| author | wenzelm | 
| Wed, 15 Aug 2012 13:07:24 +0200 | |
| changeset 48816 | 754b09cd616f | 
| parent 47108 | 2a1953f0d20d | 
| child 55415 | 05f5fdb8d093 | 
| permissions | -rw-r--r-- | 
| 35849 | 1 | (* Title: HOL/Algebra/Group.thy | 
| 2 | Author: Clemens Ballarin, started 4 February 2003 | |
| 13813 | 3 | |
| 4 | Based on work by Florian Kammueller, L C Paulson and Markus Wenzel. | |
| 5 | *) | |
| 6 | ||
| 28823 | 7 | theory Group | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
35850diff
changeset | 8 | imports Lattice "~~/src/HOL/Library/FuncSet" | 
| 28823 | 9 | begin | 
| 13813 | 10 | |
| 14963 | 11 | section {* Monoids and Groups *}
 | 
| 13936 | 12 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 13 | subsection {* Definitions *}
 | 
| 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 14 | |
| 13813 | 15 | text {*
 | 
| 14963 | 16 |   Definitions follow \cite{Jacobson:1985}.
 | 
| 13813 | 17 | *} | 
| 18 | ||
| 14963 | 19 | record 'a monoid = "'a partial_object" + | 
| 20 | mult :: "['a, 'a] \<Rightarrow> 'a" (infixl "\<otimes>\<index>" 70) | |
| 21 |   one     :: 'a ("\<one>\<index>")
 | |
| 13817 | 22 | |
| 35847 | 23 | definition | 
| 14852 | 24 |   m_inv :: "('a, 'b) monoid_scheme => 'a => 'a" ("inv\<index> _" [81] 80)
 | 
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 25 | where "inv\<^bsub>G\<^esub> x = (THE y. y \<in> carrier G & x \<otimes>\<^bsub>G\<^esub> y = \<one>\<^bsub>G\<^esub> & y \<otimes>\<^bsub>G\<^esub> x = \<one>\<^bsub>G\<^esub>)" | 
| 13936 | 26 | |
| 35847 | 27 | definition | 
| 14651 | 28 | Units :: "_ => 'a set" | 
| 14852 | 29 |   --{*The set of invertible elements*}
 | 
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 30 |   where "Units G = {y. y \<in> carrier G & (\<exists>x \<in> carrier G. x \<otimes>\<^bsub>G\<^esub> y = \<one>\<^bsub>G\<^esub> & y \<otimes>\<^bsub>G\<^esub> x = \<one>\<^bsub>G\<^esub>)}"
 | 
| 13936 | 31 | |
| 32 | consts | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46559diff
changeset | 33 |   pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a"  (infixr "'(^')\<index>" 75)
 | 
| 35850 | 34 | |
| 35 | overloading nat_pow == "pow :: [_, 'a, nat] => 'a" | |
| 36 | begin | |
| 37 | definition "nat_pow G a n = nat_rec \<one>\<^bsub>G\<^esub> (%u b. b \<otimes>\<^bsub>G\<^esub> a) n" | |
| 38 | end | |
| 13936 | 39 | |
| 35850 | 40 | overloading int_pow == "pow :: [_, 'a, int] => 'a" | 
| 41 | begin | |
| 42 | definition "int_pow G a z = | |
| 43 | (let p = nat_rec \<one>\<^bsub>G\<^esub> (%u b. b \<otimes>\<^bsub>G\<^esub> a) | |
| 46559 | 44 | in if z < 0 then inv\<^bsub>G\<^esub> (p (nat (-z))) else p (nat z))" | 
| 35850 | 45 | end | 
| 13813 | 46 | |
| 19783 | 47 | locale monoid = | 
| 48 | fixes G (structure) | |
| 13813 | 49 | assumes m_closed [intro, simp]: | 
| 14963 | 50 | "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> carrier G" | 
| 51 | and m_assoc: | |
| 52 | "\<lbrakk>x \<in> carrier G; y \<in> carrier G; z \<in> carrier G\<rbrakk> | |
| 53 | \<Longrightarrow> (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" | |
| 54 | and one_closed [intro, simp]: "\<one> \<in> carrier G" | |
| 55 | and l_one [simp]: "x \<in> carrier G \<Longrightarrow> \<one> \<otimes> x = x" | |
| 56 | and r_one [simp]: "x \<in> carrier G \<Longrightarrow> x \<otimes> \<one> = x" | |
| 13817 | 57 | |
| 13936 | 58 | lemma monoidI: | 
| 19783 | 59 | fixes G (structure) | 
| 13936 | 60 | assumes m_closed: | 
| 14693 | 61 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G" | 
| 62 | and one_closed: "\<one> \<in> carrier G" | |
| 13936 | 63 | and m_assoc: | 
| 64 | "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 14693 | 65 | (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" | 
| 66 | and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x" | |
| 67 | and r_one: "!!x. x \<in> carrier G ==> x \<otimes> \<one> = x" | |
| 13936 | 68 | shows "monoid G" | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 69 | by (fast intro!: monoid.intro intro: assms) | 
| 13936 | 70 | |
| 71 | lemma (in monoid) Units_closed [dest]: | |
| 72 | "x \<in> Units G ==> x \<in> carrier G" | |
| 73 | by (unfold Units_def) fast | |
| 74 | ||
| 75 | lemma (in monoid) inv_unique: | |
| 14693 | 76 | assumes eq: "y \<otimes> x = \<one>" "x \<otimes> y' = \<one>" | 
| 77 | and G: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G" | |
| 13936 | 78 | shows "y = y'" | 
| 79 | proof - | |
| 80 | from G eq have "y = y \<otimes> (x \<otimes> y')" by simp | |
| 81 | also from G have "... = (y \<otimes> x) \<otimes> y'" by (simp add: m_assoc) | |
| 82 | also from G eq have "... = y'" by simp | |
| 83 | finally show ?thesis . | |
| 84 | qed | |
| 85 | ||
| 27698 | 86 | lemma (in monoid) Units_m_closed [intro, simp]: | 
| 87 | assumes x: "x \<in> Units G" and y: "y \<in> Units G" | |
| 88 | shows "x \<otimes> y \<in> Units G" | |
| 89 | proof - | |
| 90 | from x obtain x' where x: "x \<in> carrier G" "x' \<in> carrier G" and xinv: "x \<otimes> x' = \<one>" "x' \<otimes> x = \<one>" | |
| 91 | unfolding Units_def by fast | |
| 92 | from y obtain y' where y: "y \<in> carrier G" "y' \<in> carrier G" and yinv: "y \<otimes> y' = \<one>" "y' \<otimes> y = \<one>" | |
| 93 | unfolding Units_def by fast | |
| 94 | from x y xinv yinv have "y' \<otimes> (x' \<otimes> x) \<otimes> y = \<one>" by simp | |
| 95 | moreover from x y xinv yinv have "x \<otimes> (y \<otimes> y') \<otimes> x' = \<one>" by simp | |
| 96 | moreover note x y | |
| 97 | ultimately show ?thesis unfolding Units_def | |
| 98 |     -- "Must avoid premature use of @{text hyp_subst_tac}."
