|
566 |
text {* The intended behaviour is |
|
31916
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
wenzelm
parents:
31907
diff
changeset
|
567 |
@{text "fold f z {x\<^isub>1, ..., x\<^isub>n} = f x\<^isub>1 (\<dots> (f x\<^isub>n z)\<dots>)"} |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
568 |
if @{text f} is ``left-commutative'': |
15392 | 569 |
*} |
570 |
||
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
571 |
locale fun_left_comm = |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
572 |
fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
573 |
assumes fun_left_comm: "f x (f y z) = f y (f x z)" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
574 |
begin |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
575 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
576 |
text{* On a functional level it looks much nicer: *} |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
577 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
578 |
lemma fun_comp_comm: "f x \<circ> f y = f y \<circ> f x" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
579 |
by (simp add: fun_left_comm expand_fun_eq) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
580 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
581 |
end |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
582 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
583 |
inductive fold_graph :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
584 |
for f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b" and z :: 'b where |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
585 |
emptyI [intro]: "fold_graph f z {} z" | |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
586 |
insertI [intro]: "x \<notin> A \<Longrightarrow> fold_graph f z A y |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
587 |
\<Longrightarrow> fold_graph f z (insert x A) (f x y)" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
588 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
589 |
inductive_cases empty_fold_graphE [elim!]: "fold_graph f z {} x" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
590 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
591 |
definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b" where |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
592 |
[code del]: "fold f z A = (THE y. fold_graph f z A y)" |
15392 | 593 |
|
15498 | 594 |
text{*A tempting alternative for the definiens is |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
595 |
@{term "if finite A then THE y. fold_graph f z A y else e"}. |
15498 | 596 |
It allows the removal of finiteness assumptions from the theorems |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
597 |
@{text fold_comm}, @{text fold_reindex} and @{text fold_distrib}. |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
598 |
The proofs become ugly. It is not worth the effort. (???) *} |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
599 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
600 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
601 |
lemma Diff1_fold_graph: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
602 |
"fold_graph f z (A - {x}) y \<Longrightarrow> x \<in> A \<Longrightarrow> fold_graph f z A (f x y)" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
603 |
by (erule insert_Diff [THEN subst], rule fold_graph.intros, auto) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
604 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
605 |
lemma fold_graph_imp_finite: "fold_graph f z A x \<Longrightarrow> finite A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
606 |
by (induct set: fold_graph) auto |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
607 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
608 |
lemma finite_imp_fold_graph: "finite A \<Longrightarrow> \<exists>x. fold_graph f z A x" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
609 |
by (induct set: finite) auto |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
610 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
611 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
612 |
subsubsection{*From @{const fold_graph} to @{term fold}*} |
15392 | 613 |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
614 |
context fun_left_comm |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
615 |
begin |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
616 |
|
36045 | 617 |
lemma fold_graph_insertE_aux: |
618 |
"fold_graph f z A y \<Longrightarrow> a \<in> A \<Longrightarrow> \<exists>y'. y = f a y' \<and> fold_graph f z (A - {a}) y'" |
|
619 |
proof (induct set: fold_graph) |
|
620 |
case (insertI x A y) show ?case |
|
621 |
proof (cases "x = a") |
|
622 |
assume "x = a" with insertI show ?case by auto |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
623 |
next |
36045 | 624 |
assume "x \<noteq> a" |
625 |
then obtain y' where y: "y = f a y'" and y': "fold_graph f z (A - {a}) y'" |
|
626 |
using insertI by auto |
|
627 |
have 1: "f x y = f a (f x y')" |
|
628 |
unfolding y by (rule fun_left_comm) |
|
629 |
have 2: "fold_graph f z (insert x A - {a}) (f x y')" |
|
630 |
using y' and `x \<noteq> a` and `x \<notin> A` |
|
631 |
by (simp add: insert_Diff_if fold_graph.insertI) |
|
632 |
from 1 2 show ?case by fast |
|
15392 | 633 |
qed |
36045 | 634 |
qed simp |
635 |
||
636 |
lemma fold_graph_insertE: |
|
637 |
assumes "fold_graph f z (insert x A) v" and "x \<notin> A" |
|
638 |
obtains y where "v = f x y" and "fold_graph f z A y" |
|
639 |
using assms by (auto dest: fold_graph_insertE_aux [OF _ insertI1]) |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
640 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
641 |
lemma fold_graph_determ: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
642 |
"fold_graph f z A x \<Longrightarrow> fold_graph f z A y \<Longrightarrow> y = x" |
36045 | 643 |
proof (induct arbitrary: y set: fold_graph) |
644 |
case (insertI x A y v) |
|
645 |
from `fold_graph f z (insert x A) v` and `x \<notin> A` |
|
646 |
obtain y' where "v = f x y'" and "fold_graph f z A y'" |
|
647 |
by (rule fold_graph_insertE) |
|
648 |
from `fold_graph f z A y'` have "y' = y" by (rule insertI) |
|
649 |
with `v = f x y'` show "v = f x y" by simp |
|
650 |
qed fast |
|
15392 | 651 |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
652 |
lemma fold_equality: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
653 |
"fold_graph f z A y \<Longrightarrow> fold f z A = y" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
654 |
by (unfold fold_def) (blast intro: fold_graph_determ) |
15392 | 655 |
|
36045 | 656 |
lemma fold_graph_fold: "finite A \<Longrightarrow> fold_graph f z A (fold f z A)" |
657 |
unfolding fold_def |
|
658 |
apply (rule theI') |
|
659 |
apply (rule ex_ex1I) |
|
660 |
apply (erule finite_imp_fold_graph) |
|
661 |
apply (erule (1) fold_graph_determ) |
|
662 |
done |
|
663 |
||
15392 | 664 |
text{* The base case for @{text fold}: *} |
665 |
||
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
666 |
lemma (in -) fold_empty [simp]: "fold f z {} = z" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
667 |
by (unfold fold_def) blast |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
668 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
669 |
text{* The various recursion equations for @{const fold}: *} |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
670 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
671 |
lemma fold_insert [simp]: |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
672 |
"finite A ==> x \<notin> A ==> fold f z (insert x A) = f x (fold f z A)" |
36045 | 673 |
apply (rule fold_equality) |
674 |
apply (erule fold_graph.insertI) |
|
675 |
apply (erule fold_graph_fold) |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
676 |
done |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
677 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
678 |
lemma fold_fun_comm: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
679 |
"finite A \<Longrightarrow> f x (fold f z A) = fold f (f x z) A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
680 |
proof (induct rule: finite_induct) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
681 |
case empty then show ?case by simp |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
682 |
next |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
683 |
case (insert y A) then show ?case |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
684 |
by (simp add: fun_left_comm[of x]) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
685 |
qed |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
686 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
687 |
lemma fold_insert2: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
688 |
"finite A \<Longrightarrow> x \<notin> A \<Longrightarrow> fold f z (insert x A) = fold f (f x z) A" |
35216 | 689 |
by (simp add: fold_fun_comm) |
15392 | 690 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
691 |
lemma fold_rec: |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
692 |
assumes "finite A" and "x \<in> A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
693 |
shows "fold f z A = f x (fold f z (A - {x}))" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
694 |
proof - |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
695 |
have A: "A = insert x (A - {x})" using `x \<in> A` by blast |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
696 |
then have "fold f z A = fold f z (insert x (A - {x}))" by simp |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
697 |
also have "\<dots> = f x (fold f z (A - {x}))" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
698 |
by (rule fold_insert) (simp add: `finite A`)+ |
15535 | 699 |
finally show ?thesis . |
700 |
qed |
|
701 |
||
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
702 |
lemma fold_insert_remove: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
703 |
assumes "finite A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
704 |
shows "fold f z (insert x A) = f x (fold f z (A - {x}))" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
705 |
proof - |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
706 |
from `finite A` have "finite (insert x A)" by auto |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
707 |
moreover have "x \<in> insert x A" by auto |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
708 |
ultimately have "fold f z (insert x A) = f x (fold f z (insert x A - {x}))" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
709 |
by (rule fold_rec) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
710 |
then show ?thesis by simp |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
711 |
qed |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
712 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
713 |
end |
15392 | 714 |
|
15480 | 715 |
text{* A simplified version for idempotent functions: *} |
716 |
||
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
717 |
locale fun_left_comm_idem = fun_left_comm + |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
718 |
assumes fun_left_idem: "f x (f x z) = f x z" |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
719 |
begin |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
720 |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
721 |
text{* The nice version: *} |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
722 |
lemma fun_comp_idem : "f x o f x = f x" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
723 |
by (simp add: fun_left_idem expand_fun_eq) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
724 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
725 |
lemma fold_insert_idem: |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
726 |
assumes fin: "finite A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
727 |
shows "fold f z (insert x A) = f x (fold f z A)" |
15480 | 728 |
proof cases |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
729 |
assume "x \<in> A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
730 |
then obtain B where "A = insert x B" and "x \<notin> B" by (rule set_insert) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
731 |
then show ?thesis using assms by (simp add:fun_left_idem) |
15480 | 732 |
next |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
733 |
assume "x \<notin> A" then show ?thesis using assms by simp |
15480 | 734 |
qed |
735 |
||
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
736 |
declare fold_insert[simp del] fold_insert_idem[simp] |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
737 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
738 |
lemma fold_insert_idem2: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
739 |
"finite A \<Longrightarrow> fold f z (insert x A) = fold f (f x z) A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
740 |
by(simp add:fold_fun_comm) |
15484 | 741 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
742 |
end |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
743 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
744 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
745 |
subsubsection {* Expressing set operations via @{const fold} *} |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
746 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
747 |
lemma (in fun_left_comm) fun_left_comm_apply: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
748 |
"fun_left_comm (\<lambda>x. f (g x))" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
749 |
proof |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
750 |
qed (simp_all add: fun_left_comm) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
751 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
752 |
lemma (in fun_left_comm_idem) fun_left_comm_idem_apply: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
753 |
"fun_left_comm_idem (\<lambda>x. f (g x))" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
754 |
by (rule fun_left_comm_idem.intro, rule fun_left_comm_apply, unfold_locales) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
755 |
(simp_all add: fun_left_idem) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
756 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
757 |
lemma fun_left_comm_idem_insert: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
758 |
"fun_left_comm_idem insert" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
759 |
proof |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
760 |
qed auto |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
761 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
762 |
lemma fun_left_comm_idem_remove: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
763 |
"fun_left_comm_idem (\<lambda>x A. A - {x})" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
764 |
proof |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
765 |
qed auto |
31992 | 766 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
767 |
lemma (in semilattice_inf) fun_left_comm_idem_inf: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
768 |
"fun_left_comm_idem inf" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
769 |
proof |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
770 |
qed (auto simp add: inf_left_commute) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
771 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
772 |
lemma (in semilattice_sup) fun_left_comm_idem_sup: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
773 |
"fun_left_comm_idem sup" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
774 |
proof |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
775 |
qed (auto simp add: sup_left_commute) |
31992 | 776 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
777 |
lemma union_fold_insert: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
778 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
779 |
shows "A \<union> B = fold insert B A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
780 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
781 |
interpret fun_left_comm_idem insert by (fact fun_left_comm_idem_insert) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
782 |
from `finite A` show ?thesis by (induct A arbitrary: B) simp_all |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
783 |
qed |
31992 | 784 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
785 |
lemma minus_fold_remove: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
786 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
787 |
shows "B - A = fold (\<lambda>x A. A - {x}) B A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
788 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
789 |
interpret fun_left_comm_idem "\<lambda>x A. A - {x}" by (fact fun_left_comm_idem_remove) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
790 |
from `finite A` show ?thesis by (induct A arbitrary: B) auto |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
791 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
792 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
793 |
context complete_lattice |
31992 | 794 |
begin |
795 |
||
