| 
14442
 | 
     1  | 
(*  Title:      HOL/Infnite_Set.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Stefan Merz 
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
header {* Infnite Sets and Related Concepts*}
 | 
| 
 | 
     7  | 
  | 
| 
14485
 | 
     8  | 
theory Infinite_Set = Hilbert_Choice + Finite_Set + SetInterval:
  | 
| 
14442
 | 
     9  | 
  | 
| 
 | 
    10  | 
subsection "Infinite Sets"
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
text {* Some elementary facts about infinite sets, by Stefan Merz. *}
 | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
syntax
  | 
| 
 | 
    15  | 
  infinite :: "'a set \<Rightarrow> bool"
  | 
| 
 | 
    16  | 
translations
  | 
| 
 | 
    17  | 
  "infinite S" == "S \<notin> Finites"
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
text {*
 | 
| 
 | 
    20  | 
  Infinite sets are non-empty, and if we remove some elements
  | 
| 
 | 
    21  | 
  from an infinite set, the result is still infinite.
  | 
| 
 | 
    22  | 
*}
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
lemma infinite_nonempty:
  | 
| 
 | 
    25  | 
  "\<not> (infinite {})"
 | 
| 
 | 
    26  | 
by simp
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma infinite_remove:
  | 
| 
 | 
    29  | 
  "infinite S \<Longrightarrow> infinite (S - {a})"
 | 
| 
 | 
    30  | 
by simp
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
lemma Diff_infinite_finite:
  | 
| 
 | 
    33  | 
  assumes T: "finite T" and S: "infinite S"
  | 
| 
 | 
    34  | 
  shows "infinite (S-T)"
  | 
| 
 | 
    35  | 
using T
  | 
| 
 | 
    36  | 
proof (induct)
  | 
| 
 | 
    37  | 
  from S
  | 
| 
 | 
    38  | 
  show "infinite (S - {})" by auto
 | 
| 
 | 
    39  | 
next
  | 
| 
 | 
    40  | 
  fix T x
  | 
| 
 | 
    41  | 
  assume ih: "infinite (S-T)"
  | 
| 
 | 
    42  | 
  have "S - (insert x T) = (S-T) - {x}"
 | 
| 
 | 
    43  | 
    by (rule Diff_insert)
  | 
| 
 | 
    44  | 
  with ih
  | 
| 
 | 
    45  | 
  show "infinite (S - (insert x T))"
  | 
| 
 | 
    46  | 
    by (simp add: infinite_remove)
  | 
| 
 | 
    47  | 
qed
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
lemma Un_infinite:
  | 
| 
 | 
    50  | 
  "infinite S \<Longrightarrow> infinite (S \<union> T)"
  | 
| 
 | 
    51  | 
by simp
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
lemma infinite_super:
  | 
| 
 | 
    54  | 
  assumes T: "S \<subseteq> T" and S: "infinite S"
  | 
| 
 | 
    55  | 
  shows "infinite T"
  | 
| 
 | 
    56  | 
proof (rule ccontr)
  | 
| 
 | 
    57  | 
  assume "\<not>(infinite T)"
  | 
| 
 | 
    58  | 
  with T
  | 
| 
 | 
    59  | 
  have "finite S" by (simp add: finite_subset)
  | 
| 
 | 
    60  | 
  with S
  | 
| 
 | 
    61  | 
  show False by simp
  | 
| 
 | 
    62  | 
qed
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
text {*
 | 
| 
 | 
    65  | 
  As a concrete example, we prove that the set of natural
  | 
| 
 | 
    66  | 
  numbers is infinite.
  | 
| 
 | 
    67  | 
*}
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
lemma finite_nat_bounded:
  | 
| 
 | 
    70  | 
  assumes S: "finite (S::nat set)"
  | 
| 
 | 
    71  | 
  shows "\<exists>k. S \<subseteq> {..k(}" (is "\<exists>k. ?bounded S k")
 | 
| 
 | 
    72  | 
using S
  | 
| 
 | 
    73  | 
proof (induct)
  | 
| 
 | 
    74  | 
  have "?bounded {} 0" by simp
 | 
| 
 | 
    75  | 
  thus "\<exists>k. ?bounded {} k" ..