 | |
| 99 | apply (rule_tac CollectI) | |
| 100 | apply (rule) | |
| 101 | apply (fast) | |
| 102 | apply (rule bexI [where x = "y' \<otimes> x'"]) | |
| 103 | apply (auto simp: m_assoc) | |
| 104 | done | |
| 105 | qed | |
| 106 | ||
| 13940 | 107 | lemma (in monoid) Units_one_closed [intro, simp]: | 
| 108 | "\<one> \<in> Units G" | |
| 109 | by (unfold Units_def) auto | |
| 110 | ||
| 13936 | 111 | lemma (in monoid) Units_inv_closed [intro, simp]: | 
| 112 | "x \<in> Units G ==> inv x \<in> carrier G" | |
| 13943 | 113 | apply (unfold Units_def m_inv_def, auto) | 
| 13936 | 114 | apply (rule theI2, fast) | 
| 13943 | 115 | apply (fast intro: inv_unique, fast) | 
| 13936 | 116 | done | 
| 117 | ||
| 19981 | 118 | lemma (in monoid) Units_l_inv_ex: | 
| 119 | "x \<in> Units G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>" | |
| 120 | by (unfold Units_def) auto | |
| 121 | ||
| 122 | lemma (in monoid) Units_r_inv_ex: | |
| 123 | "x \<in> Units G ==> \<exists>y \<in> carrier G. x \<otimes> y = \<one>" | |
| 124 | by (unfold Units_def) auto | |
| 125 | ||
| 27698 | 126 | lemma (in monoid) Units_l_inv [simp]: | 
| 13936 | 127 | "x \<in> Units G ==> inv x \<otimes> x = \<one>" | 
| 13943 | 128 | apply (unfold Units_def m_inv_def, auto) | 
| 13936 | 129 | apply (rule theI2, fast) | 
| 13943 | 130 | apply (fast intro: inv_unique, fast) | 
| 13936 | 131 | done | 
| 132 | ||
| 27698 | 133 | lemma (in monoid) Units_r_inv [simp]: | 
| 13936 | 134 | "x \<in> Units G ==> x \<otimes> inv x = \<one>" | 
| 13943 | 135 | apply (unfold Units_def m_inv_def, auto) | 
| 13936 | 136 | apply (rule theI2, fast) | 
| 13943 | 137 | apply (fast intro: inv_unique, fast) | 
| 13936 | 138 | done | 
| 139 | ||
| 140 | lemma (in monoid) Units_inv_Units [intro, simp]: | |
| 141 | "x \<in> Units G ==> inv x \<in> Units G" | |
| 142 | proof - | |
| 143 | assume x: "x \<in> Units G" | |
| 144 | show "inv x \<in> Units G" | |
| 145 | by (auto simp add: Units_def | |
| 146 | intro: Units_l_inv Units_r_inv x Units_closed [OF x]) | |
| 147 | qed | |
| 148 | ||
| 149 | lemma (in monoid) Units_l_cancel [simp]: | |
| 150 | "[| x \<in> Units G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 151 | (x \<otimes> y = x \<otimes> z) = (y = z)" | |
| 152 | proof | |
| 153 | assume eq: "x \<otimes> y = x \<otimes> z" | |
| 14693 | 154 | and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G" | 
| 13936 | 155 | then have "(inv x \<otimes> x) \<otimes> y = (inv x \<otimes> x) \<otimes> z" | 
| 27698 | 156 | by (simp add: m_assoc Units_closed del: Units_l_inv) | 
| 44472 | 157 | with G show "y = z" by simp | 
| 13936 | 158 | next | 
| 159 | assume eq: "y = z" | |
| 14693 | 160 | and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G" | 
| 13936 | 161 | then show "x \<otimes> y = x \<otimes> z" by simp | 
| 162 | qed | |
| 163 | ||
| 164 | lemma (in monoid) Units_inv_inv [simp]: | |
| 165 | "x \<in> Units G ==> inv (inv x) = x" | |
| 166 | proof - | |
| 167 | assume x: "x \<in> Units G" | |
| 27698 | 168 | then have "inv x \<otimes> inv (inv x) = inv x \<otimes> x" by simp | 
| 169 | with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv) | |
| 13936 | 170 | qed | 
| 171 | ||
| 172 | lemma (in monoid) inv_inj_on_Units: | |
| 173 | "inj_on (m_inv G) (Units G)" | |
| 174 | proof (rule inj_onI) | |
| 175 | fix x y | |
| 14693 | 176 | assume G: "x \<in> Units G" "y \<in> Units G" and eq: "inv x = inv y" | 
| 13936 | 177 | then have "inv (inv x) = inv (inv y)" by simp | 
| 178 | with G show "x = y" by simp | |
| 179 | qed | |
| 180 | ||
| 13940 | 181 | lemma (in monoid) Units_inv_comm: | 
| 182 | assumes inv: "x \<otimes> y = \<one>" | |
| 14693 | 183 | and G: "x \<in> Units G" "y \<in> Units G" | 
| 13940 | 184 | shows "y \<otimes> x = \<one>" | 
| 185 | proof - | |
| 186 | from G have "x \<otimes> y \<otimes> x = x \<otimes> \<one>" by (auto simp add: inv Units_closed) | |
| 187 | with G show ?thesis by (simp del: r_one add: m_assoc Units_closed) | |
| 188 | qed | |
| 189 | ||
| 13936 | 190 | text {* Power *}
 | 
| 191 | ||
| 192 | lemma (in monoid) nat_pow_closed [intro, simp]: | |
| 193 | "x \<in> carrier G ==> x (^) (n::nat) \<in> carrier G" | |
| 194 | by (induct n) (simp_all add: nat_pow_def) | |
| 195 | ||
| 196 | lemma (in monoid) nat_pow_0 [simp]: | |
| 197 | "x (^) (0::nat) = \<one>" | |
| 198 | by (simp add: nat_pow_def) | |
| 199 | ||
| 200 | lemma (in monoid) nat_pow_Suc [simp]: | |
| 201 | "x (^) (Suc n) = x (^) n \<otimes> x" | |
| 202 | by (simp add: nat_pow_def) | |
| 203 | ||
| 204 | lemma (in monoid) nat_pow_one [simp]: | |
| 205 | "\<one> (^) (n::nat) = \<one>" | |
| 206 | by (induct n) simp_all | |
| 207 | ||
| 208 | lemma (in monoid) nat_pow_mult: | |
| 209 | "x \<in> carrier G ==> x (^) (n::nat) \<otimes> x (^) m = x (^) (n + m)" | |
| 210 | by (induct m) (simp_all add: m_assoc [THEN sym]) | |
| 211 | ||
| 212 | lemma (in monoid) nat_pow_pow: | |
| 213 | "x \<in> carrier G ==> (x (^) n) (^) m = x (^) (n * m::nat)" | |
| 214 | by (induct m) (simp, simp add: nat_pow_mult add_commute) | |
| 215 | ||
| 27698 | 216 | |
| 217 | (* Jacobson defines submonoid here. *) | |
| 218 | (* Jacobson defines the order of a monoid here. *) | |
| 219 | ||
| 220 | ||
| 221 | subsection {* Groups *}
 | |
| 222 | ||
| 13936 | 223 | text {*
 | 
| 224 | A group is a monoid all of whose elements are invertible. | |
