author | bulwahn |
Wed, 15 Dec 2010 08:34:01 +0100 | |
changeset 41120 | 74e41b2d48ea |
parent 36974 | b877866b5b00 |
child 41166 | 4b2a457b17e8 |
permissions | -rw-r--r-- |
28952
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents:
27239
diff
changeset
|
1 |
(* Author : Jacques D. Fleuriot |
12224 | 2 |
Copyright : 2001 University of Edinburgh |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
3 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
4 |
Conversion of Mac Laurin to Isar by Lukas Bulwahn and Bernhard Häupler, 2005 |
12224 | 5 |
*) |
6 |
||
15944 | 7 |
header{*MacLaurin Series*} |
8 |
||
15131 | 9 |
theory MacLaurin |
29811
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
chaieb@chaieb-laptop
parents:
29803
diff
changeset
|
10 |
imports Transcendental |
15131 | 11 |
begin |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
12 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
13 |
subsection{*Maclaurin's Theorem with Lagrange Form of Remainder*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
14 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
15 |
text{*This is a very long, messy proof even now that it's been broken down |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
16 |
into lemmas.*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
17 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
18 |
lemma Maclaurin_lemma: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
19 |
"0 < h ==> |
15539 | 20 |
\<exists>B. f h = (\<Sum>m=0..<n. (j m / real (fact m)) * (h^m)) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
21 |
(B * ((h^n) / real(fact n)))" |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
22 |
by (rule_tac x = "(f h - (\<Sum>m=0..<n. (j m / real (fact m)) * h^m)) * |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
23 |
real(fact n) / (h^n)" |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
24 |
in exI, simp) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
25 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
26 |
lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
27 |
by arith |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
28 |
|
32038 | 29 |
lemma fact_diff_Suc [rule_format]: |
30 |
"n < Suc m ==> fact (Suc m - n) = (Suc m - n) * fact (m - n)" |
|
31 |
by (subst fact_reduce_nat, auto) |
|
32 |
||
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
33 |
lemma Maclaurin_lemma2: |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
34 |
assumes DERIV : "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
35 |
and INIT : "n = Suc k" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
36 |
and DIFG_DEF: "difg = (\<lambda>m t. diff m t - ((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
37 |
B * (t ^ (n - m) / real (fact (n - m)))))" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
38 |
shows "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (difg m) t :> difg (Suc m) t" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
39 |
proof (rule allI)+ |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
40 |
fix m |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
41 |
fix t |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
42 |
show "m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
43 |
proof |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
44 |
assume INIT2: "m < n & 0 \<le> t & t \<le> h" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
45 |
hence INTERV: "0 \<le> t & t \<le> h" .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
46 |
from INIT2 and INIT have mtok: "m < Suc k" by arith |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
47 |
have "DERIV (\<lambda>t. diff m t - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
48 |
((\<Sum>p = 0..<Suc k - m. diff (m + p) 0 / real (fact p) * t ^ p) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
49 |
B * (t ^ (Suc k - m) / real (fact (Suc k - m))))) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
50 |
t :> diff (Suc m) t - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
51 |
((\<Sum>p = 0..<Suc k - Suc m. diff (Suc m + p) 0 / real (fact p) * t ^ p) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
52 |
B * (t ^ (Suc k - Suc m) / real (fact (Suc k - Suc m))))" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
53 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
54 |
from DERIV and INIT2 have "DERIV (diff m) t :> diff (Suc m) t" by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
55 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
56 |
have " DERIV (\<lambda>x. (\<Sum>p = 0..<Suc k - m. diff (m + p) 0 / real (fact p) * x ^ p) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
57 |
B * (x ^ (Suc k - m) / real (fact (Suc k - m)))) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
58 |
t :> (\<Sum>p = 0..<Suc k - Suc m. diff (Suc m + p) 0 / real (fact p) * t ^ p) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
59 |
B * (t ^ (Suc k - Suc m) / real (fact (Suc k - Suc m)))" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
60 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
61 |
have "DERIV (\<lambda>x. \<Sum>p = 0..<Suc k - m. diff (m + p) 0 / real (fact p) * x ^ p) t |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
62 |
:> (\<Sum>p = 0..<Suc k - Suc m. diff (Suc m + p) 0 / real (fact p) * t ^ p)" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
63 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
64 |
have "\<exists> d. k = m + d" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
65 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
66 |
from INIT2 have "m < n" .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
67 |
hence "\<exists> d. n = m + d + Suc 0" by arith |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
68 |
with INIT show ?thesis by (simp del: setsum_op_ivl_Suc) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
69 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
70 |
from this obtain d where kmd: "k = m + d" .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
71 |
have "DERIV (\<lambda>x. (\<Sum>ma = 0..<d. diff (Suc (m + ma)) 0 * x ^ Suc ma / real (fact (Suc ma))) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
72 |
diff m 0) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
73 |
t :> (\<Sum>p = 0..<d. diff (Suc (m + p)) 0 * t ^ p / real (fact p))" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
74 |
|
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
75 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
76 |
have "DERIV (\<lambda>x. (\<Sum>ma = 0..<d. diff (Suc (m + ma)) 0 * x ^ Suc ma / real (fact (Suc ma))) + diff m 0) t :> (\<Sum>r = 0..<d. diff (Suc (m + r)) 0 * t ^ r / real (fact r)) + 0" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
77 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
78 |
from DERIV and INTERV have "DERIV (\<lambda>x. (\<Sum>ma = 0..<d. diff (Suc (m + ma)) 0 * x ^ Suc ma / real (fact (Suc ma)))) t :> (\<Sum>r = 0..<d. diff (Suc (m + r)) 0 * t ^ r / real (fact r))" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
79 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
80 |
have "\<forall>r. 0 \<le> r \<and> r < 0 + d \<longrightarrow> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
81 |
DERIV (\<lambda>x. diff (Suc (m + r)) 0 * x ^ Suc r / real (fact (Suc r))) t |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
82 |
:> diff (Suc (m + r)) 0 * t ^ r / real (fact r)" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
83 |
proof (rule allI) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
84 |
fix r |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
85 |