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
796 |
lemma inf_Inf_fold_inf: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
797 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
798 |
shows "inf B (Inf A) = fold inf B A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
799 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
800 |
interpret fun_left_comm_idem inf by (fact fun_left_comm_idem_inf) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
801 |
from `finite A` show ?thesis by (induct A arbitrary: B) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
802 |
(simp_all add: Inf_empty Inf_insert inf_commute fold_fun_comm) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
803 |
qed |
31992 | 804 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
805 |
lemma sup_Sup_fold_sup: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
806 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
807 |
shows "sup B (Sup A) = fold sup B A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
808 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
809 |
interpret fun_left_comm_idem sup by (fact fun_left_comm_idem_sup) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
810 |
from `finite A` show ?thesis by (induct A arbitrary: B) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
811 |
(simp_all add: Sup_empty Sup_insert sup_commute fold_fun_comm) |
31992 | 812 |
qed |
813 |
||
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
814 |
lemma Inf_fold_inf: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
815 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
816 |
shows "Inf A = fold inf top A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
817 |
using assms inf_Inf_fold_inf [of A top] by (simp add: inf_absorb2) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
818 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
819 |
lemma Sup_fold_sup: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
820 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
821 |
shows "Sup A = fold sup bot A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
822 |
using assms sup_Sup_fold_sup [of A bot] by (simp add: sup_absorb2) |
31992 | 823 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
824 |
lemma inf_INFI_fold_inf: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
825 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
826 |
shows "inf B (INFI A f) = fold (\<lambda>A. inf (f A)) B A" (is "?inf = ?fold") |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
827 |
proof (rule sym) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
828 |
interpret fun_left_comm_idem inf by (fact fun_left_comm_idem_inf) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
829 |
interpret fun_left_comm_idem "\<lambda>A. inf (f A)" by (fact fun_left_comm_idem_apply) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
830 |
from `finite A` show "?fold = ?inf" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
831 |
by (induct A arbitrary: B) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
832 |
(simp_all add: INFI_def Inf_empty Inf_insert inf_left_commute) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
833 |
qed |
31992 | 834 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
835 |
lemma sup_SUPR_fold_sup: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
836 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
837 |
shows "sup B (SUPR A f) = fold (\<lambda>A. sup (f A)) B A" (is "?sup = ?fold") |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
838 |
proof (rule sym) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
839 |
interpret fun_left_comm_idem sup by (fact fun_left_comm_idem_sup) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
840 |
interpret fun_left_comm_idem "\<lambda>A. sup (f A)" by (fact fun_left_comm_idem_apply) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
841 |
from `finite A` show "?fold = ?sup" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
842 |
by (induct A arbitrary: B) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
843 |
(simp_all add: SUPR_def Sup_empty Sup_insert sup_left_commute) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
844 |
qed |
31992 | 845 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
846 |
lemma INFI_fold_inf: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
847 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
848 |
shows "INFI A f = fold (\<lambda>A. inf (f A)) top A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
849 |
using assms inf_INFI_fold_inf [of A top] by simp |
31992 | 850 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
851 |
lemma SUPR_fold_sup: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
852 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
853 |
shows "SUPR A f = fold (\<lambda>A. sup (f A)) bot A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
854 |
using assms sup_SUPR_fold_sup [of A bot] by simp |
31992 | 855 |
|
856 |
end |
|
857 |
||
858 |
||
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
859 |
subsection {* The derived combinator @{text fold_image} *} |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
860 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
861 |
definition fold_image :: "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
862 |
where "fold_image f g = fold (%x y. f (g x) y)" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
863 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
864 |
lemma fold_image_empty[simp]: "fold_image f g z {} = z" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
865 |
by(simp add:fold_image_def) |
15392 | 866 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
867 |
context ab_semigroup_mult |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
868 |
begin |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
869 |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
870 |
lemma fold_image_insert[simp]: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
871 |
assumes "finite A" and "a \<notin> A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
872 |
shows "fold_image times g z (insert a A) = g a * (fold_image times g z A)" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
873 |
proof - |
29223 | 874 |
interpret I: fun_left_comm "%x y. (g x) * y" |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
875 |
by unfold_locales (simp add: mult_ac) |
31992 | 876 |
show ?thesis using assms by(simp add:fold_image_def) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
877 |
qed |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
878 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
879 |
(* |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
880 |
lemma fold_commute: |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
881 |
"finite A ==> (!!z. x * (fold times g z A) = fold times g (x * z) A)" |
22262 | 882 |
apply (induct set: finite) |
21575 | 883 |
apply simp |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
884 |
apply (simp add: mult_left_commute [of x]) |
15392 | 885 |
done |
886 |
||
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
887 |
lemma fold_nest_Un_Int: |
15392 | 888 |
"finite A ==> finite B |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
889 |
==> fold times g (fold times g z B) A = fold times g (fold times g z (A Int B)) (A Un B)" |
22262 | 890 |
apply (induct set: finite) |
21575 | 891 |
apply simp |
15392 | 892 |
apply (simp add: fold_commute Int_insert_left insert_absorb) |
893 |
done |
|
894 |
||
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
895 |
lemma fold_nest_Un_disjoint: |
15392 | 896 |
"finite A ==> finite B ==> A Int B = {} |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
897 |
==> fold times g z (A Un B) = fold times g (fold times g z B) A" |
15392 | 898 |
by (simp add: fold_nest_Un_Int) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
899 |
*) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
900 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
901 |
lemma fold_image_reindex: |
15487 | 902 |
assumes fin: "finite A" |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
903 |
shows "inj_on h A \<Longrightarrow> fold_image times g z (h`A) = fold_image times (g\<circ>h) z A" |
31992 | 904 |
using fin by induct auto |
15392 | 905 |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
906 |
(* |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
907 |
text{* |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
908 |
Fusion theorem, as described in Graham Hutton's paper, |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
909 |
A Tutorial on the Universality and Expressiveness of Fold, |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
910 |
JFP 9:4 (355-372), 1999. |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
911 |
*} |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
912 |
|
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
913 |
lemma fold_fusion: |
27611 | 914 |
assumes "ab_semigroup_mult g" |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
915 |
assumes fin: "finite A" |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
916 |
and hyp: "\<And>x y. h (g x y) = times x (h y)" |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
917 |
shows "h (fold g j w A) = fold times j (h w) A" |
27611 | 918 |
proof - |
29223 | 919 |
class_interpret ab_semigroup_mult [g] by fact |
27611 | 920 |
show ?thesis using fin hyp by (induct set: finite) simp_all |
921 |
qed |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
922 |
*) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
923 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
924 |
lemma fold_image_cong: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
925 |
"finite A \<Longrightarrow> |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
926 |
(!!x. x:A ==> g x = h x) ==> fold_image times g z A = fold_image times h z A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
927 |
apply (subgoal_tac "ALL C. C <= A --> (ALL x:C. g x = h x) --> fold_image times g z C = fold_image times h z C") |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
928 |
apply simp |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
929 |
apply (erule finite_induct, simp) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
930 |
apply (simp add: subset_insert_iff, clarify) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
931 |
apply (subgoal_tac "finite C") |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
932 |
prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl]) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
933 |
apply (subgoal_tac "C = insert x (C - {x})") |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
934 |
prefer 2 apply blast |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
935 |
apply (erule ssubst) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
936 |
apply (drule spec) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
937 |
apply (erule (1) notE impE) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
938 |
apply (simp add: Ball_def del: insert_Diff_single) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
939 |
done |
15392 | 940 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
941 |
end |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
942 |
|
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
943 |
context comm_monoid_mult |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
944 |
begin |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
945 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
946 |
lemma fold_image_1: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
947 |
"finite S \<Longrightarrow> (\<forall>x\<in>S. f x = 1) \<Longrightarrow> fold_image op * f 1 S = 1" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
948 |
apply (induct set: finite) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
949 |
apply simp by auto |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
950 |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
951 |
lemma fold_image_Un_Int: |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
952 |
"finite A ==> finite B ==> |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
953 |
fold_image times g 1 A * fold_image times g 1 B = |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
954 |
fold_image times g 1 (A Un B) * fold_image times g 1 (A Int B)" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
955 |
by (induct set: finite) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
956 |
(auto simp add: mult_ac insert_absorb Int_insert_left) |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
957 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
958 |
lemma fold_image_Un_one: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
959 |
assumes fS: "finite S" and fT: "finite T" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
960 |
and I0: "\<forall>x \<in> S\<inter>T. f x = 1" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
961 |
shows "fold_image (op *) f 1 (S \<union> T) = fold_image (op *) f 1 S * fold_image (op *) f 1 T" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
962 |
proof- |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
963 |
have "fold_image op * f 1 (S \<inter> T) = 1" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
964 |
apply (rule fold_image_1) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
965 |
using fS fT I0 by auto |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
966 |
with fold_image_Un_Int[OF fS fT] show ?thesis by simp |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
967 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
968 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
969 |
corollary fold_Un_disjoint: |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
970 |
"finite A ==> finite B ==> A Int B = {} ==> |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
971 |
fold_image times g 1 (A Un B) = |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
972 |
fold_image times g 1 A * fold_image times g 1 B" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
973 |
by (simp add: fold_image_Un_Int) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
974 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
975 |
lemma fold_image_UN_disjoint: |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
976 |
"\<lbrakk> finite I; ALL i:I. finite (A i); |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
977 |
ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {} \<rbrakk> |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
978 |
\<Longrightarrow> fold_image times g 1 (UNION I A) = |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
979 |
fold_image times (%i. fold_image times g 1 (A i)) 1 I" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
980 |
apply (induct set: finite, simp, atomize) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
981 |
apply (subgoal_tac "ALL i:F. x \<noteq> i") |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
982 |
prefer 2 apply blast |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
983 |
apply (subgoal_tac "A x Int UNION F A = {}") |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
984 |
prefer 2 apply blast |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
985 |
apply (simp add: fold_Un_disjoint) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
986 |
done |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
987 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
988 |
lemma fold_image_Sigma: "finite A ==> ALL x:A. finite (B x) ==> |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
989 |
fold_image times (%x. fold_image times (g x) 1 (B x)) 1 A = |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
990 |
fold_image times (split g) 1 (SIGMA x:A. B x)" |
15392 | 991 |
apply (subst Sigma_def) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
992 |
apply (subst fold_image_UN_disjoint, assumption, simp) |
15392 | 993 |
apply blast |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
994 |
apply (erule fold_image_cong) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
995 |
apply (subst fold_image_UN_disjoint, simp, simp) |
15392 | 996 |
apply blast |
15506 | 997 |
apply simp |
15392 | 998 |
done |
999 |
||
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1000 |
lemma fold_image_distrib: "finite A \<Longrightarrow> |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1001 |
fold_image times (%x. g x * h x) 1 A = |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1002 |
fold_image times g 1 A * fold_image times h 1 A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1003 |
by (erule finite_induct) (simp_all add: mult_ac) |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1004 |
|
30260
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1005 |
lemma fold_image_related: |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1006 |
assumes Re: "R e e" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1007 |
and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1008 |
and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1009 |
shows "R (fold_image (op *) h e S) (fold_image (op *) g e S)" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1010 |