 | 
| 
 | 
    76  | 
next
  | 
| 
 | 
    77  | 
  fix S x
  | 
| 
 | 
    78  | 
  assume "\<exists>k. ?bounded S k"
  | 
| 
 | 
    79  | 
  then obtain k where k: "?bounded S k" ..
  | 
| 
 | 
    80  | 
  show "\<exists>k. ?bounded (insert x S) k"
  | 
| 
 | 
    81  | 
  proof (cases "x<k")
  | 
| 
 | 
    82  | 
    case True
  | 
| 
 | 
    83  | 
    with k show ?thesis by auto
  | 
| 
 | 
    84  | 
  next
  | 
| 
 | 
    85  | 
    case False
  | 
| 
 | 
    86  | 
    with k have "?bounded S (Suc x)" by auto
  | 
| 
 | 
    87  | 
    thus ?thesis by auto
  | 
| 
 | 
    88  | 
  qed
  | 
| 
 | 
    89  | 
qed
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
lemma finite_nat_iff_bounded:
  | 
| 
 | 
    92  | 
  "finite (S::nat set) = (\<exists>k. S \<subseteq> {..k(})" (is "?lhs = ?rhs")
 | 
| 
 | 
    93  | 
proof
  | 
| 
 | 
    94  | 
  assume ?lhs
  | 
| 
 | 
    95  | 
  thus ?rhs by (rule finite_nat_bounded)
  | 
| 
 | 
    96  | 
next
  | 
| 
 | 
    97  | 
  assume ?rhs
  | 
| 
 | 
    98  | 
  then obtain k where "S \<subseteq> {..k(}" ..
 | 
| 
 | 
    99  | 
  thus "finite S"
  | 
| 
 | 
   100  | 
    by (rule finite_subset, simp)
  | 
| 
 | 
   101  | 
qed
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
lemma finite_nat_iff_bounded_le:
  | 
| 
 | 
   104  | 
  "finite (S::nat set) = (\<exists>k. S \<subseteq> {..k})" (is "?lhs = ?rhs")
 | 
| 
 | 
   105  | 
proof
  | 
| 
 | 
   106  | 
  assume ?lhs
  | 
| 
 | 
   107  | 
  then obtain k where "S \<subseteq> {..k(}" 
 | 
| 
 | 
   108  | 
    by (blast dest: finite_nat_bounded)
  | 
| 
 | 
   109  | 
  hence "S \<subseteq> {..k}" by auto
 | 
| 
 | 
   110  | 
  thus ?rhs ..
  | 
| 
 | 
   111  | 
next
  | 
| 
 | 
   112  | 
  assume ?rhs
  | 
| 
 | 
   113  | 
  then obtain k where "S \<subseteq> {..k}" ..