show " 0 \<le> r \<and> r < 0 + d \<longrightarrow> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
86 |
DERIV (\<lambda>x. diff (Suc (m + r)) 0 * x ^ Suc r / real (fact (Suc r))) t |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
87 |
:> diff (Suc (m + r)) 0 * t ^ r / real (fact r)" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
88 |
proof |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
89 |
assume "0 \<le> r & r < 0 + d" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
90 |
have "DERIV (\<lambda>x. diff (Suc (m + r)) 0 * |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
91 |
(x ^ Suc r * inverse (real (fact (Suc r))))) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
92 |
t :> diff (Suc (m + r)) 0 * (t ^ r * inverse (real (fact r)))" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
93 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
94 |
have "(1 + real r) * real (fact r) \<noteq> 0" by auto |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
95 |
from this have "real (fact r) + real r * real (fact r) \<noteq> 0" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
96 |
by (metis add_nonneg_eq_0_iff mult_nonneg_nonneg real_of_nat_fact_not_zero real_of_nat_ge_zero) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
97 |
from this have "DERIV (\<lambda>x. x ^ Suc r * inverse (real (fact (Suc r)))) t :> real (Suc r) * t ^ (Suc r - Suc 0) * inverse (real (fact (Suc r))) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
98 |
0 * t ^ Suc r" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
99 |
apply - by ( rule DERIV_intros | rule refl)+ auto |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
100 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
101 |
have "real (Suc r) * t ^ (Suc r - Suc 0) * inverse (real (fact (Suc r))) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
102 |
0 * t ^ Suc r = |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
103 |
t ^ r * inverse (real (fact r))" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
104 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
105 |
|
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
106 |
have " real (Suc r) * t ^ (Suc r - Suc 0) * |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
107 |
inverse (real (Suc r) * real (fact r)) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
108 |
0 * t ^ Suc r = |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
109 |
t ^ r * inverse (real (fact r))" by (simp add: mult_ac) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
110 |
hence "real (Suc r) * t ^ (Suc r - Suc 0) * inverse (real (Suc r * fact r)) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
111 |
0 * t ^ Suc r = |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
112 |
t ^ r * inverse (real (fact r))" by (subst real_of_nat_mult) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
113 |
thus ?thesis by (subst fact_Suc) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
114 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
115 |
ultimately have " DERIV (\<lambda>x. x ^ Suc r * inverse (real (fact (Suc r)))) t |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
116 |
:> t ^ r * inverse (real (fact r))" by (rule lemma_DERIV_subst) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
117 |
thus ?thesis by (rule DERIV_cmult) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
118 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
119 |
thus "DERIV (\<lambda>x. diff (Suc (m + r)) 0 * x ^ Suc r / |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
120 |
real (fact (Suc r))) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
121 |
t :> diff (Suc (m + r)) 0 * t ^ r / real (fact r)" by (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc power_Suc) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
122 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
123 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
124 |
thus ?thesis by (rule DERIV_sumr) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
125 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
126 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
127 |
from DERIV_const have "DERIV (\<lambda>x. diff m 0) t :> 0" . |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
128 |
ultimately show ?thesis by (rule DERIV_add) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
129 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
130 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
131 |
have " (\<Sum>r = 0..<d. diff (Suc (m + r)) 0 * t ^ r / real (fact r)) + 0 = (\<Sum>p = 0..<d. diff (Suc (m + p)) 0 * t ^ p / real (fact p))" by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
132 |
ultimately show ?thesis by (rule lemma_DERIV_subst) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
133 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
134 |
with kmd and sumr_offset4 [of 1] show ?thesis by (simp del: setsum_op_ivl_Suc fact_Suc power_Suc) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
135 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
136 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
137 |
have " DERIV (\<lambda>x. B * (x ^ (Suc k - m) / real (fact (Suc k - m)))) t |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
138 |
:> B * (t ^ (Suc k - Suc m) / real (fact (Suc k - Suc m)))" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
139 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
140 |
have " DERIV (\<lambda>x. x ^ (Suc k - m) / real (fact (Suc k - m))) t |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
141 |
:> t ^ (Suc k - Suc m) / real (fact (Suc k - Suc m))" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
142 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
143 |
have "DERIV (\<lambda>x. x ^ (Suc k - m)) t :> real (Suc k - m) * t ^ (Suc k - m - Suc 0)" by (rule DERIV_pow) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
144 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
145 |
have "DERIV (\<lambda>x. real (fact (Suc k - m))) t :> 0" by (rule DERIV_const) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
146 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
147 |
have "(\<lambda>x. real (fact (Suc k - m))) t \<noteq> 0" by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
148 |
ultimately have " DERIV (\<lambda>y. y ^ (Suc k - m) / real (fact (Suc k - m))) t |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
149 |
:> ( real (Suc k - m) * t ^ (Suc k - m - Suc 0) * real (fact (Suc k - m)) + - (0 * t ^ (Suc k - m))) / |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
150 |
real (fact (Suc k - m)) ^ Suc (Suc 0)" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
151 |
apply - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
152 |
apply (rule DERIV_cong) by (rule DERIV_intros | rule refl)+ auto |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
153 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
154 |
from mtok and INIT have "( real (Suc k - m) * t ^ (Suc k - m - Suc 0) * real (fact (Suc k - m)) + - (0 * t ^ (Suc k - m))) / |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
155 |
real (fact (Suc k - m)) ^ Suc (Suc 0) = t ^ (Suc k - Suc m) / real (fact (Suc k - Suc m))" by (simp add: fact_diff_Suc) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
156 |
ultimately show ?thesis by (rule lemma_DERIV_subst) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
157 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
158 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
159 |
thus ?thesis by (rule DERIV_cmult) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
160 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
161 |