using fS by (rule finite_subset_induct) (insert assms, auto) |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1011 |
|
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1012 |
lemma fold_image_eq_general: |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1013 |
assumes fS: "finite S" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1014 |
and h: "\<forall>y\<in>S'. \<exists>!x. x\<in> S \<and> h(x) = y" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1015 |
and f12: "\<forall>x\<in>S. h x \<in> S' \<and> f2(h x) = f1 x" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1016 |
shows "fold_image (op *) f1 e S = fold_image (op *) f2 e S'" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1017 |
proof- |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1018 |
from h f12 have hS: "h ` S = S'" by auto |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1019 |
{fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1020 |
from f12 h H have "x = y" by auto } |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1021 |
hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1022 |
from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1023 |
from hS have "fold_image (op *) f2 e S' = fold_image (op *) f2 e (h ` S)" by simp |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1024 |
also have "\<dots> = fold_image (op *) (f2 o h) e S" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1025 |
using fold_image_reindex[OF fS hinj, of f2 e] . |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1026 |
also have "\<dots> = fold_image (op *) f1 e S " using th fold_image_cong[OF fS, of "f2 o h" f1 e] |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1027 |
by blast |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1028 |
finally show ?thesis .. |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1029 |
qed |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1030 |
|
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1031 |
lemma fold_image_eq_general_inverses: |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1032 |
assumes fS: "finite S" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1033 |
and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1034 |
and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = f x" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1035 |
shows "fold_image (op *) f e S = fold_image (op *) g e T" |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1036 |
(* metis solves it, but not yet available here *) |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1037 |
apply (rule fold_image_eq_general[OF fS, of T h g f e]) |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1038 |
apply (rule ballI) |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1039 |
apply (frule kh) |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1040 |
apply (rule ex1I[]) |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1041 |
apply blast |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1042 |
apply clarsimp |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1043 |
apply (drule hk) apply simp |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1044 |
apply (rule sym) |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1045 |
apply (erule conjunct1[OF conjunct2[OF hk]]) |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1046 |
apply (rule ballI) |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1047 |
apply (drule hk) |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1048 |
apply blast |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1049 |
done |
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
chaieb
parents:
29966
diff
changeset
|
1050 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1051 |
end |
22917 | 1052 |
|
25162 | 1053 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1054 |
subsection {* A fold functional for non-empty sets *} |
15392 | 1055 |
|
1056 |
text{* Does not require start value. *} |
|
12396 | 1057 |
|
23736 | 1058 |
inductive |
22262 | 1059 |
fold1Set :: "('a => 'a => 'a) => 'a set => 'a => bool" |
1060 |
for f :: "'a => 'a => 'a" |
|
1061 |
where |
|
15506 | 1062 |
fold1Set_insertI [intro]: |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1063 |
"\<lbrakk> fold_graph f a A x; a \<notin> A \<rbrakk> \<Longrightarrow> fold1Set f (insert a A) x" |
12396 | 1064 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35267
diff
changeset
|
1065 |
definition fold1 :: "('a => 'a => 'a) => 'a set => 'a" where |
22262 | 1066 |
"fold1 f A == THE x. fold1Set f A x" |
15506 | 1067 |
|
1068 |
lemma fold1Set_nonempty: |
|
22917 | 1069 |
"fold1Set f A x \<Longrightarrow> A \<noteq> {}" |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1070 |
by(erule fold1Set.cases, simp_all) |
15392 | 1071 |
|
23736 | 1072 |
inductive_cases empty_fold1SetE [elim!]: "fold1Set f {} x" |
1073 |
||
1074 |
inductive_cases insert_fold1SetE [elim!]: "fold1Set f (insert a X) x" |
|
22262 | 1075 |
|
1076 |
||
1077 |
lemma fold1Set_sing [iff]: "(fold1Set f {a} b) = (a = b)" |
|
35216 | 1078 |
by (blast elim: fold_graph.cases) |
15392 | 1079 |
|
22917 | 1080 |
lemma fold1_singleton [simp]: "fold1 f {a} = a" |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1081 |
by (unfold fold1_def) blast |
12396 | 1082 |
|
15508 | 1083 |
lemma finite_nonempty_imp_fold1Set: |
22262 | 1084 |
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> EX x. fold1Set f A x" |
15508 | 1085 |
apply (induct A rule: finite_induct) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1086 |
apply (auto dest: finite_imp_fold_graph [of _ f]) |
15508 | 1087 |
done |
15506 | 1088 |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1089 |
text{*First, some lemmas about @{const fold_graph}.*} |
15392 | 1090 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1091 |
context ab_semigroup_mult |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1092 |
begin |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1093 |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1094 |
lemma fun_left_comm: "fun_left_comm(op *)" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1095 |
by unfold_locales (simp add: mult_ac) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1096 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1097 |
lemma fold_graph_insert_swap: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1098 |
assumes fold: "fold_graph times (b::'a) A y" and "b \<notin> A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1099 |
shows "fold_graph times z (insert b A) (z * y)" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1100 |
proof - |
29223 | 1101 |
interpret fun_left_comm "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule fun_left_comm) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1102 |
from assms show ?thesis |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1103 |
proof (induct rule: fold_graph.induct) |
36045 | 1104 |
case emptyI show ?case by (subst mult_commute [of z b], fast) |
15508 | 1105 |
next |
22262 | 1106 |
case (insertI x A y) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1107 |
have "fold_graph times z (insert x (insert b A)) (x * (z * y))" |
15521 | 1108 |
using insertI by force --{*how does @{term id} get unfolded?*} |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1109 |
thus ?case by (simp add: insert_commute mult_ac) |
15508 | 1110 |
qed |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1111 |
qed |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1112 |
|
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1113 |
lemma fold_graph_permute_diff: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1114 |
assumes fold: "fold_graph times b A x" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1115 |
shows "!!a. \<lbrakk>a \<in> A; b \<notin> A\<rbrakk> \<Longrightarrow> fold_graph times a (insert b (A-{a})) x" |
15508 | 1116 |
using fold |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1117 |
proof (induct rule: fold_graph.induct) |
15508 | 1118 |
case emptyI thus ?case by simp |
1119 |
next |
|
22262 | 1120 |
case (insertI x A y) |
15521 | 1121 |
have "a = x \<or> a \<in> A" using insertI by simp |
1122 |
thus ?case |
|
1123 |
proof |
|
1124 |
assume "a = x" |
|
1125 |
with insertI show ?thesis |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1126 |
by (simp add: id_def [symmetric], blast intro: fold_graph_insert_swap) |
15521 | 1127 |
next |
1128 |
assume ainA: "a \<in> A" |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1129 |
hence "fold_graph times a (insert x (insert b (A - {a}))) (x * y)" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1130 |
using insertI by force |
15521 | 1131 |
moreover |
1132 |
have "insert x (insert b (A - {a})) = insert b (insert x A - {a})" |
|
1133 |
using ainA insertI by blast |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1134 |
ultimately show ?thesis by simp |
15508 | 1135 |
qed |
1136 |
qed |
|
1137 |
||
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1138 |
lemma fold1_eq_fold: |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1139 |
assumes "finite A" "a \<notin> A" shows "fold1 times (insert a A) = fold times a A" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1140 |
proof - |
29223 | 1141 |
interpret fun_left_comm "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule fun_left_comm) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1142 |
from assms show ?thesis |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1143 |
apply (simp add: fold1_def fold_def) |
15508 | 1144 |
apply (rule the_equality) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1145 |
apply (best intro: fold_graph_determ theI dest: finite_imp_fold_graph [of _ times]) |
15508 | 1146 |
apply (rule sym, clarify) |
1147 |
apply (case_tac "Aa=A") |
|
35216 | 1148 |
apply (best intro: fold_graph_determ) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1149 |
apply (subgoal_tac "fold_graph times a A x") |
35216 | 1150 |
apply (best intro: fold_graph_determ) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1151 |
apply (subgoal_tac "insert aa (Aa - {a}) = A") |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1152 |
prefer 2 apply (blast elim: equalityE) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1153 |
apply (auto dest: fold_graph_permute_diff [where a=a]) |
15508 | 1154 |
done |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1155 |
qed |
15508 | 1156 |
|
15521 | 1157 |
lemma nonempty_iff: "(A \<noteq> {}) = (\<exists>x B. A = insert x B & x \<notin> B)" |
1158 |
apply safe |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1159 |
apply simp |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1160 |
apply (drule_tac x=x in spec) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1161 |
apply (drule_tac x="A-{x}" in spec, auto) |
15508 | 1162 |
done |
1163 |
||
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1164 |
lemma fold1_insert: |
15521 | 1165 |
assumes nonempty: "A \<noteq> {}" and A: "finite A" "x \<notin> A" |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1166 |
shows "fold1 times (insert x A) = x * fold1 times A" |
15521 | 1167 |
proof - |
29223 | 1168 |
interpret fun_left_comm "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule fun_left_comm) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1169 |
from nonempty obtain a A' where "A = insert a A' & a ~: A'" |
15521 | 1170 |
by (auto simp add: nonempty_iff) |
1171 |
with A show ?thesis |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1172 |
by (simp add: insert_commute [of x] fold1_eq_fold eq_commute) |
15521 | 1173 |
qed |
1174 |
||
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1175 |
end |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1176 |
|
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1177 |
context ab_semigroup_idem_mult |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1178 |
begin |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1179 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1180 |
lemma fun_left_comm_idem: "fun_left_comm_idem(op *)" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1181 |
apply unfold_locales |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1182 |
apply (rule mult_left_commute) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1183 |
apply (rule mult_left_idem) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1184 |
done |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1185 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1186 |
lemma fold1_insert_idem [simp]: |
15521 | 1187 |
assumes nonempty: "A \<noteq> {}" and A: "finite A" |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1188 |
shows "fold1 times (insert x A) = x * fold1 times A" |
15521 | 1189 |
proof - |
29223 | 1190 |
interpret fun_left_comm_idem "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1191 |
by (rule fun_left_comm_idem) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1192 |
from nonempty obtain a A' where A': "A = insert a A' & a ~: A'" |
15521 | 1193 |
by (auto simp add: nonempty_iff) |
1194 |
show ?thesis |
|
1195 |
proof cases |
|
1196 |
assume "a = x" |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1197 |
thus ?thesis |
15521 | 1198 |
proof cases |
1199 |
assume "A' = {}" |
|
35216 | 1200 |
with prems show ?thesis by simp |
15521 | 1201 |
next |
1202 |
assume "A' \<noteq> {}" |
|
1203 |
with prems show ?thesis |
|
35216 | 1204 |
by (simp add: fold1_insert mult_assoc [symmetric]) |
15521 | 1205 |
qed |
1206 |
next |
|
1207 |
assume "a \<noteq> x" |
|
1208 |
with prems show ?thesis |
|
35216 | 1209 |
by (simp add: insert_commute fold1_eq_fold) |
15521 | 1210 |
qed |
1211 |
qed |
|
15506 | 1212 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1213 |
lemma hom_fold1_commute: |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1214 |
assumes hom: "!!x y. h (x * y) = h x * h y" |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1215 |
and N: "finite N" "N \<noteq> {}" shows "h (fold1 times N) = fold1 times (h ` N)" |
22917 | 1216 |
using N proof (induct rule: finite_ne_induct) |
1217 |
case singleton thus ?case by simp |
|
1218 |
next |
|
1219 |
case (insert n N) |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1220 |
then have "h (fold1 times (insert n N)) = h (n * fold1 times N)" by simp |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1221 |
also have "\<dots> = h n * h (fold1 times N)" by(rule hom) |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1222 |
also have "h (fold1 times N) = fold1 times (h ` N)" by(rule insert) |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1223 |
also have "times (h n) \<dots> = fold1 times (insert (h n) (h ` N))" |
22917 | 1224 |
using insert by(simp) |
1225 |
also have "insert (h n) (h ` N) = h ` insert n N" by simp |
|
1226 |
finally show ?case . |
|
1227 |
qed |
|
1228 |
||
32679 | 1229 |
lemma fold1_eq_fold_idem: |
1230 |
assumes "finite A" |
|
1231 |
shows "fold1 times (insert a A) = fold times a A" |
|
1232 |
proof (cases "a \<in> A") |
|
1233 |
case False |
|
1234 |
with assms show ?thesis by (simp add: fold1_eq_fold) |
|
1235 |
next |
|
1236 |
interpret fun_left_comm_idem times by (fact fun_left_comm_idem) |
|
1237 |
case True then obtain b B |
|
1238 |
where A: "A = insert a B" and "a \<notin> B" by (rule set_insert) |
|
1239 |
with assms have "finite B" by auto |
|
1240 |
then have "fold times a (insert a B) = fold times (a * a) B" |
|
1241 |
using `a \<notin> B` by (rule fold_insert2) |
|
1242 |
then show ?thesis |
|
1243 |
using `a \<notin> B` `finite B` by (simp add: fold1_eq_fold A) |
|
1244 |
qed |
|
1245 |
||
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1246 |
end |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1247 |
|
15506 | 1248 |
|
15508 | 1249 |
text{* Now the recursion rules for definitions: *} |
1250 |
||
22917 | 1251 |
lemma fold1_singleton_def: "g = fold1 f \<Longrightarrow> g {a} = a" |
35216 | 1252 |
by simp |
15508 | 1253 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1254 |
lemma (in ab_semigroup_mult) fold1_insert_def: |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1255 |
"\<lbrakk> g = fold1 times; finite A; x \<notin> A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g (insert x A) = x * g A" |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1256 |
by (simp add:fold1_insert) |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1257 |
|
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1258 |
lemma (in ab_semigroup_idem_mult) fold1_insert_idem_def: |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1259 |
"\<lbrakk> g = fold1 times; finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g (insert x A) = x * g A" |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1260 |
by simp |
15508 | 1261 |
|
1262 |
subsubsection{* Determinacy for @{term fold1Set} *} |
|
1263 |
||
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1264 |
(*Not actually used!!*) |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1265 |
(* |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1266 |
context ab_semigroup_mult |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1267 |