| 225 | *} | |
| 226 | ||
| 227 | locale group = monoid + | |
| 228 | assumes Units: "carrier G <= Units G" | |
| 229 | ||
| 26199 | 230 | lemma (in group) is_group: "group G" by (rule group_axioms) | 
| 14761 | 231 | |
| 13936 | 232 | theorem groupI: | 
| 19783 | 233 | fixes G (structure) | 
| 13936 | 234 | assumes m_closed [simp]: | 
| 14693 | 235 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G" | 
| 236 | and one_closed [simp]: "\<one> \<in> carrier G" | |
| 13936 | 237 | and m_assoc: | 
| 238 | "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 14693 | 239 | (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" | 
| 240 | and l_one [simp]: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x" | |
| 14963 | 241 | and l_inv_ex: "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>" | 
| 13936 | 242 | shows "group G" | 
| 243 | proof - | |
| 244 | have l_cancel [simp]: | |
| 245 | "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 14693 | 246 | (x \<otimes> y = x \<otimes> z) = (y = z)" | 
| 13936 | 247 | proof | 
| 248 | fix x y z | |
| 14693 | 249 | assume eq: "x \<otimes> y = x \<otimes> z" | 
| 250 | and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" | |
| 13936 | 251 | with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G" | 
| 14693 | 252 | and l_inv: "x_inv \<otimes> x = \<one>" by fast | 
| 253 | from G eq xG have "(x_inv \<otimes> x) \<otimes> y = (x_inv \<otimes> x) \<otimes> z" | |
| 13936 | 254 | by (simp add: m_assoc) | 
| 255 | with G show "y = z" by (simp add: l_inv) | |
| 256 | next | |
| 257 | fix x y z | |
| 258 | assume eq: "y = z" | |
| 14693 | 259 | and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" | 
| 260 | then show "x \<otimes> y = x \<otimes> z" by simp | |
| 13936 | 261 | qed | 
| 262 | have r_one: | |
| 14693 | 263 | "!!x. x \<in> carrier G ==> x \<otimes> \<one> = x" | 
| 13936 | 264 | proof - | 
| 265 | fix x | |
| 266 | assume x: "x \<in> carrier G" | |
| 267 | with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G" | |
| 14693 | 268 | and l_inv: "x_inv \<otimes> x = \<one>" by fast | 
| 269 | from x xG have "x_inv \<otimes> (x \<otimes> \<one>) = x_inv \<otimes> x" | |
| 13936 | 270 | by (simp add: m_assoc [symmetric] l_inv) | 
| 14693 | 271 | with x xG show "x \<otimes> \<one> = x" by simp | 
| 13936 | 272 | qed | 
| 273 | have inv_ex: | |
| 14963 | 274 | "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one> & x \<otimes> y = \<one>" | 
| 13936 | 275 | proof - | 
| 276 | fix x | |
| 277 | assume x: "x \<in> carrier G" | |
| 278 | with l_inv_ex obtain y where y: "y \<in> carrier G" | |
| 14693 | 279 | and l_inv: "y \<otimes> x = \<one>" by fast | 
| 280 | from x y have "y \<otimes> (x \<otimes> y) = y \<otimes> \<one>" | |
| 13936 | 281 | by (simp add: m_assoc [symmetric] l_inv r_one) | 
| 14693 | 282 | with x y have r_inv: "x \<otimes> y = \<one>" | 
| 13936 | 283 | by simp | 
| 14963 | 284 | from x y show "\<exists>y \<in> carrier G. y \<otimes> x = \<one> & x \<otimes> y = \<one>" | 
| 13936 | 285 | by (fast intro: l_inv r_inv) | 
| 286 | qed | |
| 287 | then have carrier_subset_Units: "carrier G <= Units G" | |
| 288 | by (unfold Units_def) fast | |
| 44655 | 289 | show ?thesis by default (auto simp: r_one m_assoc carrier_subset_Units) | 
| 13936 | 290 | qed | 
| 291 | ||
| 27698 | 292 | lemma (in monoid) group_l_invI: | 
| 13936 | 293 | assumes l_inv_ex: | 
| 14963 | 294 | "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>" | 
| 13936 | 295 | shows "group G" | 
| 296 | by (rule groupI) (auto intro: m_assoc l_inv_ex) | |
| 297 | ||
| 298 | lemma (in group) Units_eq [simp]: | |
| 299 | "Units G = carrier G" | |
| 300 | proof | |
| 301 | show "Units G <= carrier G" by fast | |
| 302 | next | |
| 303 | show "carrier G <= Units G" by (rule Units) | |
| 304 | qed | |
| 305 | ||
| 306 | lemma (in group) inv_closed [intro, simp]: | |
| 307 | "x \<in> carrier G ==> inv x \<in> carrier G" | |
| 308 | using Units_inv_closed by simp | |
| 309 | ||
| 19981 | 310 | lemma (in group) l_inv_ex [simp]: | 
| 311 | "x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>" | |
| 312 | using Units_l_inv_ex by simp | |
| 313 | ||
| 314 | lemma (in group) r_inv_ex [simp]: | |
| 315 | "x \<in> carrier G ==> \<exists>y \<in> carrier G. x \<otimes> y = \<one>" | |
| 316 | using Units_r_inv_ex by simp | |
| 317 | ||
| 14963 | 318 | lemma (in group) l_inv [simp]: | 
| 13936 | 319 | "x \<in> carrier G ==> inv x \<otimes> x = \<one>" | 
| 320 | using Units_l_inv by simp | |
| 13813 | 321 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 322 | |
| 13813 | 323 | subsection {* Cancellation Laws and Basic Properties *}
 | 
| 324 | ||
| 325 | lemma (in group) l_cancel [simp]: | |
| 326 | "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 327 | (x \<otimes> y = x \<otimes> z) = (y = z)" | |
| 13936 | 328 | using Units_l_inv by simp | 
| 13940 | 329 | |
| 14963 | 330 | lemma (in group) r_inv [simp]: | 
| 13813 | 331 | "x \<in> carrier G ==> x \<otimes> inv x = \<one>" | 
| 332 | proof - | |
| 333 | assume x: "x \<in> carrier G" | |
| 334 | then have "inv x \<otimes> (x \<otimes> inv x) = inv x \<otimes> \<one>" | |
| 44472 | 335 | by (simp add: m_assoc [symmetric]) | 
| 13813 | 336 | with x show ?thesis by (simp del: r_one) | 
| 337 | qed | |
| 338 | ||