ultimately show ?thesis by (rule DERIV_add) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
162 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
163 |
ultimately show ?thesis by (rule DERIV_diff) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
164 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
165 |
from INIT and this and DIFG_DEF show "DERIV (difg m) t :> difg (Suc m) t" by clarify |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
166 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
167 |
qed |
32038 | 168 |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
169 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
170 |
lemma Maclaurin: |
29187 | 171 |
assumes h: "0 < h" |
172 |
assumes n: "0 < n" |
|
173 |
assumes diff_0: "diff 0 = f" |
|
174 |
assumes diff_Suc: |
|
175 |
"\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t" |
|
176 |
shows |
|
177 |
"\<exists>t. 0 < t & t < h & |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
178 |
f h = |
15539 | 179 |
setsum (%m. (diff m 0 / real (fact m)) * h ^ m) {0..<n} + |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
180 |
(diff n t / real (fact n)) * h ^ n" |
29187 | 181 |
proof - |
182 |
from n obtain m where m: "n = Suc m" |
|
183 |
by (cases n, simp add: n) |
|
184 |
||
185 |
obtain B where f_h: "f h = |
|
186 |
(\<Sum>m = 0..<n. diff m (0\<Colon>real) / real (fact m) * h ^ m) + |
|
187 |
B * (h ^ n / real (fact n))" |
|
188 |
using Maclaurin_lemma [OF h] .. |
|
189 |
||
190 |
obtain g where g_def: "g = (%t. f t - |
|
191 |
(setsum (%m. (diff m 0 / real(fact m)) * t^m) {0..<n} |
|
192 |
+ (B * (t^n / real(fact n)))))" by blast |
|
193 |
||
194 |
have g2: "g 0 = 0 & g h = 0" |
|
195 |
apply (simp add: m f_h g_def del: setsum_op_ivl_Suc) |
|
30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
29811
diff
changeset
|
196 |
apply (cut_tac n = m and k = "Suc 0" in sumr_offset2) |
29187 | 197 |
apply (simp add: eq_diff_eq' diff_0 del: setsum_op_ivl_Suc) |
198 |
done |
|
199 |
||
200 |
obtain difg where difg_def: "difg = (%m t. diff m t - |
|
201 |
(setsum (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) {0..<n-m} |
|
202 |
+ (B * ((t ^ (n - m)) / real (fact (n - m))))))" by blast |
|
203 |
||
204 |
have difg_0: "difg 0 = g" |
|
205 |
unfolding difg_def g_def by (simp add: diff_0) |
|
206 |
||
207 |
have difg_Suc: "\<forall>(m\<Colon>nat) t\<Colon>real. |
|
208 |
m < n \<and> (0\<Colon>real) \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t" |
|
209 |
using diff_Suc m difg_def by (rule Maclaurin_lemma2) |
|
210 |
||
211 |
have difg_eq_0: "\<forall>m. m < n --> difg m 0 = 0" |
|
212 |
apply clarify |
|
213 |
apply (simp add: m difg_def) |
|
214 |
apply (frule less_iff_Suc_add [THEN iffD1], clarify) |
|
215 |
apply (simp del: setsum_op_ivl_Suc) |
|
30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
29811
diff
changeset
|
216 |
apply (insert sumr_offset4 [of "Suc 0"]) |
32047 | 217 |
apply (simp del: setsum_op_ivl_Suc fact_Suc) |
29187 | 218 |
done |
219 |
||
220 |
have isCont_difg: "\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> isCont (difg m) x" |
|
221 |
by (rule DERIV_isCont [OF difg_Suc [rule_format]]) simp |
|
222 |
||
223 |
have differentiable_difg: |
|
224 |
"\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> difg m differentiable x" |
|
225 |
by (rule differentiableI [OF difg_Suc [rule_format]]) simp |
|
226 |
||
227 |
have difg_Suc_eq_0: "\<And>m t. \<lbrakk>m < n; 0 \<le> t; t \<le> h; DERIV (difg m) t :> 0\<rbrakk> |
|
228 |
\<Longrightarrow> difg (Suc m) t = 0" |
|
229 |
by (rule DERIV_unique [OF difg_Suc [rule_format]]) simp |
|
230 |
||
231 |
have "m < n" using m by simp |
|
232 |
||
233 |
have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0" |
|
234 |
using `m < n` |
|
235 |
proof (induct m) |
|
236 |
case 0 |
|
237 |
show ?case |
|
238 |
proof (rule Rolle) |
|
239 |
show "0 < h" by fact |
|
240 |
show "difg 0 0 = difg 0 h" by (simp add: difg_0 g2) |
|
241 |
show "\<forall>x. 0 \<le> x \<and> x \<le> h \<longrightarrow> isCont (difg (0\<Colon>nat)) x" |
|
242 |
by (simp add: isCont_difg n) |
|
243 |
show "\<forall>x. 0 < x \<and> x < h \<longrightarrow> difg (0\<Colon>nat) differentiable x" |
|
244 |
by (simp add: differentiable_difg n) |
|
245 |
qed |
|
246 |
next |
|
247 |
case (Suc m') |
|
248 |
hence "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0" by simp |
|
249 |
then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0" by fast |
|
250 |
have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0" |
|
251 |
proof (rule Rolle) |
|
252 |
show "0 < t" by fact |
|
253 |
show "difg (Suc m') 0 = difg (Suc m') t" |
|
254 |
using t `Suc m' < n` by (simp add: difg_Suc_eq_0 difg_eq_0) |
|
255 |
show "\<forall>x. 0 \<le> x \<and> x \<le> t \<longrightarrow> isCont (difg (Suc m')) x" |
|
256 |
using `t < h` `Suc m' < n` by (simp add: isCont_difg) |
|
257 |
show "\<forall>x. 0 < x \<and> x < t \<longrightarrow> difg (Suc m') differentiable x" |
|
258 |
using `t < h` `Suc m' < n` by (simp add: differentiable_difg) |
|
259 |
qed |
|
260 |
thus ?case |
|
261 |
using `t < h` by auto |
|
262 |
qed |
|
263 |
||
264 |
then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0" by fast |
|
265 |
||
266 |
hence "difg (Suc m) t = 0" |
|
267 |
using `m < n` by (simp add: difg_Suc_eq_0) |
|
268 |
||
269 |
show ?thesis |
|
270 |
proof (intro exI conjI) |
|
271 |
show "0 < t" by fact |
|
272 |
show "t < h" by fact |
|
273 |
show "f h = |
|
274 |
(\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + |
|
275 |
diff n t / real (fact n) * h ^ n" |
|
276 |
using `difg (Suc m) t = 0` |
|
32047 | 277 |
by (simp add: m f_h difg_def del: fact_Suc) |
29187 | 278 |
qed |
279 |
||
280 |
qed |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
281 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
282 |
lemma Maclaurin_objl: |
25162 | 283 |
"0 < h & n>0 & diff 0 = f & |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
284 |
(\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
285 |
--> (\<exists>t. 0 < t & t < h & |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
286 |
f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
287 |
diff n t / real (fact n) * h ^ n)" |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
288 |
by (blast intro: Maclaurin) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
289 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
290 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
291 |
lemma Maclaurin2: |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
292 |
assumes INIT1: "0 < h " and INIT2: "diff 0 = f" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
293 |
and DERIV: "\<forall>m t. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
294 |
m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
295 |
shows "\<exists>t. 0 < t \<and> t \<le> h \<and> f h = |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
296 |
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
297 |
diff n t / real (fact n) * h ^ n" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
298 |
proof (cases "n") |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
299 |
case 0 with INIT1 INIT2 show ?thesis by fastsimp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
300 |
next |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
301 |
case Suc |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
302 |
hence "n > 0" by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
303 |
from INIT1 this INIT2 DERIV have "\<exists>t>0. t < h \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
304 |
f h = |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
305 |
(\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