begin |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1268 |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1269 |
lemma fold_graph_permute: |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1270 |
"[|fold_graph times id b (insert a A) x; a \<notin> A; b \<notin> A|] |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1271 |
==> fold_graph times id a (insert b A) x" |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1272 |
apply (cases "a=b") |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1273 |
apply (auto dest: fold_graph_permute_diff) |
15506 | 1274 |
done |
15376 | 1275 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1276 |
lemma fold1Set_determ: |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1277 |
"fold1Set times A x ==> fold1Set times A y ==> y = x" |
15506 | 1278 |
proof (clarify elim!: fold1Set.cases) |
1279 |
fix A x B y a b |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1280 |
assume Ax: "fold_graph times id a A x" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1281 |
assume By: "fold_graph times id b B y" |
15506 | 1282 |
assume anotA: "a \<notin> A" |
1283 |
assume bnotB: "b \<notin> B" |
|
1284 |
assume eq: "insert a A = insert b B" |
|
1285 |
show "y=x" |
|
1286 |
proof cases |
|
1287 |
assume same: "a=b" |
|
1288 |
hence "A=B" using anotA bnotB eq by (blast elim!: equalityE) |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1289 |
thus ?thesis using Ax By same by (blast intro: fold_graph_determ) |
15392 | 1290 |
next |
15506 | 1291 |
assume diff: "a\<noteq>b" |
1292 |
let ?D = "B - {a}" |
|
1293 |
have B: "B = insert a ?D" and A: "A = insert b ?D" |
|
1294 |
and aB: "a \<in> B" and bA: "b \<in> A" |
|
1295 |
using eq anotA bnotB diff by (blast elim!:equalityE)+ |
|
1296 |
with aB bnotB By |
|
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1297 |
have "fold_graph times id a (insert b ?D) y" |
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1298 |
by (auto intro: fold_graph_permute simp add: insert_absorb) |
15506 | 1299 |
moreover |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1300 |
have "fold_graph times id a (insert b ?D) x" |
15506 | 1301 |
by (simp add: A [symmetric] Ax) |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1302 |
ultimately show ?thesis by (blast intro: fold_graph_determ) |
15392 | 1303 |
qed |
12396 | 1304 |
qed |
1305 |
||
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1306 |
lemma fold1Set_equality: "fold1Set times A y ==> fold1 times A = y" |
15506 | 1307 |
by (unfold fold1_def) (blast intro: fold1Set_determ) |
1308 |
||
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1309 |
end |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1310 |
*) |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1311 |
|
15506 | 1312 |
declare |
28853
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
nipkow
parents:
28823
diff
changeset
|
1313 |
empty_fold_graphE [rule del] fold_graph.intros [rule del] |
15506 | 1314 |
empty_fold1SetE [rule del] insert_fold1SetE [rule del] |
19931
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
ballarin
parents:
19870
diff
changeset
|
1315 |
-- {* No more proofs involve these relations. *} |
15376 | 1316 |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1317 |
subsubsection {* Lemmas about @{text fold1} *} |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1318 |
|
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1319 |
context ab_semigroup_mult |
22917 | 1320 |
begin |
1321 |
||
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1322 |
lemma fold1_Un: |
15484 | 1323 |
assumes A: "finite A" "A \<noteq> {}" |
1324 |
shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow> A Int B = {} \<Longrightarrow> |
|
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1325 |
fold1 times (A Un B) = fold1 times A * fold1 times B" |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1326 |
using A by (induct rule: finite_ne_induct) |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1327 |
(simp_all add: fold1_insert mult_assoc) |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1328 |
|
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1329 |
lemma fold1_in: |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1330 |
assumes A: "finite (A)" "A \<noteq> {}" and elem: "\<And>x y. x * y \<in> {x,y}" |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1331 |
shows "fold1 times A \<in> A" |
15484 | 1332 |
using A |
1333 |
proof (induct rule:finite_ne_induct) |
|
15506 | 1334 |
case singleton thus ?case by simp |
15484 | 1335 |
next |
1336 |
case insert thus ?case using elem by (force simp add:fold1_insert) |
|
1337 |
qed |
|
1338 |
||
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1339 |
end |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1340 |
|
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1341 |
lemma (in ab_semigroup_idem_mult) fold1_Un2: |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1342 |
assumes A: "finite A" "A \<noteq> {}" |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1343 |
shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow> |
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1344 |
fold1 times (A Un B) = fold1 times A * fold1 times B" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1345 |
using A |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1346 |
proof(induct rule:finite_ne_induct) |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1347 |
case singleton thus ?case by simp |
15484 | 1348 |
next |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25571
diff
changeset
|
1349 |
case insert thus ?case by (simp add: mult_assoc) |
18423 | 1350 |
qed |
1351 |
||
1352 |
||
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1353 |
subsection {* Locales as mini-packages for fold operations *} |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
33960
diff
changeset
|
1354 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1355 |
subsubsection {* The natural case *} |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1356 |
|
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1357 |
locale folding = |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1358 |
fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1359 |
fixes F :: "'a set \<Rightarrow> 'b \<Rightarrow> 'b" |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1360 |
assumes commute_comp: "f y \<circ> f x = f x \<circ> f y" |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1361 |
assumes eq_fold: "finite A \<Longrightarrow> F A s = fold f s A" |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1362 |
begin |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1363 |
|
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1364 |
lemma empty [simp]: |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1365 |
"F {} = id" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1366 |
by (simp add: eq_fold expand_fun_eq) |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1367 |
|
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1368 |
lemma insert [simp]: |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1369 |
assumes "finite A" and "x \<notin> A" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1370 |
shows "F (insert x A) = F A \<circ> f x" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1371 |
proof - |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1372 |
interpret fun_left_comm f proof |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1373 |
qed (insert commute_comp, simp add: expand_fun_eq) |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1374 |
from fold_insert2 assms |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1375 |
have "\<And>s. fold f s (insert x A) = fold f (f x s) A" . |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1376 |
with `finite A` show ?thesis by (simp add: eq_fold expand_fun_eq) |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1377 |
qed |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1378 |
|
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1379 |
lemma remove: |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1380 |
assumes "finite A" and "x \<in> A" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1381 |
shows "F A = F (A - {x}) \<circ> f x" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1382 |
proof - |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1383 |
from `x \<in> A` obtain B where A: "A = insert x B" and "x \<notin> B" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1384 |
by (auto dest: mk_disjoint_insert) |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1385 |
moreover from `finite A` this have "finite B" by simp |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1386 |
ultimately show ?thesis by simp |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1387 |
qed |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1388 |
|
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1389 |
lemma insert_remove: |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1390 |
assumes "finite A" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1391 |
shows "F (insert x A) = F (A - {x}) \<circ> f x" |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1392 |
using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb) |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1393 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1394 |
lemma commute_left_comp: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1395 |
"f y \<circ> (f x \<circ> g) = f x \<circ> (f y \<circ> g)" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1396 |
by (simp add: o_assoc commute_comp) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1397 |
|
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1398 |
lemma commute_comp': |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1399 |
assumes "finite A" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1400 |
shows "f x \<circ> F A = F A \<circ> f x" |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1401 |
using assms by (induct A) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1402 |
(simp, simp del: o_apply add: o_assoc, simp del: o_apply add: o_assoc [symmetric] commute_comp) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1403 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1404 |
lemma commute_left_comp': |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1405 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1406 |
shows "f x \<circ> (F A \<circ> g) = F A \<circ> (f x \<circ> g)" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1407 |
using assms by (simp add: o_assoc commute_comp') |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1408 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1409 |
lemma commute_comp'': |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1410 |
assumes "finite A" and "finite B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1411 |
shows "F B \<circ> F A = F A \<circ> F B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1412 |
using assms by (induct A) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1413 |
(simp_all add: o_assoc, simp add: o_assoc [symmetric] commute_comp') |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1414 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1415 |
lemma commute_left_comp'': |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1416 |
assumes "finite A" and "finite B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1417 |
shows "F B \<circ> (F A \<circ> g) = F A \<circ> (F B \<circ> g)" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1418 |
using assms by (simp add: o_assoc commute_comp'') |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1419 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1420 |
lemmas commute_comps = o_assoc [symmetric] commute_comp commute_left_comp |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1421 |
commute_comp' commute_left_comp' commute_comp'' commute_left_comp'' |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1422 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1423 |
lemma union_inter: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1424 |
assumes "finite A" and "finite B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1425 |
shows "F (A \<union> B) \<circ> F (A \<inter> B) = F A \<circ> F B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1426 |
using assms by (induct A) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1427 |
(simp_all del: o_apply add: insert_absorb Int_insert_left commute_comps, |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1428 |
simp add: o_assoc) |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1429 |
|
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1430 |
lemma union: |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1431 |
assumes "finite A" and "finite B" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1432 |
and "A \<inter> B = {}" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1433 |
shows "F (A \<union> B) = F A \<circ> F B" |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1434 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1435 |
from union_inter `finite A` `finite B` have "F (A \<union> B) \<circ> F (A \<inter> B) = F A \<circ> F B" . |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1436 |
with `A \<inter> B = {}` show ?thesis by simp |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1437 |
qed |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1438 |
|
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
33960
diff
changeset
|
1439 |
end |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1440 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1441 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1442 |
subsubsection {* The natural case with idempotency *} |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1443 |
|
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1444 |
locale folding_idem = folding + |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1445 |
assumes idem_comp: "f x \<circ> f x = f x" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1446 |
begin |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1447 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1448 |
lemma idem_left_comp: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1449 |
"f x \<circ> (f x \<circ> g) = f x \<circ> g" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1450 |
by (simp add: o_assoc idem_comp) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1451 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1452 |
lemma in_comp_idem: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1453 |
assumes "finite A" and "x \<in> A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1454 |
shows "F A \<circ> f x = F A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1455 |
using assms by (induct A) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1456 |
(auto simp add: commute_comps idem_comp, simp add: commute_left_comp' [symmetric] commute_comp') |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1457 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1458 |
lemma subset_comp_idem: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1459 |
assumes "finite A" and "B \<subseteq> A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1460 |
shows "F A \<circ> F B = F A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1461 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1462 |
from assms have "finite B" by (blast dest: finite_subset) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1463 |
then show ?thesis using `B \<subseteq> A` by (induct B) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1464 |
(simp_all add: o_assoc in_comp_idem `finite A`) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1465 |
qed |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1466 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1467 |
declare insert [simp del] |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1468 |
|
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1469 |
lemma insert_idem [simp]: |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1470 |
assumes "finite A" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1471 |
shows "F (insert x A) = F A \<circ> f x" |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1472 |
using assms by (cases "x \<in> A") (simp_all add: insert in_comp_idem insert_absorb) |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1473 |
|
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1474 |
lemma union_idem: |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1475 |
assumes "finite A" and "finite B" |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1476 |
shows "F (A \<union> B) = F A \<circ> F B" |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1477 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1478 |
from assms have "finite (A \<union> B)" and "A \<inter> B \<subseteq> A \<union> B" by auto |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1479 |
then have "F (A \<union> B) \<circ> F (A \<inter> B) = F (A \<union> B)" by (rule subset_comp_idem) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1480 |
with assms show ?thesis by (simp add: union_inter) |