| 339 | lemma (in group) r_cancel [simp]: | |
| 340 | "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 341 | (y \<otimes> x = z \<otimes> x) = (y = z)" | |
| 342 | proof | |
| 343 | assume eq: "y \<otimes> x = z \<otimes> x" | |
| 14693 | 344 | and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" | 
| 13813 | 345 | then have "y \<otimes> (x \<otimes> inv x) = z \<otimes> (x \<otimes> inv x)" | 
| 27698 | 346 | by (simp add: m_assoc [symmetric] del: r_inv Units_r_inv) | 
| 14963 | 347 | with G show "y = z" by simp | 
| 13813 | 348 | next | 
| 349 | assume eq: "y = z" | |
| 14693 | 350 | and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" | 
| 13813 | 351 | then show "y \<otimes> x = z \<otimes> x" by simp | 
| 352 | qed | |
| 353 | ||
| 13854 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 354 | lemma (in group) inv_one [simp]: | 
| 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 355 | "inv \<one> = \<one>" | 
| 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 356 | proof - | 
| 27698 | 357 | have "inv \<one> = \<one> \<otimes> (inv \<one>)" by (simp del: r_inv Units_r_inv) | 
| 14963 | 358 | moreover have "... = \<one>" by simp | 
| 13854 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 359 | finally show ?thesis . | 
| 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 360 | qed | 
| 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 361 | |
| 13813 | 362 | lemma (in group) inv_inv [simp]: | 
| 363 | "x \<in> carrier G ==> inv (inv x) = x" | |
| 13936 | 364 | using Units_inv_inv by simp | 
| 365 | ||
| 366 | lemma (in group) inv_inj: | |
| 367 | "inj_on (m_inv G) (carrier G)" | |
| 368 | using inv_inj_on_Units by simp | |
| 13813 | 369 | |
| 13854 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 370 | lemma (in group) inv_mult_group: | 
| 13813 | 371 | "[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv y \<otimes> inv x" | 
| 372 | proof - | |
| 14693 | 373 | assume G: "x \<in> carrier G" "y \<in> carrier G" | 
| 13813 | 374 | then have "inv (x \<otimes> y) \<otimes> (x \<otimes> y) = (inv y \<otimes> inv x) \<otimes> (x \<otimes> y)" | 
| 44472 | 375 | by (simp add: m_assoc) (simp add: m_assoc [symmetric]) | 
| 27698 | 376 | with G show ?thesis by (simp del: l_inv Units_l_inv) | 
| 13813 | 377 | qed | 
| 378 | ||
| 13940 | 379 | lemma (in group) inv_comm: | 
| 380 | "[| x \<otimes> y = \<one>; x \<in> carrier G; y \<in> carrier G |] ==> y \<otimes> x = \<one>" | |
| 14693 | 381 | by (rule Units_inv_comm) auto | 
| 13940 | 382 | |
| 13944 | 383 | lemma (in group) inv_equality: | 
| 13943 | 384 | "[|y \<otimes> x = \<one>; x \<in> carrier G; y \<in> carrier G|] ==> inv x = y" | 
| 385 | apply (simp add: m_inv_def) | |
| 386 | apply (rule the_equality) | |
| 14693 | 387 | apply (simp add: inv_comm [of y x]) | 
| 388 | apply (rule r_cancel [THEN iffD1], auto) | |
| 13943 | 389 | done | 
| 390 | ||
| 13936 | 391 | text {* Power *}
 | 
| 392 | ||
| 393 | lemma (in group) int_pow_def2: | |
| 46559 | 394 | "a (^) (z::int) = (if z < 0 then inv (a (^) (nat (-z))) else a (^) (nat z))" | 
| 13936 | 395 | by (simp add: int_pow_def nat_pow_def Let_def) | 
| 396 | ||
| 397 | lemma (in group) int_pow_0 [simp]: | |
| 398 | "x (^) (0::int) = \<one>" | |
| 399 | by (simp add: int_pow_def2) | |
| 400 | ||
| 401 | lemma (in group) int_pow_one [simp]: | |
| 402 | "\<one> (^) (z::int) = \<one>" | |
| 403 | by (simp add: int_pow_def2) | |
| 404 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 405 | |
| 14963 | 406 | subsection {* Subgroups *}
 | 
| 13813 | 407 | |
| 19783 | 408 | locale subgroup = | 
| 409 | fixes H and G (structure) | |
| 14963 | 410 | assumes subset: "H \<subseteq> carrier G" | 
| 411 | and m_closed [intro, simp]: "\<lbrakk>x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> H" | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 412 | and one_closed [simp]: "\<one> \<in> H" | 
| 14963 | 413 | and m_inv_closed [intro,simp]: "x \<in> H \<Longrightarrow> inv x \<in> H" | 
| 13813 | 414 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 415 | lemma (in subgroup) is_subgroup: | 
| 26199 | 416 | "subgroup H G" by (rule subgroup_axioms) | 
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 417 | |
| 13813 | 418 | declare (in subgroup) group.intro [intro] | 
| 13949 
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
 ballarin parents: 
13944diff
changeset | 419 | |
| 14963 | 420 | lemma (in subgroup) mem_carrier [simp]: | 
| 421 | "x \<in> H \<Longrightarrow> x \<in> carrier G" | |
| 422 | using subset by blast | |
| 13813 | 423 | |
| 14963 | 424 | lemma subgroup_imp_subset: | 
| 425 | "subgroup H G \<Longrightarrow> H \<subseteq> carrier G" | |
| 426 | by (rule subgroup.subset) | |
| 427 | ||
| 428 | lemma (in subgroup) subgroup_is_group [intro]: | |
| 27611 | 429 | assumes "group G" | 
| 430 | shows "group (G\<lparr>carrier := H\<rparr>)" | |
| 431 | proof - | |
| 29237 | 432 | interpret group G by fact | 
| 27611 | 433 | show ?thesis | 
| 27698 | 434 | apply (rule monoid.group_l_invI) | 
| 435 | apply (unfold_locales) [1] | |
| 436 | apply (auto intro: m_assoc l_inv mem_carrier) | |
| 437 | done | |
| 27611 | 438 | qed | 
| 13813 | 439 | |
| 440 | text {*
 | |
| 441 |   Since @{term H} is nonempty, it contains some element @{term x}.  Since
 | |
| 442 |   it is closed under inverse, it contains @{text "inv x"}.  Since