306 |
by (rule Maclaurin) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
307 |
thus ?thesis by fastsimp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
308 |
qed |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
309 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
310 |
lemma Maclaurin2_objl: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
311 |
"0 < h & diff 0 = f & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
312 |
(\<forall>m t. |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
313 |
m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
314 |
--> (\<exists>t. 0 < t & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
315 |
t \<le> h & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
316 |
f h = |
15539 | 317 |
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
318 |
diff n t / real (fact n) * h ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
319 |
by (blast intro: Maclaurin2) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
320 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
321 |
lemma Maclaurin_minus: |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
322 |
assumes INTERV : "h < 0" and |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
323 |
INIT : "0 < n" "diff 0 = f" and |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
324 |
ABL : "\<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
325 |
shows "\<exists>t. h < t & t < 0 & |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
326 |
f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
327 |
diff n t / real (fact n) * h ^ n" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
328 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
329 |
from INTERV have "0 < -h" by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
330 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
331 |
from INIT have "0 < n" by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
332 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
333 |
from INIT have "(% x. ( - 1) ^ 0 * diff 0 (- x)) = (% x. f (- x))" by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
334 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
335 |
have "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> - h \<longrightarrow> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
336 |
DERIV (\<lambda>x. (- 1) ^ m * diff m (- x)) t :> (- 1) ^ Suc m * diff (Suc m) (- t)" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
337 |
proof (rule allI impI)+ |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
338 |
fix m t |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
339 |
assume tINTERV:" m < n \<and> 0 \<le> t \<and> t \<le> - h" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
340 |
with ABL show "DERIV (\<lambda>x. (- 1) ^ m * diff m (- x)) t :> (- 1) ^ Suc m * diff (Suc m) (- t)" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
341 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
342 |
|
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
343 |
from ABL and tINTERV have "DERIV (\<lambda>x. diff m (- x)) t :> - diff (Suc m) (- t)" (is ?tABL) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
344 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
345 |
from ABL and tINTERV have "DERIV (diff m) (- t) :> diff (Suc m) (- t)" by force |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
346 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
347 |
from DERIV_ident[of t] have "DERIV uminus t :> (- 1)" by (rule DERIV_minus) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
348 |
ultimately have "DERIV (\<lambda>x. diff m (- x)) t :> diff (Suc m) (- t) * - 1" by (rule DERIV_chain2) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
349 |
thus ?thesis by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
350 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
351 |
thus ?thesis |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
352 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
353 |
assume ?tABL hence "DERIV (\<lambda>x. -1 ^ m * diff m (- x)) t :> -1 ^ m * - diff (Suc m) (- t)" by (rule DERIV_cmult) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
354 |
hence "DERIV (\<lambda>x. -1 ^ m * diff m (- x)) t :> - (-1 ^ m * diff (Suc m) (- t))" by (subst minus_mult_right) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
355 |
thus ?thesis by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
356 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
357 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
358 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
359 |
ultimately have t_exists: "\<exists>t>0. t < - h \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
360 |
f (- (- h)) = |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
361 |
(\<Sum>m = 0..<n. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
362 |
(- 1) ^ m * diff m (- 0) / real (fact m) * (- h) ^ m) + |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
363 |
(- 1) ^ n * diff n (- t) / real (fact n) * (- h) ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
364 |
from this obtain t where t_def: "?P t" .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
365 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
366 |
have "-1 ^ n * diff n (- t) * (- h) ^ n / real (fact n) = diff n (- t) * h ^ n / real (fact n)" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
367 |
by (auto simp add: power_mult_distrib[symmetric]) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
368 |
moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
369 |
have "(SUM m = 0..<n. -1 ^ m * diff m 0 * (- h) ^ m / real (fact m)) = (SUM m = 0..<n. diff m 0 * h ^ m / real (fact m))" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
370 |
by (auto intro: setsum_cong simp add: power_mult_distrib[symmetric]) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
371 |
ultimately have " h < - t \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
372 |
- t < 0 \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
373 |
f h = |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
374 |
(\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + diff n (- t) / real (fact n) * h ^ n" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
375 |
by auto |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
376 |
thus ?thesis .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
377 |
qed |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
378 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
379 |
lemma Maclaurin_minus_objl: |
25162 | 380 |
"(h < 0 & n > 0 & diff 0 = f & |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
381 |
(\<forall>m t. |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
382 |
m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t)) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
383 |
--> (\<exists>t. h < t & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
384 |
t < 0 & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
385 |
f h = |
15539 | 386 |
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
387 |
diff n t / real (fact n) * h ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
388 |
by (blast intro: Maclaurin_minus) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
389 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
390 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
391 |
subsection{*More Convenient "Bidirectional" Version.*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
392 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
393 |
(* not good for PVS sin_approx, cos_approx *) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
394 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