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1481 |
qed |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1482 |
|
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1483 |
end |
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1484 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1485 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1486 |
subsubsection {* The image case with fixed function *} |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1487 |
|
35796 | 1488 |
no_notation times (infixl "*" 70) |
1489 |
no_notation Groups.one ("1") |
|
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1490 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1491 |
locale folding_image_simple = comm_monoid + |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1492 |
fixes g :: "('b \<Rightarrow> 'a)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1493 |
fixes F :: "'b set \<Rightarrow> 'a" |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1494 |
assumes eq_fold_g: "finite A \<Longrightarrow> F A = fold_image f g 1 A" |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1495 |
begin |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1496 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1497 |
lemma empty [simp]: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1498 |
"F {} = 1" |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1499 |
by (simp add: eq_fold_g) |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1500 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1501 |
lemma insert [simp]: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1502 |
assumes "finite A" and "x \<notin> A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1503 |
shows "F (insert x A) = g x * F A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1504 |
proof - |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1505 |
interpret fun_left_comm "%x y. (g x) * y" proof |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1506 |
qed (simp add: ac_simps) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1507 |
with assms have "fold_image (op *) g 1 (insert x A) = g x * fold_image (op *) g 1 A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1508 |
by (simp add: fold_image_def) |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1509 |
with `finite A` show ?thesis by (simp add: eq_fold_g) |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1510 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1511 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1512 |
lemma remove: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1513 |
assumes "finite A" and "x \<in> A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1514 |
shows "F A = g x * F (A - {x})" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1515 |
proof - |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1516 |
from `x \<in> A` obtain B where A: "A = insert x B" and "x \<notin> B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1517 |
by (auto dest: mk_disjoint_insert) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1518 |
moreover from `finite A` this have "finite B" by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1519 |
ultimately show ?thesis by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1520 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1521 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1522 |
lemma insert_remove: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1523 |
assumes "finite A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1524 |
shows "F (insert x A) = g x * F (A - {x})" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1525 |
using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1526 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1527 |
lemma neutral: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1528 |
assumes "finite A" and "\<forall>x\<in>A. g x = 1" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1529 |
shows "F A = 1" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1530 |
using assms by (induct A) simp_all |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1531 |
|
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1532 |
lemma union_inter: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1533 |
assumes "finite A" and "finite B" |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1534 |
shows "F (A \<union> B) * F (A \<inter> B) = F A * F B" |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1535 |
using assms proof (induct A) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1536 |
case empty then show ?case by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1537 |
next |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1538 |
case (insert x A) then show ?case |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1539 |
by (auto simp add: insert_absorb Int_insert_left commute [of _ "g x"] assoc left_commute) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1540 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1541 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1542 |
corollary union_inter_neutral: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1543 |
assumes "finite A" and "finite B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1544 |
and I0: "\<forall>x \<in> A\<inter>B. g x = 1" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1545 |
shows "F (A \<union> B) = F A * F B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1546 |
using assms by (simp add: union_inter [symmetric] neutral) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1547 |
|
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1548 |
corollary union_disjoint: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1549 |
assumes "finite A" and "finite B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1550 |
assumes "A \<inter> B = {}" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1551 |
shows "F (A \<union> B) = F A * F B" |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1552 |
using assms by (simp add: union_inter_neutral) |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1553 |
|
35719
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
haftmann
parents:
35577
diff
changeset
|
1554 |
end |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1555 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1556 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1557 |
subsubsection {* The image case with flexible function *} |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1558 |
|
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1559 |
locale folding_image = comm_monoid + |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1560 |
fixes F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1561 |
assumes eq_fold: "\<And>g. finite A \<Longrightarrow> F g A = fold_image f g 1 A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1562 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1563 |
sublocale folding_image < folding_image_simple "op *" 1 g "F g" proof |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1564 |
qed (fact eq_fold) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1565 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1566 |
context folding_image |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1567 |
begin |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1568 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1569 |
lemma reindex: (* FIXME polymorhism *) |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1570 |
assumes "finite A" and "inj_on h A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1571 |
shows "F g (h ` A) = F (g \<circ> h) A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1572 |
using assms by (induct A) auto |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1573 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1574 |
lemma cong: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1575 |
assumes "finite A" and "\<And>x. x \<in> A \<Longrightarrow> g x = h x" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1576 |
shows "F g A = F h A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1577 |
proof - |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1578 |
from assms have "ALL C. C <= A --> (ALL x:C. g x = h x) --> F g C = F h C" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1579 |
apply - apply (erule finite_induct) apply simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1580 |
apply (simp add: subset_insert_iff, clarify) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1581 |
apply (subgoal_tac "finite C") |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1582 |
prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl]) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1583 |
apply (subgoal_tac "C = insert x (C - {x})") |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1584 |
prefer 2 apply blast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1585 |
apply (erule ssubst) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1586 |
apply (drule spec) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1587 |
apply (erule (1) notE impE) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1588 |
apply (simp add: Ball_def del: insert_Diff_single) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1589 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1590 |
with assms show ?thesis by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1591 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1592 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1593 |
lemma UNION_disjoint: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1594 |
assumes "finite I" and "\<forall>i\<in>I. finite (A i)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1595 |
and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1596 |
shows "F g (UNION I A) = F (F g \<circ> A) I" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1597 |
apply (insert assms) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1598 |
apply (induct set: finite, simp, atomize) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1599 |
apply (subgoal_tac "\<forall>i\<in>Fa. x \<noteq> i") |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1600 |
prefer 2 apply blast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1601 |
apply (subgoal_tac "A x Int UNION Fa A = {}") |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1602 |
prefer 2 apply blast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1603 |
apply (simp add: union_disjoint) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1604 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1605 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1606 |
lemma distrib: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1607 |
assumes "finite A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1608 |
shows "F (\<lambda>x. g x * h x) A = F g A * F h A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1609 |
using assms by (rule finite_induct) (simp_all add: assoc commute left_commute) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1610 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1611 |
lemma related: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1612 |
assumes Re: "R 1 1" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1613 |
and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1614 |
and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1615 |
shows "R (F h S) (F g S)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1616 |
using fS by (rule finite_subset_induct) (insert assms, auto) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1617 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1618 |
lemma eq_general: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1619 |
assumes fS: "finite S" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1620 |
and h: "\<forall>y\<in>S'. \<exists>!x. x \<in> S \<and> h x = y" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1621 |
and f12: "\<forall>x\<in>S. h x \<in> S' \<and> f2 (h x) = f1 x" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1622 |
shows "F f1 S = F f2 S'" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1623 |
proof- |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1624 |
from h f12 have hS: "h ` S = S'" by blast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1625 |
{fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1626 |
from f12 h H have "x = y" by auto } |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1627 |
hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1628 |
from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1629 |
from hS have "F f2 S' = F f2 (h ` S)" by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1630 |
also have "\<dots> = F (f2 o h) S" using reindex [OF fS hinj, of f2] . |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1631 |
also have "\<dots> = F f1 S " using th cong [OF fS, of "f2 o h" f1] |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1632 |
by blast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1633 |
finally show ?thesis .. |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1634 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1635 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1636 |
lemma eq_general_inverses: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1637 |
assumes fS: "finite S" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1638 |
and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1639 |
and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = j x" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1640 |
shows "F j S = F g T" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1641 |
(* metis solves it, but not yet available here *) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1642 |
apply (rule eq_general [OF fS, of T h g j]) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1643 |
apply (rule ballI) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1644 |
apply (frule kh) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1645 |
apply (rule ex1I[]) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1646 |
apply blast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1647 |
apply clarsimp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1648 |
apply (drule hk) apply simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1649 |
apply (rule sym) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1650 |
apply (erule conjunct1[OF conjunct2[OF hk]]) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1651 |
apply (rule ballI) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1652 |
apply (drule hk) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1653 |
apply blast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1654 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1655 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1656 |
end |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1657 |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1658 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1659 |
subsubsection {* The image case with fixed function and idempotency *} |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1660 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1661 |
locale folding_image_simple_idem = folding_image_simple + |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1662 |
assumes idem: "x * x = x" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1663 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1664 |
sublocale folding_image_simple_idem < semilattice proof |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1665 |
qed (fact idem) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1666 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1667 |
context folding_image_simple_idem |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1668 |
begin |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1669 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1670 |
lemma in_idem: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1671 |
assumes "finite A" and "x \<in> A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1672 |
shows "g x * F A = F A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1673 |
using assms by (induct A) (auto simp add: left_commute) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1674 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1675 |
lemma subset_idem: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1676 |
assumes "finite A" and "B \<subseteq> A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1677 |
shows "F B * F A = F A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1678 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1679 |
from assms have "finite B" by (blast dest: finite_subset) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1680 |
then show ?thesis using `B \<subseteq> A` by (induct B) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1681 |
(auto simp add: assoc in_idem `finite A`) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1682 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1683 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1684 |