 | 
| 
 | 
   114  | 
  thus "finite S"
  | 
| 
 | 
   115  | 
    by (rule finite_subset, simp)
  | 
| 
 | 
   116  | 
qed
  | 
| 
 | 
   117  | 
  | 
| 
 | 
   118  | 
lemma infinite_nat_iff_unbounded:
  | 
| 
 | 
   119  | 
  "infinite (S::nat set) = (\<forall>m. \<exists>n. m<n \<and> n\<in>S)"
  | 
| 
 | 
   120  | 
  (is "?lhs = ?rhs")
  | 
| 
 | 
   121  | 
proof
  | 
| 
 | 
   122  | 
  assume inf: ?lhs
  | 
| 
 | 
   123  | 
  show ?rhs
  | 
| 
 | 
   124  | 
  proof (rule ccontr)
  | 
| 
 | 
   125  | 
    assume "\<not> ?rhs"
  | 
| 
 | 
   126  | 
    then obtain m where m: "\<forall>n. m<n \<longrightarrow> n\<notin>S" by blast
  | 
| 
 | 
   127  | 
    hence "S \<subseteq> {..m}"
 | 
| 
 | 
   128  | 
      by (auto simp add: sym[OF not_less_iff_le])
  | 
| 
 | 
   129  | 
    with inf show "False" 
  | 
| 
 | 
   130  | 
      by (simp add: finite_nat_iff_bounded_le)
  | 
| 
 | 
   131  | 
  qed
  | 
| 
 | 
   132  | 
next
  | 
| 
 | 
   133  | 
  assume unbounded: ?rhs
  | 
| 
 | 
   134  | 
  show ?lhs
  | 
| 
 | 
   135  | 
  proof
  | 
| 
 | 
   136  | 
    assume "finite S"
  | 
| 
 | 
   137  | 
    then obtain m where "S \<subseteq> {..m}"
 | 
| 
 | 
   138  | 
      by (auto simp add: finite_nat_iff_bounded_le)
  | 
| 
 | 
   139  | 
    hence "\<forall>n. m<n \<longrightarrow> n\<notin>S" by auto
  | 
| 
 | 
   140  | 
    with unbounded show "False" by blast
  | 
| 
 | 
   141  | 
  qed
  | 
| 
 | 
   142  | 
qed
  | 
| 
 | 
   143  | 
  | 
| 
 | 
   144  | 
lemma infinite_nat_iff_unbounded_le:
  | 
| 
 | 
   145  | 
  "infinite (S::nat set) = (\<forall>m. \<exists>n. m\<le>n \<and> n\<in>S)"
  | 
| 
 | 
   146  | 
  (is "?lhs = ?rhs")
  | 
| 
 | 
   147  | 
proof
  | 
| 
 | 
   148  | 
  assume inf: ?lhs
  | 
| 
 | 
   149  | 
  show ?rhs
  | 
| 
 | 
   150  | 
  proof
  | 
| 
 | 
   151  | 
    fix m
  | 
| 
 | 
   152  | 
    from inf obtain n where "m<n \<and> n\<in>S"
  | 
| 
 | 
   153  | 
      by (auto simp add: infinite_nat_iff_unbounded)
  | 
| 
 | 
   154  | 
    hence "m\<le>n \<and> n\<in>S" by auto
  | 
| 
 | 
   155  | 
    thus "\<exists>n. m \<le> n \<and> n \<in> S" ..
  | 
| 
 | 
   156  | 
  qed
  | 
| 
 | 
   157  | 
next
  | 
| 
 | 
   158  | 
  assume unbounded: ?rhs
  | 
| 
 | 
   159  | 
  show ?lhs
  | 
| 
 | 
   160  | 
  proof (auto simp add: infinite_nat_iff_unbounded)
  | 
| 
 | 
   161  | 
    fix m
  | 
| 
 | 
   162  | 
    from unbounded obtain n where "(Suc m)\<le>n \<and> n\<in>S"
  | 
| 
 | 
   163  | 
      by blast
  | 
| 
 | 
   164  | 
    hence "m<n \<and> n\<in>S" by auto
  | 
| 
 | 
   165  | 
    thus "\<exists>n. m < n \<and> n \<in> S" ..
  | 
| 
 | 
   166  | 
  qed
  | 
| 
 | 
   167  | 
qed
  | 
| 
 | 
   168  | 
  | 
| 
 | 
   169  | 
text {*
 | 
| 
 | 
   170  | 
  For a set of natural numbers to be infinite, it is enough
  | 
| 
 | 
   171  | 
  to know that for any number larger than some $k$, there
  | 
| 
 | 
   172  | 
  is some larger number that is an element of the set.