395 |
lemma Maclaurin_bi_le_lemma [rule_format]: |
25162 | 396 |
"n>0 \<longrightarrow> |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
397 |
diff 0 0 = |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
398 |
(\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) + |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
399 |
diff n 0 * 0 ^ n / real (fact n)" |
15251 | 400 |
by (induct "n", auto) |
14738 | 401 |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
402 |
lemma Maclaurin_bi_le: |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
403 |
assumes INIT : "diff 0 = f" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
404 |
and DERIV : "\<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
405 |
shows "\<exists>t. abs t \<le> abs x & |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
406 |
f x = |
15539 | 407 |
(\<Sum>m=0..<n. diff m 0 / real (fact m) * x ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
408 |
diff n t / real (fact n) * x ^ n" |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
409 |
proof (cases "n = 0") |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
410 |
case True from INIT True show ?thesis by force |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
411 |
next |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
412 |
case False |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
413 |
from this have n_not_zero:"n \<noteq> 0" . |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
414 |
from False INIT DERIV show ?thesis |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
415 |
proof (cases "x = 0") |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
416 |
case True show ?thesis |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
417 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
418 |
from n_not_zero True INIT DERIV have "\<bar>0\<bar> \<le> \<bar>x\<bar> \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
419 |
f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n 0 / real (fact n) * x ^ n" by(force simp add: Maclaurin_bi_le_lemma) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
420 |
thus ?thesis .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
421 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
422 |
next |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
423 |
case False |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
424 |
note linorder_less_linear [of "x" "0"] |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
425 |
thus ?thesis |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
426 |
proof (elim disjE) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
427 |
assume "x = 0" with False show ?thesis .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
428 |
next |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
429 |
assume x_less_zero: "x < 0" moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
430 |
from n_not_zero have "0 < n" by simp moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
431 |
have "diff 0 = diff 0" by simp moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
432 |
have "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
433 |
proof (rule allI, rule allI, rule impI) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
434 |
fix m t |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
435 |
assume "m < n & x \<le> t & t \<le> 0" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
436 |
with DERIV show " DERIV (diff m) t :> diff (Suc m) t" by (fastsimp simp add: abs_if) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
437 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
438 |
ultimately have t_exists:"\<exists>t>x. t < 0 \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
439 |
diff 0 x = |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
440 |
(\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin_minus) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
441 |
from this obtain t where t_def: "?P t" .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
442 |
from t_def x_less_zero INIT have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
443 |
f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
444 |
by (simp add: abs_if order_less_le) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
445 |
thus ?thesis by (rule exI) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
446 |
next |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
447 |
assume x_greater_zero: "x > 0" moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
448 |
from n_not_zero have "0 < n" by simp moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
449 |
have "diff 0 = diff 0" by simp moreover |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
450 |
have "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
451 |
proof (rule allI, rule allI, rule impI) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
452 |
fix m t |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
453 |
assume "m < n & 0 \<le> t & t \<le> x" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
454 |
with DERIV show " DERIV (diff m) t :> diff (Suc m) t" by fastsimp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
455 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
456 |
ultimately have t_exists:"\<exists>t>0. t < x \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
457 |
diff 0 x = |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
458 |
(\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
459 |
from this obtain t where t_def: "?P t" .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
460 |
from t_def x_greater_zero INIT have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
461 |
f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
462 |
by fastsimp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
463 |
thus ?thesis .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
464 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
465 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
466 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
467 |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
468 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
469 |
lemma Maclaurin_all_lt: |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
470 |
assumes INIT1: "diff 0 = f" and INIT2: "0 < n" and INIT3: "x \<noteq> 0" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
471 |
and DERIV: "\<forall>m x. DERIV (diff m) x :> diff(Suc m) x" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
472 |
shows "\<exists>t. 0 < abs t & abs t < abs x & |
15539 | 473 |
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
474 |
(diff n t / real (fact n)) * x ^ n" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
475 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
476 |
have "(x = 0) \<Longrightarrow> ?thesis" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
477 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
478 |
assume "x = 0" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
479 |
with INIT3 show "(x = 0) \<Longrightarrow> ?thesis".. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
480 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
481 |
moreover have "(x < 0) \<Longrightarrow> ?thesis" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
482 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
483 |
assume x_less_zero: "x < 0" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
484 |
from DERIV have "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
485 |
with x_less_zero INIT2 INIT1 have "\<exists>t>x. t < 0 \<and> f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin_minus) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