 | |
| 443 |   it is closed under product, it contains @{text "x \<otimes> inv x = \<one>"}.
 | |
| 444 | *} | |
| 445 | ||
| 446 | lemma (in group) one_in_subset: | |
| 447 |   "[| H \<subseteq> carrier G; H \<noteq> {}; \<forall>a \<in> H. inv a \<in> H; \<forall>a\<in>H. \<forall>b\<in>H. a \<otimes> b \<in> H |]
 | |
| 448 | ==> \<one> \<in> H" | |
| 44472 | 449 | by force | 
| 13813 | 450 | |
| 451 | text {* A characterization of subgroups: closed, non-empty subset. *}
 | |
| 452 | ||
| 453 | lemma (in group) subgroupI: | |
| 454 |   assumes subset: "H \<subseteq> carrier G" and non_empty: "H \<noteq> {}"
 | |
| 14963 | 455 | and inv: "!!a. a \<in> H \<Longrightarrow> inv a \<in> H" | 
| 456 | and mult: "!!a b. \<lbrakk>a \<in> H; b \<in> H\<rbrakk> \<Longrightarrow> a \<otimes> b \<in> H" | |
| 13813 | 457 | shows "subgroup H G" | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 458 | proof (simp add: subgroup_def assms) | 
| 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 459 | show "\<one> \<in> H" by (rule one_in_subset) (auto simp only: assms) | 
| 13813 | 460 | qed | 
| 461 | ||
| 13936 | 462 | declare monoid.one_closed [iff] group.inv_closed [simp] | 
| 463 | monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp] | |
| 13813 | 464 | |
| 465 | lemma subgroup_nonempty: | |
| 466 |   "~ subgroup {} G"
 | |
| 467 | by (blast dest: subgroup.one_closed) | |
| 468 | ||
| 469 | lemma (in subgroup) finite_imp_card_positive: | |
| 470 | "finite (carrier G) ==> 0 < card H" | |
| 471 | proof (rule classical) | |
| 41528 | 472 | assume "finite (carrier G)" and a: "~ 0 < card H" | 
| 14963 | 473 | then have "finite H" by (blast intro: finite_subset [OF subset]) | 
| 41528 | 474 |   with is_subgroup a have "subgroup {} G" by simp
 | 
| 13813 | 475 | with subgroup_nonempty show ?thesis by contradiction | 
| 476 | qed | |
| 477 | ||
| 13936 | 478 | (* | 
| 479 | lemma (in monoid) Units_subgroup: | |
| 480 | "subgroup (Units G) G" | |
| 481 | *) | |
| 482 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 483 | |
| 13813 | 484 | subsection {* Direct Products *}
 | 
| 485 | ||
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 486 | definition | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 487 |   DirProd :: "_ \<Rightarrow> _ \<Rightarrow> ('a \<times> 'b) monoid" (infixr "\<times>\<times>" 80) where
 | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 488 | "G \<times>\<times> H = | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 489 | \<lparr>carrier = carrier G \<times> carrier H, | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 490 | mult = (\<lambda>(g, h) (g', h'). (g \<otimes>\<^bsub>G\<^esub> g', h \<otimes>\<^bsub>H\<^esub> h')), | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 491 | one = (\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>)\<rparr>" | 
| 13813 | 492 | |
| 14963 | 493 | lemma DirProd_monoid: | 
| 27611 | 494 | assumes "monoid G" and "monoid H" | 
| 14963 | 495 | shows "monoid (G \<times>\<times> H)" | 
| 496 | proof - | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 497 | interpret G: monoid G by fact | 
| 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 498 | interpret H: monoid H by fact | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 499 | from assms | 
| 14963 | 500 | show ?thesis by (unfold monoid_def DirProd_def, auto) | 
| 501 | qed | |
| 13813 | 502 | |
| 503 | ||
| 14963 | 504 | text{*Does not use the previous result because it's easier just to use auto.*}
 | 
| 505 | lemma DirProd_group: | |
| 27611 | 506 | assumes "group G" and "group H" | 
| 14963 | 507 | shows "group (G \<times>\<times> H)" | 
| 27611 | 508 | proof - | 
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 509 | interpret G: group G by fact | 
| 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 510 | interpret H: group H by fact | 
| 27611 | 511 | show ?thesis by (rule groupI) | 
| 14963 | 512 | (auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv | 
| 513 | simp add: DirProd_def) | |
| 27611 | 514 | qed | 
| 13813 | 515 | |
| 14963 | 516 | lemma carrier_DirProd [simp]: | 
| 517 | "carrier (G \<times>\<times> H) = carrier G \<times> carrier H" | |
| 518 | by (simp add: DirProd_def) | |
| 13944 | 519 | |
| 14963 | 520 | lemma one_DirProd [simp]: | 
| 521 | "\<one>\<^bsub>G \<times>\<times> H\<^esub> = (\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>)" | |
| 522 | by (simp add: DirProd_def) | |
| 13944 | 523 | |
| 14963 | 524 | lemma mult_DirProd [simp]: | 
| 525 | "(g, h) \<otimes>\<^bsub>(G \<times>\<times> H)\<^esub> (g', h') = (g \<otimes>\<^bsub>G\<^esub> g', h \<otimes>\<^bsub>H\<^esub> h')" | |
| 526 | by (simp add: DirProd_def) | |
| 13944 | 527 | |
| 14963 | 528 | lemma inv_DirProd [simp]: | 
| 27611 | 529 | assumes "group G" and "group H" | 
| 13944 | 530 | assumes g: "g \<in> carrier G" | 
| 531 | and h: "h \<in> carrier H" | |
| 14963 | 532 | shows "m_inv (G \<times>\<times> H) (g, h) = (inv\<^bsub>G\<^esub> g, inv\<^bsub>H\<^esub> h)" | 
| 27611 | 533 | proof - | 
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 534 | interpret G: group G by fact | 
| 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 535 | interpret H: group H by fact | 