  | 
| 
 | 
   173  | 
*}
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
lemma unbounded_k_infinite:
  | 
| 
 | 
   176  | 
  assumes k: "\<forall>m. k<m \<longrightarrow> (\<exists>n. m<n \<and> n\<in>S)"
  | 
| 
 | 
   177  | 
  shows "infinite (S::nat set)"
  | 
| 
 | 
   178  | 
proof (auto simp add: infinite_nat_iff_unbounded)
  | 
| 
 | 
   179  | 
  fix m show "\<exists>n. m<n \<and> n\<in>S"
  | 
| 
 | 
   180  | 
  proof (cases "k<m")
  | 
| 
 | 
   181  | 
    case True
  | 
| 
 | 
   182  | 
    with k show ?thesis by blast
  | 
| 
 | 
   183  | 
  next
  | 
| 
 | 
   184  | 
    case False
  | 
| 
 | 
   185  | 
    from k obtain n where "Suc k < n \<and> n\<in>S" by auto
  | 
| 
 | 
   186  | 
    with False have "m<n \<and> n\<in>S" by auto
  | 
| 
 | 
   187  | 
    thus ?thesis ..
  | 
| 
 | 
   188  | 
  qed
  | 
| 
 | 
   189  | 
qed
  | 
| 
 | 
   190  | 
  | 
| 
 | 
   191  | 
theorem nat_infinite [simp]:
  | 
| 
 | 
   192  | 
  "infinite (UNIV :: nat set)"
  | 
| 
 | 
   193  | 
by (auto simp add: infinite_nat_iff_unbounded)
  | 
| 
 | 
   194  | 
  | 
| 
 | 
   195  | 
theorem nat_not_finite [elim]:
  | 
| 
 | 
   196  | 
  "finite (UNIV::nat set) \<Longrightarrow> R"
  | 
| 
 | 
   197  | 
by simp
  | 
| 
 | 
   198  | 
  | 
| 
 | 
   199  | 
text {*
 | 
| 
 | 
   200  | 
  Every infinite set contains a countable subset. More precisely
  | 
| 
 | 
   201  | 
  we show that a set $S$ is infinite if and only if there exists 
  | 
| 
 | 
   202  | 
  an injective function from the naturals into $S$.
  | 
| 
 | 
   203  | 
*}
  | 
| 
 | 
   204  | 
  | 
| 
 | 
   205  | 
lemma range_inj_infinite:
  | 
| 
 | 
   206  | 
  "inj (f::nat \<Rightarrow> 'a) \<Longrightarrow> infinite (range f)"
  | 
| 
 | 
   207  | 
proof
  | 
| 
 | 
   208  | 
  assume "inj f"
  | 
| 
 | 
   209  | 
    and  "finite (range f)"
  | 
| 
 | 
   210  | 
  hence "finite (UNIV::nat set)"
  | 
| 
 | 
   211  | 
    by (auto intro: finite_imageD simp del: nat_infinite)
  | 
| 
 | 
   212  | 
  thus "False" by simp
  | 
| 
 | 
   213  | 
qed
  | 
| 
 | 
   214  | 
  | 
| 
 | 
   215  | 
text {*
 | 
| 
 | 
   216  | 
  The ``only if'' direction is harder because it requires the
  | 
| 
 | 
   217  | 
  construction of a sequence of pairwise different elements of
  | 
| 
 | 
   218  | 
  an infinite set $S$. The idea is to construct a sequence of
  | 
| 
 | 
   219  | 
  non-empty and infinite subsets of $S$ obtained by successively
  | 
| 
 | 
   220  | 
  removing elements of $S$.
  | 
| 
 | 
   221  | 
*}
  | 
| 
 | 
   222  | 
  | 
| 
 | 
   223  | 
lemma linorder_injI:
  | 
| 
 | 
   224  | 
  assumes hyp: "\<forall>x y. x < (y::'a::linorder) \<longrightarrow> f x \<noteq> f y"
  | 
| 
 | 
   225  | 
  shows "inj f"
  | 
| 
 | 
   226  | 
proof (rule inj_onI)
  | 
| 
 | 
   227  | 
  fix x y
  | 
| 
 | 
   228  | 
  assume f_eq: "f x = f y"
  | 
| 
 | 
   229  | 
  show "x = y"
  | 
| 
 | 
   230  | 
  proof (rule linorder_cases)
  | 
| 
 | 
   231  | 
    assume "x < y"
  | 
| 
 | 
   232  | 
    with hyp have "f x \<noteq> f y" by blast
  | 
| 
 | 
   233  | 
    with f_eq show ?thesis by simp
  | 
| 
 | 
   234  | 
  next
  | 
| 
 | 
   235  | 
    assume "x = y"
  | 
| 
 | 
   236  | 
    thus ?thesis .