486 |
from this obtain t where "?P t" .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
487 |
with x_less_zero have "0 < \<bar>t\<bar> \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
488 |
\<bar>t\<bar> < \<bar>x\<bar> \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
489 |
f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
490 |
thus ?thesis .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
491 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
492 |
moreover have "(x > 0) \<Longrightarrow> ?thesis" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
493 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
494 |
assume x_greater_zero: "x > 0" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
495 |
from DERIV have "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" by simp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
496 |
with x_greater_zero INIT2 INIT1 have "\<exists>t>0. t < x \<and> f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
497 |
from this obtain t where "?P t" .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
498 |
with x_greater_zero have "0 < \<bar>t\<bar> \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
499 |
\<bar>t\<bar> < \<bar>x\<bar> \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
500 |
f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" by fastsimp |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
501 |
thus ?thesis .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
502 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
503 |
ultimately show ?thesis by (fastsimp) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
504 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
505 |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
506 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
507 |
lemma Maclaurin_all_lt_objl: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
508 |
"diff 0 = f & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
509 |
(\<forall>m x. DERIV (diff m) x :> diff(Suc m) x) & |
25162 | 510 |
x ~= 0 & n > 0 |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
511 |
--> (\<exists>t. 0 < abs t & abs t < abs x & |
15539 | 512 |
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
513 |
(diff n t / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
514 |
by (blast intro: Maclaurin_all_lt) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
515 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
516 |
lemma Maclaurin_zero [rule_format]: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
517 |
"x = (0::real) |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
518 |
==> n \<noteq> 0 --> |
15539 | 519 |
(\<Sum>m=0..<n. (diff m (0::real) / real (fact m)) * x ^ m) = |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
520 |
diff 0 0" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
521 |
by (induct n, auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
522 |
|
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
523 |
|
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
524 |
lemma Maclaurin_all_le: |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
525 |
assumes INIT: "diff 0 = f" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
526 |
and DERIV: "\<forall>m x. DERIV (diff m) x :> diff (Suc m) x" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
527 |
shows "\<exists>t. abs t \<le> abs x & |
15539 | 528 |
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
529 |
(diff n t / real (fact n)) * x ^ n" |
41120
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
530 |
proof - |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
531 |
note linorder_le_less_linear [of n 0] |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
532 |
thus ?thesis |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
533 |
proof |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
534 |
assume "n\<le> 0" with INIT show ?thesis by force |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
535 |
next |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
536 |
assume n_greater_zero: "n > 0" show ?thesis |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
537 |
proof (cases "x = 0") |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
538 |
case True |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
539 |
from n_greater_zero have "n \<noteq> 0" by auto |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
540 |
from True this have f_0:"(\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) = diff 0 0" by (rule Maclaurin_zero) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
541 |
from n_greater_zero have "n \<noteq> 0" by (rule gr_implies_not0) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
542 |
hence "\<exists> m. n = Suc m" by (rule not0_implies_Suc) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
543 |
with f_0 True INIT have " \<bar>0\<bar> \<le> \<bar>x\<bar> \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
544 |
f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n 0 / real (fact n) * x ^ n" |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
545 |
by force |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
546 |
thus ?thesis .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
547 |
next |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
548 |
case False |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
549 |
from INIT n_greater_zero this DERIV have "\<exists>t. 0 < \<bar>t\<bar> \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
550 |
\<bar>t\<bar> < \<bar>x\<bar> \<and> f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin_all_lt) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
551 |
from this obtain t where "?P t" .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
552 |
hence "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
553 |
f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" by (simp add: order_less_le) |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
554 |
thus ?thesis .. |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
555 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
556 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
557 |
qed |
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
bulwahn
parents:
36974
diff
changeset
|
558 |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
559 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
560 |
lemma Maclaurin_all_le_objl: "diff 0 = f & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
561 |
(\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
562 |
--> (\<exists>t. abs t \<le> abs x & |
15539 | 563 |
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
564 |
(diff n t / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
565 |
by (blast intro: Maclaurin_all_le) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
566 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
567 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
568 |
subsection{*Version for Exponential Function*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
569 |
|
25162 | 570 |
lemma Maclaurin_exp_lt: "[| x ~= 0; n > 0 |] |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
571 |
==> (\<exists>t. 0 < abs t & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
572 |
abs t < abs x & |
15539 | 573 |
exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
574 |
(exp t / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
575 |
by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_lt_objl, auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
576 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
577 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