| 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 536 | interpret Prod: group "G \<times>\<times> H" | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 537 | by (auto intro: DirProd_group group.intro group.axioms assms) | 
| 14963 | 538 | show ?thesis by (simp add: Prod.inv_equality g h) | 
| 539 | qed | |
| 27698 | 540 | |
| 14963 | 541 | |
| 542 | subsection {* Homomorphisms and Isomorphisms *}
 | |
| 13813 | 543 | |
| 35847 | 544 | definition | 
| 545 |   hom :: "_ => _ => ('a => 'b) set" where
 | |
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 546 | "hom G H = | 
| 13813 | 547 |     {h. h \<in> carrier G -> carrier H &
 | 
| 14693 | 548 | (\<forall>x \<in> carrier G. \<forall>y \<in> carrier G. h (x \<otimes>\<^bsub>G\<^esub> y) = h x \<otimes>\<^bsub>H\<^esub> h y)}" | 
| 13813 | 549 | |
| 14761 | 550 | lemma (in group) hom_compose: | 
| 31754 | 551 | "[|h \<in> hom G H; i \<in> hom H I|] ==> compose (carrier G) i h \<in> hom G I" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44655diff
changeset | 552 | by (fastforce simp add: hom_def compose_def) | 
| 13943 | 553 | |
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 554 | definition | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 555 |   iso :: "_ => _ => ('a => 'b) set" (infixr "\<cong>" 60)
 | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 556 |   where "G \<cong> H = {h. h \<in> hom G H & bij_betw h (carrier G) (carrier H)}"
 | 
| 14761 | 557 | |
| 14803 | 558 | lemma iso_refl: "(%x. x) \<in> G \<cong> G" | 
| 31727 | 559 | by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def) | 
| 14761 | 560 | |
| 561 | lemma (in group) iso_sym: | |
| 33057 | 562 | "h \<in> G \<cong> H \<Longrightarrow> inv_into (carrier G) h \<in> H \<cong> G" | 
| 563 | apply (simp add: iso_def bij_betw_inv_into) | |
| 564 | apply (subgoal_tac "inv_into (carrier G) h \<in> carrier H \<rightarrow> carrier G") | |
| 565 | prefer 2 apply (simp add: bij_betw_imp_funcset [OF bij_betw_inv_into]) | |
| 566 | apply (simp add: hom_def bij_betw_def inv_into_f_eq f_inv_into_f Pi_def) | |
| 14761 | 567 | done | 
| 568 | ||
| 569 | lemma (in group) iso_trans: | |
| 14803 | 570 | "[|h \<in> G \<cong> H; i \<in> H \<cong> I|] ==> (compose (carrier G) i h) \<in> G \<cong> I" | 
| 14761 | 571 | by (auto simp add: iso_def hom_compose bij_betw_compose) | 
| 572 | ||
| 14963 | 573 | lemma DirProd_commute_iso: | 
| 574 | shows "(\<lambda>(x,y). (y,x)) \<in> (G \<times>\<times> H) \<cong> (H \<times>\<times> G)" | |
| 31754 | 575 | by (auto simp add: iso_def hom_def inj_on_def bij_betw_def) | 
| 14761 | 576 | |
| 14963 | 577 | lemma DirProd_assoc_iso: | 
| 578 | shows "(\<lambda>(x,y,z). (x,(y,z))) \<in> (G \<times>\<times> H \<times>\<times> I) \<cong> (G \<times>\<times> (H \<times>\<times> I))" | |
| 31727 | 579 | by (auto simp add: iso_def hom_def inj_on_def bij_betw_def) | 
| 14761 | 580 | |
| 581 | ||
| 14963 | 582 | text{*Basis for homomorphism proofs: we assume two groups @{term G} and
 | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14963diff
changeset | 583 |   @{term H}, with a homomorphism @{term h} between them*}
 | 
| 29237 | 584 | locale group_hom = G: group G + H: group H for G (structure) and H (structure) + | 
| 585 | fixes h | |
| 13813 | 586 | assumes homh: "h \<in> hom G H" | 
| 29240 | 587 | |
| 588 | lemma (in group_hom) hom_mult [simp]: | |
| 589 | "[| x \<in> carrier G; y \<in> carrier G |] ==> h (x \<otimes>\<^bsub>G\<^esub> y) = h x \<otimes>\<^bsub>H\<^esub> h y" | |
| 590 | proof - | |
| 591 | assume "x \<in> carrier G" "y \<in> carrier G" | |
| 592 | with homh [unfolded hom_def] show ?thesis by simp | |
| 593 | qed | |
| 594 | ||
| 595 | lemma (in group_hom) hom_closed [simp]: | |
| 596 | "x \<in> carrier G ==> h x \<in> carrier H" | |
| 597 | proof - | |
| 598 | assume "x \<in> carrier G" | |
| 31754 | 599 | with homh [unfolded hom_def] show ?thesis by auto | 
| 29240 | 600 | qed | 
| 13813 | 601 | |
| 602 | lemma (in group_hom) one_closed [simp]: | |
| 603 | "h \<one> \<in> carrier H" | |
| 604 | by simp | |
| 605 | ||
| 606 | lemma (in group_hom) hom_one [simp]: | |
| 14693 | 607 | "h \<one> = \<one>\<^bsub>H\<^esub>" | 
| 13813 | 608 | proof - | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14963diff
changeset | 609 | have "h \<one> \<otimes>\<^bsub>H\<^esub> \<one>\<^bsub>H\<^esub> = h \<one> \<otimes>\<^bsub>H\<^esub> h \<one>" | 
| 13813 | 610 | by (simp add: hom_mult [symmetric] del: hom_mult) | 
| 611 | then show ?thesis by (simp del: r_one) | |
| 612 | qed | |
| 613 | ||
| 614 | lemma (in group_hom) inv_closed [simp]: | |
| 615 | "x \<in> carrier G ==> h (inv x) \<in> carrier H" | |
| 616 | by simp | |
| 617 | ||
| 618 | lemma (in group_hom) hom_inv [simp]: | |
| 14693 | 619 | "x \<in> carrier G ==> h (inv x) = inv\<^bsub>H\<^esub> (h x)" | 
| 13813 | 620 | proof - | 
| 621 | assume x: "x \<in> carrier G" | |
| 14693 | 622 | then have "h x \<otimes>\<^bsub>H\<^esub> h (inv x) = \<one>\<^bsub>H\<^esub>" | 
| 14963 | 623 | by (simp add: hom_mult [symmetric] del: hom_mult) | 
| 14693 | 624 | also from x have "... = h x \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h x)" | 
| 14963 | 625 | by (simp add: hom_mult [symmetric] del: hom_mult) | 
| 14693 | 626 | finally have "h x \<otimes>\<^bsub>H\<^esub> h (inv x) = h x \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h x)" . | 
| 27698 | 627 | with x show ?thesis by (simp del: H.r_inv H.Units_r_inv) | 