  | 
| 
 | 
   237  | 
  next
  | 
| 
 | 
   238  | 
    assume "y < x"
  | 
| 
 | 
   239  | 
    with hyp have "f y \<noteq> f x" by blast
  | 
| 
 | 
   240  | 
    with f_eq show ?thesis by simp
  | 
| 
 | 
   241  | 
  qed
  | 
| 
 | 
   242  | 
qed
  | 
| 
 | 
   243  | 
  | 
| 
 | 
   244  | 
lemma infinite_countable_subset:
  | 
| 
 | 
   245  | 
  assumes inf: "infinite (S::'a set)"
  | 
| 
 | 
   246  | 
  shows "\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S"
  | 
| 
 | 
   247  | 
proof -
  | 
| 
 | 
   248  | 
  def Sseq \<equiv> "nat_rec S (\<lambda>n T. T - {\<epsilon> e. e \<in> T})"
 | 
| 
 | 
   249  | 
  def pick \<equiv> "\<lambda>n. (\<epsilon> e. e \<in> Sseq n)"
  | 
| 
 | 
   250  | 
  have Sseq_inf: "\<And>n. infinite (Sseq n)"
  | 
| 
 | 
   251  | 
  proof -
  | 
| 
 | 
   252  | 
    fix n
  | 
| 
 | 
   253  | 
    show "infinite (Sseq n)"
  | 
| 
 | 
   254  | 
    proof (induct n)
  | 
| 
 | 
   255  | 
      from inf show "infinite (Sseq 0)"
  | 
| 
 | 
   256  | 
	by (simp add: Sseq_def)
  | 
| 
 | 
   257  | 
    next
  | 
| 
 | 
   258  | 
      fix n
  | 
| 
 | 
   259  | 
      assume "infinite (Sseq n)" thus "infinite (Sseq (Suc n))"
  | 
| 
 | 
   260  | 
	by (simp add: Sseq_def infinite_remove)
  | 
| 
 | 
   261  | 
    qed
  | 
| 
 | 
   262  | 
  qed
  | 
| 
 | 
   263  | 
  have Sseq_S: "\<And>n. Sseq n \<subseteq> S"
  | 
| 
 | 
   264  | 
  proof -
  | 
| 
 | 
   265  | 
    fix n
  | 
| 
 | 
   266  | 
    show "Sseq n \<subseteq> S"
  | 
| 
 | 
   267  | 
      by (induct n, auto simp add: Sseq_def)
  | 
| 
 | 
   268  | 
  qed
  | 
| 
 | 
   269  | 
  have Sseq_pick: "\<And>n. pick n \<in> Sseq n"
  | 
| 
 | 
   270  | 
  proof -
  | 
| 
 | 
   271  | 
    fix n
  | 
| 
 | 
   272  | 
    show "pick n \<in> Sseq n"
  | 
| 
 | 
   273  | 
    proof (unfold pick_def, rule someI_ex)
  | 
| 
 | 
   274  | 
      from Sseq_inf have "infinite (Sseq n)" .