declare insert [simp del] |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1685 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1686 |
lemma insert_idem [simp]: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1687 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1688 |
shows "F (insert x A) = g x * F A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1689 |
using assms by (cases "x \<in> A") (simp_all add: insert in_idem insert_absorb) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1690 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1691 |
lemma union_idem: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1692 |
assumes "finite A" and "finite B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1693 |
shows "F (A \<union> B) = F A * F B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1694 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1695 |
from assms have "finite (A \<union> B)" and "A \<inter> B \<subseteq> A \<union> B" by auto |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1696 |
then have "F (A \<inter> B) * F (A \<union> B) = F (A \<union> B)" by (rule subset_idem) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1697 |
with assms show ?thesis by (simp add: union_inter [of A B, symmetric] commute) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1698 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1699 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1700 |
end |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1701 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1702 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1703 |
subsubsection {* The image case with flexible function and idempotency *} |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1704 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1705 |
locale folding_image_idem = folding_image + |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1706 |
assumes idem: "x * x = x" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1707 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1708 |
sublocale folding_image_idem < folding_image_simple_idem "op *" 1 g "F g" proof |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1709 |
qed (fact idem) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1710 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1711 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1712 |
subsubsection {* The neutral-less case *} |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1713 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1714 |
locale folding_one = abel_semigroup + |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1715 |
fixes F :: "'a set \<Rightarrow> 'a" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1716 |
assumes eq_fold: "finite A \<Longrightarrow> F A = fold1 f A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1717 |
begin |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1718 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1719 |
lemma singleton [simp]: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1720 |
"F {x} = x" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1721 |
by (simp add: eq_fold) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1722 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1723 |
lemma eq_fold': |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1724 |
assumes "finite A" and "x \<notin> A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1725 |
shows "F (insert x A) = fold (op *) x A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1726 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1727 |
interpret ab_semigroup_mult "op *" proof qed (simp_all add: ac_simps) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1728 |
with assms show ?thesis by (simp add: eq_fold fold1_eq_fold) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1729 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1730 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1731 |
lemma insert [simp]: |
36637 | 1732 |
assumes "finite A" and "x \<notin> A" and "A \<noteq> {}" |
1733 |
shows "F (insert x A) = x * F A" |
|
1734 |
proof - |
|
1735 |
from `A \<noteq> {}` obtain b where "b \<in> A" by blast |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1736 |
then obtain B where *: "A = insert b B" "b \<notin> B" by (blast dest: mk_disjoint_insert) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1737 |
with `finite A` have "finite B" by simp |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1738 |
interpret fold: folding "op *" "\<lambda>a b. fold (op *) b a" proof |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1739 |
qed (simp_all add: expand_fun_eq ac_simps) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1740 |
thm fold.commute_comp' [of B b, simplified expand_fun_eq, simplified] |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1741 |
from `finite B` fold.commute_comp' [of B x] |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1742 |
have "op * x \<circ> (\<lambda>b. fold op * b B) = (\<lambda>b. fold op * b B) \<circ> op * x" by simp |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1743 |
then have A: "x * fold op * b B = fold op * (b * x) B" by (simp add: expand_fun_eq commute) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1744 |
from `finite B` * fold.insert [of B b] |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1745 |
have "(\<lambda>x. fold op * x (insert b B)) = (\<lambda>x. fold op * x B) \<circ> op * b" by simp |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1746 |
then have B: "fold op * x (insert b B) = fold op * (b * x) B" by (simp add: expand_fun_eq) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1747 |
from A B assms * show ?thesis by (simp add: eq_fold' del: fold.insert) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1748 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1749 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1750 |
lemma remove: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1751 |
assumes "finite A" and "x \<in> A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1752 |
shows "F A = (if A - {x} = {} then x else x * F (A - {x}))" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1753 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1754 |
from assms obtain B where "A = insert x B" and "x \<notin> B" by (blast dest: mk_disjoint_insert) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1755 |
with assms show ?thesis by simp |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1756 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1757 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1758 |
lemma insert_remove: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1759 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1760 |
shows "F (insert x A) = (if A - {x} = {} then x else x * F (A - {x}))" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1761 |
using assms by (cases "x \<in> A") (simp_all add: insert_absorb remove) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1762 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1763 |
lemma union_disjoint: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1764 |
assumes "finite A" "A \<noteq> {}" and "finite B" "B \<noteq> {}" and "A \<inter> B = {}" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1765 |
shows "F (A \<union> B) = F A * F B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1766 |
using assms by (induct A rule: finite_ne_induct) (simp_all add: ac_simps) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1767 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1768 |
lemma union_inter: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1769 |
assumes "finite A" and "finite B" and "A \<inter> B \<noteq> {}" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1770 |
shows "F (A \<union> B) * F (A \<inter> B) = F A * F B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1771 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1772 |
from assms have "A \<noteq> {}" and "B \<noteq> {}" by auto |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1773 |
from `finite A` `A \<noteq> {}` `A \<inter> B \<noteq> {}` show ?thesis proof (induct A rule: finite_ne_induct) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1774 |
case (singleton x) then show ?case by (simp add: insert_absorb ac_simps) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1775 |
next |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1776 |
case (insert x A) show ?case proof (cases "x \<in> B") |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1777 |
case True then have "B \<noteq> {}" by auto |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1778 |
with insert True `finite B` show ?thesis by (cases "A \<inter> B = {}") |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1779 |
(simp_all add: insert_absorb ac_simps union_disjoint) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1780 |
next |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1781 |
case False with insert have "F (A \<union> B) * F (A \<inter> B) = F A * F B" by simp |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1782 |
moreover from False `finite B` insert have "finite (A \<union> B)" "x \<notin> A \<union> B" "A \<union> B \<noteq> {}" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1783 |
by auto |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1784 |
ultimately show ?thesis using False `finite A` `x \<notin> A` `A \<noteq> {}` by (simp add: assoc) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1785 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1786 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1787 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1788 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1789 |
lemma closed: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1790 |
assumes "finite A" "A \<noteq> {}" and elem: "\<And>x y. x * y \<in> {x, y}" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1791 |
shows "F A \<in> A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1792 |
using `finite A` `A \<noteq> {}` proof (induct rule: finite_ne_induct) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1793 |
case singleton then show ?case by simp |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1794 |
next |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1795 |
case insert with elem show ?case by force |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1796 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1797 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1798 |
end |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1799 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1800 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1801 |
subsubsection {* The neutral-less case with idempotency *} |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1802 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1803 |
locale folding_one_idem = folding_one + |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1804 |
assumes idem: "x * x = x" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1805 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1806 |
sublocale folding_one_idem < semilattice proof |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1807 |
qed (fact idem) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1808 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1809 |
context folding_one_idem |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1810 |
begin |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1811 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1812 |
lemma in_idem: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1813 |
assumes "finite A" and "x \<in> A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1814 |
shows "x * F A = F A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1815 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1816 |
from assms have "A \<noteq> {}" by auto |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1817 |
with `finite A` show ?thesis using `x \<in> A` by (induct A rule: finite_ne_induct) (auto simp add: ac_simps) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1818 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1819 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1820 |
lemma subset_idem: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1821 |
assumes "finite A" "B \<noteq> {}" and "B \<subseteq> A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1822 |
shows "F B * F A = F A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1823 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1824 |
from assms have "finite B" by (blast dest: finite_subset) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1825 |
then show ?thesis using `B \<noteq> {}` `B \<subseteq> A` by (induct B rule: finite_ne_induct) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1826 |
(simp_all add: assoc in_idem `finite A`) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1827 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1828 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1829 |
lemma eq_fold_idem': |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1830 |
assumes "finite A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1831 |
shows "F (insert a A) = fold (op *) a A" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1832 |
proof - |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1833 |
interpret ab_semigroup_idem_mult "op *" proof qed (simp_all add: ac_simps) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1834 |
with assms show ?thesis by (simp add: eq_fold fold1_eq_fold_idem) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1835 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1836 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1837 |
lemma insert_idem [simp]: |
36637 | 1838 |
assumes "finite A" and "A \<noteq> {}" |
1839 |
shows "F (insert x A) = x * F A" |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1840 |
proof (cases "x \<in> A") |
36637 | 1841 |
case False from `finite A` `x \<notin> A` `A \<noteq> {}` show ?thesis by (rule insert) |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1842 |
next |
36637 | 1843 |
case True |
1844 |
from `finite A` `A \<noteq> {}` show ?thesis by (simp add: in_idem insert_absorb True) |
|
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1845 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1846 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1847 |
lemma union_idem: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1848 |
assumes "finite A" "A \<noteq> {}" and "finite B" "B \<noteq> {}" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1849 |
shows "F (A \<union> B) = F A * F B" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1850 |
proof (cases "A \<inter> B = {}") |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1851 |
case True with assms show ?thesis by (simp add: union_disjoint) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1852 |
next |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1853 |
case False |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1854 |
from assms have "finite (A \<union> B)" and "A \<inter> B \<subseteq> A \<union> B" by auto |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1855 |
with False have "F (A \<inter> B) * F (A \<union> B) = F (A \<union> B)" by (auto intro: subset_idem) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1856 |
with assms False show ?thesis by (simp add: union_inter [of A B, symmetric] commute) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1857 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1858 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1859 |
lemma hom_commute: |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1860 |
assumes hom: "\<And>x y. h (x * y) = h x * h y" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1861 |
and N: "finite N" "N \<noteq> {}" shows "h (F N) = F (h ` N)" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1862 |
using N proof (induct rule: finite_ne_induct) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1863 |
case singleton thus ?case by simp |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1864 |
next |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1865 |
case (insert n N) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1866 |
then have "h (F (insert n N)) = h (n * F N)" by simp |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1867 |
also have "\<dots> = h n * h (F N)" by (rule hom) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1868 |
also have "h (F N) = F (h ` N)" by(rule insert) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1869 |
also have "h n * \<dots> = F (insert (h n) (h ` N))" |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1870 |
using insert by(simp) |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1871 |
also have "insert (h n) (h ` N) = h ` insert n N" by simp |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1872 |
finally show ?case . |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1873 |
qed |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1874 |