| 13813 | 628 | qed | 
| 629 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 630 | |
| 13949 
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
 ballarin parents: 
13944diff
changeset | 631 | subsection {* Commutative Structures *}
 | 
| 13936 | 632 | |
| 633 | text {*
 | |
| 634 | Naming convention: multiplicative structures that are commutative | |
| 635 |   are called \emph{commutative}, additive structures are called
 | |
| 636 |   \emph{Abelian}.
 | |
| 637 | *} | |
| 13813 | 638 | |
| 14963 | 639 | locale comm_monoid = monoid + | 
| 640 | assumes m_comm: "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow> x \<otimes> y = y \<otimes> x" | |
| 13813 | 641 | |
| 14963 | 642 | lemma (in comm_monoid) m_lcomm: | 
| 643 | "\<lbrakk>x \<in> carrier G; y \<in> carrier G; z \<in> carrier G\<rbrakk> \<Longrightarrow> | |
| 13813 | 644 | x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)" | 
| 645 | proof - | |
| 14693 | 646 | assume xyz: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" | 
| 13813 | 647 | from xyz have "x \<otimes> (y \<otimes> z) = (x \<otimes> y) \<otimes> z" by (simp add: m_assoc) | 
| 648 | also from xyz have "... = (y \<otimes> x) \<otimes> z" by (simp add: m_comm) | |
| 649 | also from xyz have "... = y \<otimes> (x \<otimes> z)" by (simp add: m_assoc) | |
| 650 | finally show ?thesis . | |
| 651 | qed | |
| 652 | ||
| 14963 | 653 | lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm | 
| 13813 | 654 | |
| 13936 | 655 | lemma comm_monoidI: | 
| 19783 | 656 | fixes G (structure) | 
| 13936 | 657 | assumes m_closed: | 
| 14693 | 658 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G" | 
| 659 | and one_closed: "\<one> \<in> carrier G" | |
| 13936 | 660 | and m_assoc: | 
| 661 | "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 14693 | 662 | (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" | 
| 663 | and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x" | |
| 13936 | 664 | and m_comm: | 
| 14693 | 665 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x" | 
| 13936 | 666 | shows "comm_monoid G" | 
| 667 | using l_one | |
| 14963 | 668 | by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 669 | intro: assms simp: m_closed one_closed m_comm) | 
| 13817 | 670 | |
| 13936 | 671 | lemma (in monoid) monoid_comm_monoidI: | 
| 672 | assumes m_comm: | |
| 14693 | 673 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x" | 
| 13936 | 674 | shows "comm_monoid G" | 
| 675 | by (rule comm_monoidI) (auto intro: m_assoc m_comm) | |
| 14963 | 676 | |
| 14693 | 677 | (*lemma (in comm_monoid) r_one [simp]: | 
| 13817 | 678 | "x \<in> carrier G ==> x \<otimes> \<one> = x" | 
| 679 | proof - | |
| 680 | assume G: "x \<in> carrier G" | |
| 681 | then have "x \<otimes> \<one> = \<one> \<otimes> x" by (simp add: m_comm) | |
| 682 | also from G have "... = x" by simp | |
| 683 | finally show ?thesis . | |
| 14693 | 684 | qed*) | 
| 14963 | 685 | |
| 13936 | 686 | lemma (in comm_monoid) nat_pow_distr: | 
| 687 | "[| x \<in> carrier G; y \<in> carrier G |] ==> | |
| 688 | (x \<otimes> y) (^) (n::nat) = x (^) n \<otimes> y (^) n" | |
| 689 | by (induct n) (simp, simp add: m_ac) | |
| 690 | ||
| 691 | locale comm_group = comm_monoid + group | |
| 692 | ||
| 693 | lemma (in group) group_comm_groupI: | |
| 694 | assumes m_comm: "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> | |
| 14693 | 695 | x \<otimes> y = y \<otimes> x" | 
| 13936 | 696 | shows "comm_group G" | 
| 44655 | 697 | by default (simp_all add: m_comm) | 
| 13817 | 698 | |
| 13936 | 699 | lemma comm_groupI: | 
| 19783 | 700 | fixes G (structure) | 
| 13936 | 701 | assumes m_closed: | 
| 14693 | 702 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G" | 
| 703 | and one_closed: "\<one> \<in> carrier G" | |
| 13936 | 704 | and m_assoc: | 
| 705 | "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 14693 | 706 | (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" | 
| 13936 | 707 | and m_comm: | 
| 14693 | 708 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x" | 
| 709 | and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x" | |
| 14963 | 710 | and l_inv_ex: "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>" | 
| 13936 | 711 | shows "comm_group G" | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 712 | by (fast intro: group.group_comm_groupI groupI assms) | 
| 13936 | 713 | |
| 714 | lemma (in comm_group) inv_mult: | |
| 13854 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 715 | "[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv x \<otimes> inv y" | 
| 13936 | 716 | by (simp add: m_ac inv_mult_group) | 
| 13854 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 717 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 718 | |
| 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 719 | subsection {* The Lattice of Subgroups of a Group *}
 | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 720 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 721 | text_raw {* \label{sec:subgroup-lattice} *}
 | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 722 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 723 | theorem (in group) subgroups_partial_order: | 
| 27713 
95b36bfe7fc4
New locales for orders and lattices where the equivalence relation is not restricted to equality.