  | 
| 
 | 
   275  | 
      hence "Sseq n \<noteq> {}" by auto
 | 
| 
 | 
   276  | 
      thus "\<exists>x. x \<in> Sseq n" by auto
  | 
| 
 | 
   277  | 
    qed
  | 
| 
 | 
   278  | 
  qed
  | 
| 
 | 
   279  | 
  with Sseq_S have rng: "range pick \<subseteq> S"
  | 
| 
 | 
   280  | 
    by auto
  | 
| 
 | 
   281  | 
  have pick_Sseq_gt: "\<And>n m. pick n \<notin> Sseq (n + Suc m)"
  | 
| 
 | 
   282  | 
  proof -
  | 
| 
 | 
   283  | 
    fix n m
  | 
| 
 | 
   284  | 
    show "pick n \<notin> Sseq (n + Suc m)"
  | 
| 
 | 
   285  | 
      by (induct m, auto simp add: Sseq_def pick_def)
  | 
| 
 | 
   286  | 
  qed
  | 
| 
 | 
   287  | 
  have pick_pick: "\<And>n m. pick n \<noteq> pick (n + Suc m)"
  | 
| 
 | 
   288  | 
  proof -
  | 
| 
 | 
   289  | 
    fix n m
  | 
| 
 | 
   290  | 
    from Sseq_pick have "pick (n + Suc m) \<in> Sseq (n + Suc m)" .
  | 
| 
 | 
   291  | 
    moreover from pick_Sseq_gt
  | 
| 
 | 
   292  | 
    have "pick n \<notin> Sseq (n + Suc m)" .
  | 
| 
 | 
   293  | 
    ultimately show "pick n \<noteq> pick (n + Suc m)"
  | 
| 
 | 
   294  | 
      by auto
  | 
| 
 | 
   295  | 
  qed
  | 
| 
 | 
   296  | 
  have inj: "inj pick"
  | 
| 
 | 
   297  | 
  proof (rule linorder_injI)
  | 
| 
 | 
   298  | 
    show "\<forall>i j. i<(j::nat) \<longrightarrow> pick i \<noteq> pick j"
  | 
| 
 | 
   299  | 
    proof (clarify)
  | 
| 
 | 
   300  | 
      fix i j
  | 
| 
 | 
   301  | 
      assume ij: "i<(j::nat)"
  | 
| 
 | 
   302  | 
	and eq: "pick i = pick j"
  | 
| 
 | 
   303  | 
      from ij obtain k where "j = i + (Suc k)"
  | 
| 
 | 
   304  | 
	by (auto simp add: less_iff_Suc_add)
  | 
| 
 | 
   305  | 
      with pick_pick have "pick i \<noteq> pick j" by simp
  | 
| 
 | 
   306  | 
      with eq show "False" by simp
  | 
| 
 | 
   307  | 
    qed
  | 
| 
 | 
   308  | 
  qed
  | 
| 
 | 
   309  | 
  from rng inj show ?thesis by auto
  | 
| 
 | 
   310  | 
qed
  | 
| 
 | 
   311  | 
  | 
| 
 | 
   312  | 
theorem infinite_iff_countable_subset:
  | 
| 
 | 
   313  | 
  "infinite S = (\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S)"
  | 
| 
 | 
   314  | 
  (is "?lhs = ?rhs")
  | 
| 
 | 
   315  | 
by (auto simp add: infinite_countable_subset
  | 
| 
 | 
   316  | 
                   range_inj_infinite infinite_super)
  | 
| 
 | 
   317  | 
  | 
| 
 | 
   318  | 
text {*
 | 
| 
 | 
   319  | 
  For any function with infinite domain and finite range
  | 
| 
 | 
   320  | 
  there is some element that is the image of infinitely
  | 
| 
 | 
   321  | 
  many domain elements. In particular, any infinite sequence
  | 
| 
 | 
   322  | 
  of elements from a finite set contains some element that
  | 
| 
 | 
   323  | 
  occurs infinitely often.
