| author | kleing | 
| Fri, 26 Mar 2004 05:32:00 +0100 | |
| changeset 14486 | 74c053a25513 | 
| parent 14208 | 144f45277d5a | 
| child 14607 | 099575a938e5 | 
| permissions | -rw-r--r-- | 
| 10214 | 1  | 
(* Title: HOL/NatArith.thy  | 
2  | 
ID: $Id$  | 
|
| 13297 | 3  | 
Author: Tobias Nipkow and Markus Wenzel  | 
4  | 
License: GPL (GNU GENERAL PUBLIC LICENSE)  | 
|
5  | 
*)  | 
|
| 10214 | 6  | 
|
| 13297 | 7  | 
header {* More arithmetic on natural numbers *}
 | 
| 10214 | 8  | 
|
9  | 
theory NatArith = Nat  | 
|
10  | 
files "arith_data.ML":  | 
|
11  | 
||
12  | 
setup arith_setup  | 
|
13  | 
||
| 13297 | 14  | 
|
| 11655 | 15  | 
lemma pred_nat_trancl_eq_le: "((m, n) : pred_nat^*) = (m <= n)"  | 
| 14208 | 16  | 
by (simp add: less_eq reflcl_trancl [symmetric]  | 
17  | 
del: reflcl_trancl, arith)  | 
|
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11324 
diff
changeset
 | 
18  | 
|
| 10214 | 19  | 
lemma nat_diff_split:  | 
| 10599 | 20  | 
"P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"  | 
| 13297 | 21  | 
    -- {* elimination of @{text -} on @{text nat} *}
 | 
22  | 
by (cases "a<b" rule: case_split)  | 
|
23  | 
(auto simp add: diff_is_0_eq [THEN iffD2])  | 
|
| 11324 | 24  | 
|
25  | 
lemma nat_diff_split_asm:  | 
|
26  | 
"P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))"  | 
|
| 13297 | 27  | 
    -- {* elimination of @{text -} on @{text nat} in assumptions *}
 | 
| 11324 | 28  | 
by (simp split: nat_diff_split)  | 
| 10214 | 29  | 
|
| 11164 | 30  | 
ML {*
 | 
31  | 
val nat_diff_split = thm "nat_diff_split";  | 
|
| 11324 | 32  | 
val nat_diff_split_asm = thm "nat_diff_split_asm";  | 
| 13499 | 33  | 
*}  | 
34  | 
(* Careful: arith_tac produces counter examples!  | 
|
| 
11181
 
d04f57b91166
renamed addaltern to addafter, addSaltern to addSafter
 
oheimb 
parents: 
11164 
diff
changeset
 | 
35  | 
fun add_arith cs = cs addafter ("arith_tac", arith_tac);
 | 
| 13499 | 36  | 
TODO: use arith_tac for force_tac in Provers/clasip.ML *)  | 
| 10214 | 37  | 
|
38  | 
lemmas [arith_split] = nat_diff_split split_min split_max  | 
|
39  | 
||
| 11164 | 40  | 
|
| 13297 | 41  | 
subsubsection {* Generic summation indexed over natural numbers *}
 | 
42  | 
||
43  | 
consts  | 
|
44  | 
  Summation :: "(nat => 'a::{zero, plus}) => nat => 'a"
 | 
|
45  | 
primrec  | 
|
46  | 
"Summation f 0 = 0"  | 
|
47  | 
"Summation f (Suc n) = Summation f n + f n"  | 
|
48  | 
||
49  | 
syntax  | 
|
50  | 
  "_Summation" :: "idt => nat => 'a => nat"    ("\<Sum>_<_. _" [0, 51, 10] 10)
 | 
|
51  | 
translations  | 
|
52  | 
"\<Sum>i < n. b" == "Summation (\<lambda>i. b) n"  | 
|
53  | 
||
54  | 
theorem Summation_step:  | 
|
55  | 
"0 < n ==> (\<Sum>i < n. f i) = (\<Sum>i < n - 1. f i) + f (n - 1)"  | 
|
56  | 
by (induct n) simp_all  | 
|
57  | 
||
| 10214 | 58  | 
end  |