578 |
lemma Maclaurin_exp_le: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
579 |
"\<exists>t. abs t \<le> abs x & |
15539 | 580 |
exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
581 |
(exp t / real (fact n)) * x ^ n" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
582 |
by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_le_objl, auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
583 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
584 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
585 |
subsection{*Version for Sine Function*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
586 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
587 |
lemma mod_exhaust_less_4: |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
588 |
"m mod 4 = 0 | m mod 4 = 1 | m mod 4 = 2 | m mod 4 = (3::nat)" |
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19765
diff
changeset
|
589 |
by auto |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
590 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
591 |
lemma Suc_Suc_mult_two_diff_two [rule_format, simp]: |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
592 |
"n\<noteq>0 --> Suc (Suc (2 * n - 2)) = 2*n" |
15251 | 593 |
by (induct "n", auto) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
594 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
595 |
lemma lemma_Suc_Suc_4n_diff_2 [rule_format, simp]: |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
596 |
"n\<noteq>0 --> Suc (Suc (4*n - 2)) = 4*n" |
15251 | 597 |
by (induct "n", auto) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
598 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
599 |
lemma Suc_mult_two_diff_one [rule_format, simp]: |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
600 |
"n\<noteq>0 --> Suc (2 * n - 1) = 2*n" |
15251 | 601 |
by (induct "n", auto) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
602 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
603 |
|
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
604 |
text{*It is unclear why so many variant results are needed.*} |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
605 |
|
36974
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
606 |
lemma sin_expansion_lemma: |
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
607 |
"sin (x + real (Suc m) * pi / 2) = |
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
608 |
cos (x + real (m) * pi / 2)" |
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
609 |
by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib left_distrib, auto) |
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
610 |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
611 |
lemma Maclaurin_sin_expansion2: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
612 |
"\<exists>t. abs t \<le> abs x & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
613 |
sin x = |
15539 | 614 |
(\<Sum>m=0..<n. (if even m then 0 |
23177 | 615 |
else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) * |
15539 | 616 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
617 |
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
618 |
apply (cut_tac f = sin and n = n and x = x |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
619 |
and diff = "%n x. sin (x + 1/2*real n * pi)" in Maclaurin_all_lt_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
620 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
621 |
apply (simp (no_asm)) |
36974
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
622 |
apply (simp (no_asm) add: sin_expansion_lemma) |
23242 | 623 |
apply (case_tac "n", clarify, simp, simp add: lemma_STAR_sin) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
624 |
apply (rule ccontr, simp) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
625 |
apply (drule_tac x = x in spec, simp) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
626 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
627 |
apply (rule_tac x = t in exI, simp) |
15536 | 628 |
apply (rule setsum_cong[OF refl]) |
15539 | 629 |
apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
630 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
631 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
632 |
lemma Maclaurin_sin_expansion: |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
633 |
"\<exists>t. sin x = |
15539 | 634 |
(\<Sum>m=0..<n. (if even m then 0 |
23177 | 635 |
else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) * |
15539 | 636 |
x ^ m) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
637 |
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
638 |
apply (insert Maclaurin_sin_expansion2 [of x n]) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
639 |
apply (blast intro: elim:); |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
640 |
done |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
641 |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
642 |
lemma Maclaurin_sin_expansion3: |
25162 | 643 |
"[| n > 0; 0 < x |] ==> |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
644 |
\<exists>t. 0 < t & t < x & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
645 |
sin x = |
15539 | 646 |
(\<Sum>m=0..<n. (if even m then 0 |
23177 | 647 |
else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) * |
15539 | 648 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
649 |
+ ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
650 |
apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
651 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
652 |
apply simp |
36974
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
653 |
apply (simp (no_asm) add: sin_expansion_lemma) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
654 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
655 |
apply (rule_tac x = t in exI, simp) |
15536 | 656 |
apply (rule setsum_cong[OF refl]) |
15539 | 657 |
apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
658 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
659 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
660 |
lemma Maclaurin_sin_expansion4: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
661 |
"0 < x ==> |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
662 |
\<exists>t. 0 < t & t \<le> x & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
663 |
sin x = |
15539 | 664 |
(\<Sum>m=0..<n. (if even m then 0 |
23177 | 665 |
else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) * |
15539 | 666 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
667 |
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
668 |
apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin2_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
669 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
670 |
apply simp |
36974
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
671 |
apply (simp (no_asm) add: sin_expansion_lemma) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
672 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
673 |
apply (rule_tac x = t in exI, simp) |
15536 | 674 |
apply (rule setsum_cong[OF refl]) |
15539 | 675 |
apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
676 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
677 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
678 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
679 |
subsection{*Maclaurin Expansion for Cosine Function*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
680 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
681 |
lemma sumr_cos_zero_one [simp]: |
15539 | 682 |
"(\<Sum>m=0..<(Suc n). |
23177 | 683 |
(if even m then -1 ^ (m div 2)/(real (fact m)) else 0) * 0 ^ m) = 1" |