|
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1875 |
end |
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1876 |
|
35796 | 1877 |
notation times (infixl "*" 70) |
1878 |
notation Groups.one ("1") |
|
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1879 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1880 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1881 |
subsection {* Finite cardinality *} |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1882 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1883 |
text {* This definition, although traditional, is ugly to work with: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1884 |
@{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}. |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1885 |
But now that we have @{text fold_image} things are easy: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1886 |
*} |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1887 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1888 |
definition card :: "'a set \<Rightarrow> nat" where |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1889 |
"card A = (if finite A then fold_image (op +) (\<lambda>x. 1) 0 A else 0)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1890 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1891 |
interpretation card!: folding_image_simple "op +" 0 "\<lambda>x. 1" card proof |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1892 |
qed (simp add: card_def) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1893 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1894 |
lemma card_infinite [simp]: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1895 |
"\<not> finite A \<Longrightarrow> card A = 0" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1896 |
by (simp add: card_def) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1897 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1898 |
lemma card_empty: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1899 |
"card {} = 0" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1900 |
by (fact card.empty) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1901 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1902 |
lemma card_insert_disjoint: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1903 |
"finite A ==> x \<notin> A ==> card (insert x A) = Suc (card A)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1904 |
by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1905 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1906 |
lemma card_insert_if: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1907 |
"finite A ==> card (insert x A) = (if x \<in> A then card A else Suc (card A))" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1908 |
by auto (simp add: card.insert_remove card.remove) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1909 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1910 |
lemma card_ge_0_finite: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1911 |
"card A > 0 \<Longrightarrow> finite A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1912 |
by (rule ccontr) simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1913 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35796
diff
changeset
|
1914 |
lemma card_0_eq [simp, no_atp]: |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1915 |
"finite A \<Longrightarrow> card A = 0 \<longleftrightarrow> A = {}" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1916 |
by (auto dest: mk_disjoint_insert) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1917 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1918 |
lemma finite_UNIV_card_ge_0: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1919 |
"finite (UNIV :: 'a set) \<Longrightarrow> card (UNIV :: 'a set) > 0" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1920 |
by (rule ccontr) simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1921 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1922 |
lemma card_eq_0_iff: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1923 |
"card A = 0 \<longleftrightarrow> A = {} \<or> \<not> finite A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1924 |
by auto |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1925 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1926 |
lemma card_gt_0_iff: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1927 |
"0 < card A \<longleftrightarrow> A \<noteq> {} \<and> finite A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1928 |
by (simp add: neq0_conv [symmetric] card_eq_0_iff) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1929 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1930 |
lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1931 |
apply(rule_tac t = A in insert_Diff [THEN subst], assumption) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1932 |
apply(simp del:insert_Diff_single) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1933 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1934 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1935 |
lemma card_Diff_singleton: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1936 |
"finite A ==> x: A ==> card (A - {x}) = card A - 1" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1937 |
by (simp add: card_Suc_Diff1 [symmetric]) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1938 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1939 |
lemma card_Diff_singleton_if: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1940 |
"finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1941 |
by (simp add: card_Diff_singleton) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1942 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1943 |
lemma card_Diff_insert[simp]: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1944 |
assumes "finite A" and "a:A" and "a ~: B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1945 |
shows "card(A - insert a B) = card(A - B) - 1" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1946 |
proof - |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1947 |
have "A - insert a B = (A - B) - {a}" using assms by blast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1948 |
then show ?thesis using assms by(simp add:card_Diff_singleton) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1949 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1950 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1951 |
lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1952 |
by (simp add: card_insert_if card_Suc_Diff1 del:card_Diff_insert) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1953 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1954 |
lemma card_insert_le: "finite A ==> card A <= card (insert x A)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1955 |
by (simp add: card_insert_if) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1956 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1957 |
lemma card_mono: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1958 |
assumes "finite B" and "A \<subseteq> B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1959 |
shows "card A \<le> card B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1960 |
proof - |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1961 |
from assms have "finite A" by (auto intro: finite_subset) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1962 |
then show ?thesis using assms proof (induct A arbitrary: B) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1963 |
case empty then show ?case by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1964 |
next |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1965 |
case (insert x A) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1966 |
then have "x \<in> B" by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1967 |
from insert have "A \<subseteq> B - {x}" and "finite (B - {x})" by auto |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1968 |
with insert.hyps have "card A \<le> card (B - {x})" by auto |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1969 |
with `finite A` `x \<notin> A` `finite B` `x \<in> B` show ?case by simp (simp only: card.remove) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1970 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1971 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1972 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1973 |
lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1974 |
apply (induct set: finite, simp, clarify) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1975 |
apply (subgoal_tac "finite A & A - {x} <= F") |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1976 |
prefer 2 apply (blast intro: finite_subset, atomize) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1977 |
apply (drule_tac x = "A - {x}" in spec) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1978 |
apply (simp add: card_Diff_singleton_if split add: split_if_asm) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1979 |
apply (case_tac "card A", auto) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1980 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1981 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1982 |
lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1983 |
apply (simp add: psubset_eq linorder_not_le [symmetric]) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1984 |
apply (blast dest: card_seteq) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1985 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1986 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1987 |
lemma card_Un_Int: "finite A ==> finite B |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1988 |
==> card A + card B = card (A Un B) + card (A Int B)" |
35817
d8b8527102f5
added locales folding_one_(idem); various streamlining and tuning
haftmann
parents:
35796
diff
changeset
|
1989 |
by (fact card.union_inter [symmetric]) |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1990 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1991 |
lemma card_Un_disjoint: "finite A ==> finite B |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1992 |
==> A Int B = {} ==> card (A Un B) = card A + card B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1993 |
by (fact card.union_disjoint) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1994 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1995 |
lemma card_Diff_subset: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1996 |
assumes "finite B" and "B \<subseteq> A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1997 |
shows "card (A - B) = card A - card B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1998 |
proof (cases "finite A") |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
1999 |
case False with assms show ?thesis by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2000 |
next |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2001 |
case True with assms show ?thesis by (induct B arbitrary: A) simp_all |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2002 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2003 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2004 |
lemma card_Diff_subset_Int: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2005 |
assumes AB: "finite (A \<inter> B)" shows "card (A - B) = card A - card (A \<inter> B)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2006 |
proof - |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2007 |
have "A - B = A - A \<inter> B" by auto |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2008 |
thus ?thesis |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2009 |
by (simp add: card_Diff_subset AB) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2010 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2011 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2012 |
lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2013 |
apply (rule Suc_less_SucD) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2014 |
apply (simp add: card_Suc_Diff1 del:card_Diff_insert) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2015 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2016 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2017 |
lemma card_Diff2_less: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2018 |
"finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2019 |
apply (case_tac "x = y") |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2020 |
apply (simp add: card_Diff1_less del:card_Diff_insert) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2021 |
apply (rule less_trans) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2022 |
prefer 2 apply (auto intro!: card_Diff1_less simp del:card_Diff_insert) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2023 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2024 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2025 |
lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2026 |
apply (case_tac "x : A") |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2027 |
apply (simp_all add: card_Diff1_less less_imp_le) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2028 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2029 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2030 |
lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2031 |
by (erule psubsetI, blast) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2032 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2033 |
lemma insert_partition: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2034 |
"\<lbrakk> x \<notin> F; \<forall>c1 \<in> insert x F. \<forall>c2 \<in> insert x F. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {} \<rbrakk> |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2035 |
\<Longrightarrow> x \<inter> \<Union> F = {}" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2036 |
by auto |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2037 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2038 |
lemma finite_psubset_induct[consumes 1, case_names psubset]: |
36079
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2039 |
assumes fin: "finite A" |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2040 |
and major: "\<And>A. finite A \<Longrightarrow> (\<And>B. B \<subset> A \<Longrightarrow> P B) \<Longrightarrow> P A" |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2041 |
shows "P A" |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2042 |
using fin |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2043 |
proof (induct A taking: card rule: measure_induct_rule) |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2044 |
case (less A) |
36079
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2045 |
have fin: "finite A" by fact |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2046 |
have ih: "\<And>B. \<lbrakk>card B < card A; finite B\<rbrakk> \<Longrightarrow> P B" by fact |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2047 |
{ fix B |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2048 |
assume asm: "B \<subset> A" |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2049 |
from asm have "card B < card A" using psubset_card_mono fin by blast |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2050 |
moreover |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2051 |
from asm have "B \<subseteq> A" by auto |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2052 |
then have "finite B" using fin finite_subset by blast |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2053 |
ultimately |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2054 |
have "P B" using ih by simp |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2055 |
} |
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
Christian Urban <urbanc@in.tum.de>
parents:
36045
diff
changeset
|
2056 |
with fin show "P A" using major by blast |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2057 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2058 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2059 |
text{* main cardinality theorem *} |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2060 |
lemma card_partition [rule_format]: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2061 |
"finite C ==> |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2062 |
finite (\<Union> C) --> |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2063 |
(\<forall>c\<in>C. card c = k) --> |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2064 |
(\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 --> c1 \<inter> c2 = {}) --> |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2065 |
k * card(C) = card (\<Union> C)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2066 |
apply (erule finite_induct, simp) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2067 |
apply (simp add: card_Un_disjoint insert_partition |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2068 |
finite_subset [of _ "\<Union> (insert x F)"]) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2069 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2070 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2071 |