  | 
| 
 | 
   324  | 
*}
  | 
| 
 | 
   325  | 
  | 
| 
 | 
   326  | 
theorem inf_img_fin_dom:
  | 
| 
 | 
   327  | 
  assumes img: "finite (f`A)" and dom: "infinite A"
  | 
| 
 | 
   328  | 
  shows "\<exists>y \<in> f`A. infinite (f -` {y})"
 | 
| 
 | 
   329  | 
proof (rule ccontr)
  | 
| 
 | 
   330  | 
  assume "\<not> (\<exists>y\<in>f ` A. infinite (f -` {y}))"
 | 
| 
 | 
   331  | 
  with img have "finite (UN y:f`A. f -` {y})"
 | 
| 
 | 
   332  | 
    by (blast intro: finite_UN_I)
  | 
| 
 | 
   333  | 
  moreover have "A \<subseteq> (UN y:f`A. f -` {y})" by auto
 | 
| 
 | 
   334  | 
  moreover note dom
  | 
| 
 | 
   335  | 
  ultimately show "False"
  | 
| 
 | 
   336  | 
    by (simp add: infinite_super)
  | 
| 
 | 
   337  | 
qed
  | 
| 
 | 
   338  | 
  | 
| 
 | 
   339  | 
theorems inf_img_fin_domE = inf_img_fin_dom[THEN bexE]
  | 
| 
 | 
   340  | 
  | 
| 
 | 
   341  | 
  | 
| 
 | 
   342  | 
subsection "Infinitely Many and Almost All"
  | 
| 
 | 
   343  | 
  | 
| 
 | 
   344  | 
text {*
 | 
| 
 | 
   345  | 
  We often need to reason about the existence of infinitely many
  | 
| 
 | 
   346  | 
  (resp., all but finitely many) objects satisfying some predicate,
  | 
| 
 | 
   347  | 
  so we introduce corresponding binders and their proof rules.
  | 
| 
 | 
   348  | 
*}
  | 
| 
 | 
   349  | 
  | 
| 
 | 
   350  | 
consts
  | 
| 
 | 
   351  | 
  Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool"      (binder "INF " 10)
 | 
| 
 | 
   352  | 
  Alm_all  :: "('a \<Rightarrow> bool) \<Rightarrow> bool"      (binder "MOST " 10)
 | 
| 
 | 
   353  | 
  | 
| 
 | 
   354  | 
defs
  | 
| 
 | 
   355  | 
  INF_def:  "Inf_many P \<equiv> infinite {x. P x}"
 | 
| 
 | 
   356  | 
  MOST_def: "Alm_all P \<equiv> \<not>(INF x. \<not> P x)"
  | 
| 
 | 
   357  | 
  | 
| 
 | 
   358  | 
syntax (xsymbols)
  | 
| 
 | 
   359  | 
  "MOST " :: "[idts, bool] \<Rightarrow> bool"       ("(3\<forall>\<^sub>\<infinity>_./ _)" [0,10] 10)
 | 
| 
 | 
   360  | 
  "INF "    :: "[idts, bool] \<Rightarrow> bool"     ("(3\<exists>\<^sub>\<infinity>_./ _)" [0,10] 10)
 | 
| 
 | 
   361  | 
  | 
| 
 | 
   362  | 
lemma INF_EX:
  | 
| 
 | 
   363  | 
  "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)"
  | 
| 
 | 
   364  | 
proof (unfold INF_def, rule ccontr)
  | 
| 
 | 
   365  | 
  assume inf: "infinite {x. P x}"
 | 
| 
 | 
   366  | 
    and notP: "\<not>(\<exists>x. P x)"
  | 
| 
 | 
   367  | 
  from notP have "{x. P x} = {}" by simp
 | 
| 
 | 
   368  | 
  hence "finite {x. P x}" by simp
 | 
| 
 | 
   369  | 
  with inf show "False" by simp
  | 
| 
 | 
   370  | 
qed
  | 
| 
 | 
   371  | 
  | 
| 
 | 
   372  | 
lemma MOST_iff_finiteNeg:
  | 
| 
 | 
   373  | 
  "(\<forall>\<^sub>\<infinity>x. P x) = finite {x. \<not> P x}"
 | 
| 
 | 
   374  | 
by (simp add: MOST_def INF_def)
  | 
| 
 | 
   375  | 
  | 
| 
 | 
   376  | 
lemma ALL_MOST:
  | 
| 
 | 
   377  | 