 ballarin parents: 
27698diff
changeset | 724 |   "partial_order (| carrier = {H. subgroup H G}, eq = op =, le = op \<subseteq> |)"
 | 
| 44655 | 725 | by default simp_all | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 726 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 727 | lemma (in group) subgroup_self: | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 728 | "subgroup (carrier G) G" | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 729 | by (rule subgroupI) auto | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 730 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 731 | lemma (in group) subgroup_imp_group: | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 732 | "subgroup H G ==> group (G(| carrier := H |))" | 
| 26199 | 733 | by (erule subgroup.subgroup_is_group) (rule group_axioms) | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 734 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 735 | lemma (in group) is_monoid [intro, simp]: | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 736 | "monoid G" | 
| 14963 | 737 | by (auto intro: monoid.intro m_assoc) | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 738 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 739 | lemma (in group) subgroup_inv_equality: | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 740 | "[| subgroup H G; x \<in> H |] ==> m_inv (G (| carrier := H |)) x = inv x" | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 741 | apply (rule_tac inv_equality [THEN sym]) | 
| 14761 | 742 | apply (rule group.l_inv [OF subgroup_imp_group, simplified], assumption+) | 
| 743 | apply (rule subsetD [OF subgroup.subset], assumption+) | |
| 744 | apply (rule subsetD [OF subgroup.subset], assumption) | |
| 745 | apply (rule_tac group.inv_closed [OF subgroup_imp_group, simplified], assumption+) | |
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 746 | done | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 747 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 748 | theorem (in group) subgroups_Inter: | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 749 | assumes subgr: "(!!H. H \<in> A ==> subgroup H G)" | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 750 |     and not_empty: "A ~= {}"
 | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 751 | shows "subgroup (\<Inter>A) G" | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 752 | proof (rule subgroupI) | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 753 | from subgr [THEN subgroup.subset] and not_empty | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 754 | show "\<Inter>A \<subseteq> carrier G" by blast | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 755 | next | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 756 | from subgr [THEN subgroup.one_closed] | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 757 |   show "\<Inter>A ~= {}" by blast
 | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 758 | next | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 759 | fix x assume "x \<in> \<Inter>A" | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 760 | with subgr [THEN subgroup.m_inv_closed] | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 761 | show "inv x \<in> \<Inter>A" by blast | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 762 | next | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 763 | fix x y assume "x \<in> \<Inter>A" "y \<in> \<Inter>A" | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 764 | with subgr [THEN subgroup.m_closed] | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 765 | show "x \<otimes> y \<in> \<Inter>A" by blast | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 766 | qed | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 767 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 768 | theorem (in group) subgroups_complete_lattice: | 
| 27713 
95b36bfe7fc4
New locales for orders and lattices where the equivalence relation is not restricted to equality.
 ballarin parents: 
27698diff
changeset | 769 |   "complete_lattice (| carrier = {H. subgroup H G}, eq = op =, le = op \<subseteq> |)"
 | 
| 22063 
717425609192
Reverted to structure representation with records.
 ballarin parents: 
21041diff
changeset | 770 | (is "complete_lattice ?L") | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 771 | proof (rule partial_order.complete_lattice_criterion1) | 
| 22063 
717425609192
Reverted to structure representation with records.
 ballarin parents: 
21041diff
changeset | 772 | show "partial_order ?L" by (rule subgroups_partial_order) | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 773 | next | 
| 46008 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 774 | have "greatest ?L (carrier G) (carrier ?L)" | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 775 | by (unfold greatest_def) (simp add: subgroup.subset subgroup_self) | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 776 | then show "\<exists>G. greatest ?L G (carrier ?L)" .. | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 777 | next | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 778 | fix A | 
| 22063 
717425609192
Reverted to structure representation with records.
 ballarin parents: 
21041diff
changeset | 779 |   assume L: "A \<subseteq> carrier ?L" and non_empty: "A ~= {}"
 | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 780 | then have Int_subgroup: "subgroup (\<Inter>A) G" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44655diff
changeset | 781 | by (fastforce intro: subgroups_Inter) | 
| 46008 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 782 | have "greatest ?L (\<Inter>A) (Lower ?L A)" (is "greatest _ ?Int _") | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 783 | proof (rule greatest_LowerI) | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 784 | fix H | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 785 | assume H: "H \<in> A" | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 786 | with L have subgroupH: "subgroup H G" by auto | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 787 | from subgroupH have groupH: "group (G (| carrier := H |))" (is "group ?H") | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 788 | by (rule subgroup_imp_group) | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 789 | from groupH have monoidH: "monoid ?H" | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 790 | by (rule group.is_monoid) | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 791 | from H have Int_subset: "?Int \<subseteq> H" by fastforce | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 792 | then show "le ?L ?Int H" by simp | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 793 | next | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 794 | fix H | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 795 | assume H: "H \<in> Lower ?L A" | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 796 | with L Int_subgroup show "le ?L H ?Int" | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 797 | by (fastforce simp: Lower_def intro: Inter_greatest) | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 798 | next | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 799 | show "A \<subseteq> carrier ?L" by (rule L) | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 800 | next | 
| 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 801 | show "?Int \<in> carrier ?L" by simp (rule Int_subgroup) | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 802 | qed | 
| 46008 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44890diff
changeset | 803 | then show "\<exists>I. greatest ?L I (Lower ?L A)" .. | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 804 | qed | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 805 | |
| 13813 | 806 | end |