15251 | 684 |
by (induct "n", auto) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
685 |
|
36974
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
686 |
lemma cos_expansion_lemma: |
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
687 |
"cos (x + real(Suc m) * pi / 2) = -sin (x + real m * pi / 2)" |
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
688 |
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib add_divide_distrib, auto) |
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
689 |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
690 |
lemma Maclaurin_cos_expansion: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
691 |
"\<exists>t. abs t \<le> abs x & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
692 |
cos x = |
15539 | 693 |
(\<Sum>m=0..<n. (if even m |
23177 | 694 |
then -1 ^ (m div 2)/(real (fact m)) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
695 |
else 0) * |
15539 | 696 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
697 |
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
698 |
apply (cut_tac f = cos and n = n and x = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
699 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
700 |
apply (simp (no_asm)) |
36974
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
701 |
apply (simp (no_asm) add: cos_expansion_lemma) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
702 |
apply (case_tac "n", simp) |
15561 | 703 |
apply (simp del: setsum_op_ivl_Suc) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
704 |
apply (rule ccontr, simp) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
705 |
apply (drule_tac x = x in spec, simp) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
706 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
707 |
apply (rule_tac x = t in exI, simp) |
15536 | 708 |
apply (rule setsum_cong[OF refl]) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
709 |
apply (auto simp add: cos_zero_iff even_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
710 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
711 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
712 |
lemma Maclaurin_cos_expansion2: |
25162 | 713 |
"[| 0 < x; n > 0 |] ==> |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
714 |
\<exists>t. 0 < t & t < x & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
715 |
cos x = |
15539 | 716 |
(\<Sum>m=0..<n. (if even m |
23177 | 717 |
then -1 ^ (m div 2)/(real (fact m)) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
718 |
else 0) * |
15539 | 719 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
720 |
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
721 |
apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
722 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
723 |
apply simp |
36974
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
724 |
apply (simp (no_asm) add: cos_expansion_lemma) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
725 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
726 |
apply (rule_tac x = t in exI, simp) |
15536 | 727 |
apply (rule setsum_cong[OF refl]) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
728 |
apply (auto simp add: cos_zero_iff even_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
729 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
730 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
731 |
lemma Maclaurin_minus_cos_expansion: |
25162 | 732 |
"[| x < 0; n > 0 |] ==> |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
733 |
\<exists>t. x < t & t < 0 & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
734 |
cos x = |
15539 | 735 |
(\<Sum>m=0..<n. (if even m |
23177 | 736 |
then -1 ^ (m div 2)/(real (fact m)) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
737 |
else 0) * |
15539 | 738 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
739 |
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
740 |
apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_minus_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
741 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
742 |
apply simp |
36974
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
huffman
parents:
32047
diff
changeset
|
743 |
apply (simp (no_asm) add: cos_expansion_lemma) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
744 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
745 |
apply (rule_tac x = t in exI, simp) |
15536 | 746 |
apply (rule setsum_cong[OF refl]) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
747 |
apply (auto simp add: cos_zero_iff even_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
748 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
749 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
750 |
(* ------------------------------------------------------------------------- *) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
751 |
(* Version for ln(1 +/- x). Where is it?? *) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
752 |
(* ------------------------------------------------------------------------- *) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
753 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
754 |
lemma sin_bound_lemma: |
15081 | 755 |
"[|x = y; abs u \<le> (v::real) |] ==> \<bar>(x + u) - y\<bar> \<le> v" |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
756 |
by auto |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
757 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
758 |
lemma Maclaurin_sin_bound: |
23177 | 759 |
"abs(sin x - (\<Sum>m=0..<n. (if even m then 0 else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) * |
15081 | 760 |
x ^ m)) \<le> inverse(real (fact n)) * \<bar>x\<bar> ^ n" |
14738 | 761 |
proof - |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
762 |
have "!! x (y::real). x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y" |
14738 | 763 |
by (rule_tac mult_right_mono,simp_all) |
764 |
note est = this[simplified] |
|
22985 | 765 |
let ?diff = "\<lambda>(n::nat) x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)" |
766 |
have diff_0: "?diff 0 = sin" by simp |
|
767 |
have DERIV_diff: "\<forall>m x. DERIV (?diff m) x :> ?diff (Suc m) x" |
|
768 |
apply (clarify) |
|
769 |
apply (subst (1 2 3) mod_Suc_eq_Suc_mod) |
|
770 |
apply (cut_tac m=m in mod_exhaust_less_4) |
|
31881 | 771 |
apply (safe, auto intro!: DERIV_intros) |
22985 | 772 |
done |
773 |
from Maclaurin_all_le [OF diff_0 DERIV_diff] |
|
774 |
obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>" and |
|
775 |
t2: "sin x = (\<Sum>m = 0..<n. ?diff m 0 / real (fact m) * x ^ m) + |
|
776 |
?diff n t / real (fact n) * x ^ n" by fast |
|
777 |
have diff_m_0: |
|
778 |
"\<And>m. ?diff m 0 = (if even m then 0 |
|
23177 | 779 |
else -1 ^ ((m - Suc 0) div 2))" |
22985 | 780 |
apply (subst even_even_mod_4_iff) |
781 |
apply (cut_tac m=m in mod_exhaust_less_4) |
|
782 |
apply (elim disjE, simp_all) |
|
783 |
apply (safe dest!: mod_eqD, simp_all) |
|
784 |
done |
|
14738 | 785 |
show ?thesis |
22985 | 786 |
apply (subst t2) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
787 |
apply (rule sin_bound_lemma) |
15536 | 788 |
apply (rule setsum_cong[OF refl]) |
22985 | 789 |
apply (subst diff_m_0, simp) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
790 |
apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono |
16775
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents:
15944
diff
changeset
|
791 |
simp add: est mult_nonneg_nonneg mult_ac divide_inverse |
16924 | 792 |
power_abs [symmetric] abs_mult) |
14738 | 793 |
done |
794 |
qed |
|
795 |
||
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
796 |
end |