lemma card_eq_UNIV_imp_eq_UNIV: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2072 |
assumes fin: "finite (UNIV :: 'a set)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2073 |
and card: "card A = card (UNIV :: 'a set)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2074 |
shows "A = (UNIV :: 'a set)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2075 |
proof |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2076 |
show "A \<subseteq> UNIV" by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2077 |
show "UNIV \<subseteq> A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2078 |
proof |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2079 |
fix x |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2080 |
show "x \<in> A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2081 |
proof (rule ccontr) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2082 |
assume "x \<notin> A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2083 |
then have "A \<subset> UNIV" by auto |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2084 |
with fin have "card A < card (UNIV :: 'a set)" by (fact psubset_card_mono) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2085 |
with card show False by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2086 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2087 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2088 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2089 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2090 |
text{*The form of a finite set of given cardinality*} |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2091 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2092 |
lemma card_eq_SucD: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2093 |
assumes "card A = Suc k" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2094 |
shows "\<exists>b B. A = insert b B & b \<notin> B & card B = k & (k=0 \<longrightarrow> B={})" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2095 |
proof - |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2096 |
have fin: "finite A" using assms by (auto intro: ccontr) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2097 |
moreover have "card A \<noteq> 0" using assms by auto |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2098 |
ultimately obtain b where b: "b \<in> A" by auto |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2099 |
show ?thesis |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2100 |
proof (intro exI conjI) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2101 |
show "A = insert b (A-{b})" using b by blast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2102 |
show "b \<notin> A - {b}" by blast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2103 |
show "card (A - {b}) = k" and "k = 0 \<longrightarrow> A - {b} = {}" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2104 |
using assms b fin by(fastsimp dest:mk_disjoint_insert)+ |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2105 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2106 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2107 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2108 |
lemma card_Suc_eq: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2109 |
"(card A = Suc k) = |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2110 |
(\<exists>b B. A = insert b B & b \<notin> B & card B = k & (k=0 \<longrightarrow> B={}))" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2111 |
apply(rule iffI) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2112 |
apply(erule card_eq_SucD) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2113 |
apply(auto) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2114 |
apply(subst card_insert) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2115 |
apply(auto intro:ccontr) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2116 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2117 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2118 |
lemma finite_fun_UNIVD2: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2119 |
assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2120 |
shows "finite (UNIV :: 'b set)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2121 |
proof - |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2122 |
from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary))" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2123 |
by(rule finite_imageI) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2124 |
moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2125 |
by(rule UNIV_eq_I) auto |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2126 |
ultimately show "finite (UNIV :: 'b set)" by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2127 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2128 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2129 |
lemma card_UNIV_unit: "card (UNIV :: unit set) = 1" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2130 |
unfolding UNIV_unit by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2131 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2132 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2133 |
subsubsection {* Cardinality of image *} |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2134 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2135 |
lemma card_image_le: "finite A ==> card (f ` A) <= card A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2136 |
apply (induct set: finite) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2137 |
apply simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2138 |
apply (simp add: le_SucI card_insert_if) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2139 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2140 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2141 |
lemma card_image: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2142 |
assumes "inj_on f A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2143 |
shows "card (f ` A) = card A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2144 |
proof (cases "finite A") |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2145 |
case True then show ?thesis using assms by (induct A) simp_all |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2146 |
next |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2147 |
case False then have "\<not> finite (f ` A)" using assms by (auto dest: finite_imageD) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2148 |
with False show ?thesis by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2149 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2150 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2151 |
lemma bij_betw_same_card: "bij_betw f A B \<Longrightarrow> card A = card B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2152 |
by(auto simp: card_image bij_betw_def) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2153 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2154 |
lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2155 |
by (simp add: card_seteq card_image) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2156 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2157 |
lemma eq_card_imp_inj_on: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2158 |
"[| finite A; card(f ` A) = card A |] ==> inj_on f A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2159 |
apply (induct rule:finite_induct) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2160 |
apply simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2161 |
apply(frule card_image_le[where f = f]) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2162 |
apply(simp add:card_insert_if split:if_splits) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2163 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2164 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2165 |
lemma inj_on_iff_eq_card: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2166 |
"finite A ==> inj_on f A = (card(f ` A) = card A)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2167 |
by(blast intro: card_image eq_card_imp_inj_on) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2168 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2169 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2170 |
lemma card_inj_on_le: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2171 |
"[|inj_on f A; f ` A \<subseteq> B; finite B |] ==> card A \<le> card B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2172 |
apply (subgoal_tac "finite A") |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2173 |
apply (force intro: card_mono simp add: card_image [symmetric]) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2174 |
apply (blast intro: finite_imageD dest: finite_subset) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2175 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2176 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2177 |
lemma card_bij_eq: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2178 |
"[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A; |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2179 |
finite A; finite B |] ==> card A = card B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2180 |
by (auto intro: le_antisym card_inj_on_le) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2181 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2182 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2183 |
subsubsection {* Cardinality of sums *} |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2184 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2185 |
lemma card_Plus: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2186 |
assumes "finite A" and "finite B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2187 |
shows "card (A <+> B) = card A + card B" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2188 |
proof - |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2189 |
have "Inl`A \<inter> Inr`B = {}" by fast |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2190 |
with assms show ?thesis |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2191 |
unfolding Plus_def |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2192 |
by (simp add: card_Un_disjoint card_image) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2193 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2194 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2195 |
lemma card_Plus_conv_if: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2196 |
"card (A <+> B) = (if finite A \<and> finite B then card A + card B else 0)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2197 |
by (auto simp add: card_Plus) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2198 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2199 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2200 |
subsubsection {* Cardinality of the Powerset *} |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2201 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2202 |
lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A" (* FIXME numeral 2 (!?) *) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2203 |
apply (induct set: finite) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2204 |
apply (simp_all add: Pow_insert) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2205 |
apply (subst card_Un_disjoint, blast) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2206 |
apply (blast intro: finite_imageI, blast) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2207 |
apply (subgoal_tac "inj_on (insert x) (Pow F)") |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2208 |
apply (simp add: card_image Pow_insert) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2209 |
apply (unfold inj_on_def) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2210 |
apply (blast elim!: equalityE) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2211 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2212 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2213 |
text {* Relates to equivalence classes. Based on a theorem of F. Kammüller. *} |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2214 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2215 |
lemma dvd_partition: |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2216 |
"finite (Union C) ==> |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2217 |
ALL c : C. k dvd card c ==> |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2218 |
(ALL c1: C. ALL c2: C. c1 \<noteq> c2 --> c1 Int c2 = {}) ==> |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2219 |
k dvd card (Union C)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2220 |
apply(frule finite_UnionD) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2221 |
apply(rotate_tac -1) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2222 |
apply (induct set: finite, simp_all, clarify) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2223 |
apply (subst card_Un_disjoint) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2224 |
apply (auto simp add: disjoint_eq_subset_Compl) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2225 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2226 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2227 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2228 |
subsubsection {* Relating injectivity and surjectivity *} |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2229 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2230 |
lemma finite_surj_inj: "finite(A) \<Longrightarrow> A <= f`A \<Longrightarrow> inj_on f A" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2231 |
apply(rule eq_card_imp_inj_on, assumption) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2232 |
apply(frule finite_imageI) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2233 |
apply(drule (1) card_seteq) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2234 |
apply(erule card_image_le) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2235 |
apply simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2236 |
done |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2237 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2238 |
lemma finite_UNIV_surj_inj: fixes f :: "'a \<Rightarrow> 'a" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2239 |
shows "finite(UNIV:: 'a set) \<Longrightarrow> surj f \<Longrightarrow> inj f" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2240 |
by (blast intro: finite_surj_inj subset_UNIV dest:surj_range) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2241 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2242 |
lemma finite_UNIV_inj_surj: fixes f :: "'a \<Rightarrow> 'a" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2243 |
shows "finite(UNIV:: 'a set) \<Longrightarrow> inj f \<Longrightarrow> surj f" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2244 |
by(fastsimp simp:surj_def dest!: endo_inj_surj) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2245 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2246 |
corollary infinite_UNIV_nat[iff]: "~finite(UNIV::nat set)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2247 |
proof |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2248 |
assume "finite(UNIV::nat set)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2249 |
with finite_UNIV_inj_surj[of Suc] |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2250 |
show False by simp (blast dest: Suc_neq_Zero surjD) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2251 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2252 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35796
diff
changeset
|
2253 |
(* Often leads to bogus ATP proofs because of reduced type information, hence no_atp *) |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35796
diff
changeset
|
2254 |
lemma infinite_UNIV_char_0[no_atp]: |
35722
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2255 |
"\<not> finite (UNIV::'a::semiring_char_0 set)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2256 |
proof |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2257 |
assume "finite (UNIV::'a set)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2258 |
with subset_UNIV have "finite (range of_nat::'a set)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2259 |
by (rule finite_subset) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2260 |
moreover have "inj (of_nat::nat \<Rightarrow> 'a)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2261 |
by (simp add: inj_on_def) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2262 |
ultimately have "finite (UNIV::nat set)" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2263 |
by (rule finite_imageD) |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2264 |
then show "False" |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2265 |
by simp |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2266 |
qed |
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2267 |
|
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
haftmann
parents:
35719
diff
changeset
|
2268 |
end |