  "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x"
  | 
| 
 | 
   378  | 
by (simp add: MOST_iff_finiteNeg)
  | 
| 
 | 
   379  | 
  | 
| 
 | 
   380  | 
lemma INF_mono:
  | 
| 
 | 
   381  | 
  assumes inf: "\<exists>\<^sub>\<infinity>x. P x" and q: "\<And>x. P x \<Longrightarrow> Q x"
  | 
| 
 | 
   382  | 
  shows "\<exists>\<^sub>\<infinity>x. Q x"
  | 
| 
 | 
   383  | 
proof -
  | 
| 
 | 
   384  | 
  from inf have "infinite {x. P x}" by (unfold INF_def)
 | 
| 
 | 
   385  | 
  moreover from q have "{x. P x} \<subseteq> {x. Q x}" by auto
 | 
| 
 | 
   386  | 
  ultimately show ?thesis
  | 
| 
 | 
   387  | 
    by (simp add: INF_def infinite_super)
  | 
| 
 | 
   388  | 
qed
  | 
| 
 | 
   389  | 
  | 
| 
 | 
   390  | 
lemma MOST_mono:
  | 
| 
 | 
   391  | 
  "\<lbrakk> \<forall>\<^sub>\<infinity>x. P x; \<And>x. P x \<Longrightarrow> Q x \<rbrakk> \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x"
  | 
| 
 | 
   392  | 
by (unfold MOST_def, blast intro: INF_mono)
  | 
| 
 | 
   393  | 
  | 
| 
 | 
   394  | 
lemma INF_nat: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m<n \<and> P n)"
  | 
| 
 | 
   395  | 
by (simp add: INF_def infinite_nat_iff_unbounded)
  | 
| 
 | 
   396  | 
  | 
| 
 | 
   397  | 
lemma INF_nat_le: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m\<le>n \<and> P n)"
  | 
| 
 | 
   398  | 
by (simp add: INF_def infinite_nat_iff_unbounded_le)
  | 
| 
 | 
   399  | 
  | 
| 
 | 
   400  | 
lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m<n \<longrightarrow> P n)"
  | 
| 
 | 
   401  | 
by (simp add: MOST_def INF_nat)
  | 
| 
 | 
   402  | 
  | 
| 
 | 
   403  | 
lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m\<le>n \<longrightarrow> P n)"
  | 
| 
 | 
   404  | 
by (simp add: MOST_def INF_nat_le)
  | 
| 
 | 
   405  | 
  | 
| 
 | 
   406  | 
  | 
| 
 | 
   407  | 
subsection "Miscellaneous"
  | 
| 
 | 
   408  | 
  | 
| 
 | 
   409  | 
text {*
 | 
| 
 | 
   410  | 
  A few trivial lemmas about sets that contain at most one element.
  | 
| 
 | 
   411  | 
  These simplify the reasoning about deterministic automata.
  | 
| 
 | 
   412  | 
*}
  | 
| 
 | 
   413  | 
  | 
| 
 | 
   414  | 
constdefs
  | 
| 
 | 
   415  | 
  atmost_one :: "'a set \<Rightarrow> bool"
  | 
| 
 | 
   416  | 
  "atmost_one S \<equiv> \<forall>x y. x\<in>S \<and> y\<in>S \<longrightarrow> x=y"
  | 
| 
 | 
   417  | 
  | 
| 
 | 
   418  | 
lemma atmost_one_empty: "S={} \<Longrightarrow> atmost_one S"
 | 
| 
 | 
   419  | 
by (simp add: atmost_one_def)
  | 
| 
 | 
   420  | 
  | 
| 
 | 
   421  | 
lemma atmost_one_singleton: "S = {x} \<Longrightarrow> atmost_one S"
 | 
| 
 | 
   422  | 
by (simp add: atmost_one_def)
  | 
| 
 | 
   423  | 
  | 
| 
 | 
   424  | 
lemma atmost_one_unique [elim]: "\<lbrakk> atmost_one S; x \<in> S; y \<in> S \<rbrakk> \<Longrightarrow> y=x"
  | 
| 
 | 
   425  | 
by (simp add: atmost_one_def)
  | 
| 
 | 
   426  | 
  | 
| 
 | 
   427  | 
end
  |