8177
|
1 |
(* Title: HOL/IMPP/EvenOdd.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: David von Oheimb
|
|
4 |
Copyright 1999 TUM
|
|
5 |
*)
|
|
6 |
|
17477
|
7 |
header {* Example of mutually recursive procedures verified with Hoare logic *}
|
8177
|
8 |
|
17477
|
9 |
theory EvenOdd
|
|
10 |
imports Misc
|
|
11 |
begin
|
|
12 |
|
27362
|
13 |
definition
|
|
14 |
even :: "nat => bool" where
|
|
15 |
"even n = (2 dvd n)"
|
8177
|
16 |
|
27362
|
17 |
axiomatization
|
|
18 |
Even :: pname and
|
17477
|
19 |
Odd :: pname
|
27362
|
20 |
where
|
|
21 |
Even_neq_Odd: "Even ~= Odd" and
|
17477
|
22 |
Arg_neq_Res: "Arg ~= Res"
|
8177
|
23 |
|
27362
|
24 |
definition
|
|
25 |
evn :: com where
|
|
26 |
"evn = (IF (%s. s<Arg> = 0)
|
8177
|
27 |
THEN Loc Res:==(%s. 0)
|
|
28 |
ELSE(Loc Res:=CALL Odd(%s. s<Arg> - 1);;
|
|
29 |
Loc Arg:=CALL Odd(%s. s<Arg> - 1);;
|
27362
|
30 |
Loc Res:==(%s. s<Res> * s<Arg>)))"
|
|
31 |
|
|
32 |
definition
|
|
33 |
odd :: com where
|
|
34 |
"odd = (IF (%s. s<Arg> = 0)
|
8177
|
35 |
THEN Loc Res:==(%s. 1)
|
27362
|
36 |
ELSE(Loc Res:=CALL Even (%s. s<Arg> - 1)))"
|
8177
|
37 |
|
|
38 |
defs
|
17477
|
39 |
bodies_def: "bodies == [(Even,evn),(Odd,odd)]"
|
|
40 |
|
27362
|
41 |
definition
|
|
42 |
Z_eq_Arg_plus :: "nat => nat assn" ("Z=Arg+_" [50]50) where
|
|
43 |
"Z=Arg+n = (%Z s. Z = s<Arg>+n)"
|
|
44 |
|
|
45 |
definition
|
|
46 |
Res_ok :: "nat assn" where
|
|
47 |
"Res_ok = (%Z s. even Z = (s<Res> = 0))"
|
17477
|
48 |
|
19803
|
49 |
|
|
50 |
subsection "even"
|
|
51 |
|
|
52 |
lemma even_0 [simp]: "even 0"
|
|
53 |
apply (unfold even_def)
|
|
54 |
apply simp
|
|
55 |
done
|
|
56 |
|
|
57 |
lemma not_even_1 [simp]: "even (Suc 0) = False"
|
|
58 |
apply (unfold even_def)
|
|
59 |
apply simp
|
|
60 |
done
|
|
61 |
|
|
62 |
lemma even_step [simp]: "even (Suc (Suc n)) = even n"
|
|
63 |
apply (unfold even_def)
|
|
64 |
apply (subgoal_tac "Suc (Suc n) = n+2")
|
|
65 |
prefer 2
|
|
66 |
apply simp
|
|
67 |
apply (erule ssubst)
|
|
68 |
apply (rule dvd_reduce)
|
|
69 |
done
|
|
70 |
|
|
71 |
|
|
72 |
subsection "Arg, Res"
|
|
73 |
|
|
74 |
declare Arg_neq_Res [simp] Arg_neq_Res [THEN not_sym, simp]
|
|
75 |
declare Even_neq_Odd [simp] Even_neq_Odd [THEN not_sym, simp]
|
|
76 |
|
|
77 |
lemma Z_eq_Arg_plus_def2: "(Z=Arg+n) Z s = (Z = s<Arg>+n)"
|
|
78 |
apply (unfold Z_eq_Arg_plus_def)
|
|
79 |
apply (rule refl)
|
|
80 |
done
|
|
81 |
|
|
82 |
lemma Res_ok_def2: "Res_ok Z s = (even Z = (s<Res> = 0))"
|
|
83 |
apply (unfold Res_ok_def)
|
|
84 |
apply (rule refl)
|
|
85 |
done
|
|
86 |
|
|
87 |
lemmas Arg_Res_simps = Z_eq_Arg_plus_def2 Res_ok_def2
|
|
88 |
|
|
89 |
lemma body_Odd [simp]: "body Odd = Some odd"
|
|
90 |
apply (unfold body_def bodies_def)
|
|
91 |
apply auto
|
|
92 |
done
|
|
93 |
|
|
94 |
lemma body_Even [simp]: "body Even = Some evn"
|
|
95 |
apply (unfold body_def bodies_def)
|
|
96 |
apply auto
|
|
97 |
done
|
|
98 |
|
|
99 |
|
|
100 |
subsection "verification"
|
|
101 |
|
|
102 |
lemma Odd_lemma: "{{Z=Arg+0}. BODY Even .{Res_ok}}|-{Z=Arg+Suc 0}. odd .{Res_ok}"
|
|
103 |
apply (unfold odd_def)
|
|
104 |
apply (rule hoare_derivs.If)
|
|
105 |
apply (rule hoare_derivs.Ass [THEN conseq1])
|
|
106 |
apply (clarsimp simp: Arg_Res_simps)
|
|
107 |
apply (rule export_s)
|
|
108 |
apply (rule hoare_derivs.Call [THEN conseq1])
|
|
109 |
apply (rule_tac P = "Z=Arg+Suc (Suc 0) " in conseq12)
|
|
110 |
apply (rule single_asm)
|
|
111 |
apply (auto simp: Arg_Res_simps)
|
|
112 |
done
|
|
113 |
|
|
114 |
lemma Even_lemma: "{{Z=Arg+1}. BODY Odd .{Res_ok}}|-{Z=Arg+0}. evn .{Res_ok}"
|
|
115 |
apply (unfold evn_def)
|
|
116 |
apply (rule hoare_derivs.If)
|
|
117 |
apply (rule hoare_derivs.Ass [THEN conseq1])
|
|
118 |
apply (clarsimp simp: Arg_Res_simps)
|
|
119 |
apply (rule hoare_derivs.Comp)
|
|
120 |
apply (rule_tac [2] hoare_derivs.Ass)
|
|
121 |
apply clarsimp
|
|
122 |
apply (rule_tac Q = "%Z s. ?P Z s & Res_ok Z s" in hoare_derivs.Comp)
|
|
123 |
apply (rule export_s)
|
|
124 |
apply (rule_tac I1 = "%Z l. Z = l Arg & 0 < Z" and Q1 = "Res_ok" in Call_invariant [THEN conseq12])
|
|
125 |
apply (rule single_asm [THEN conseq2])
|
|
126 |
apply (clarsimp simp: Arg_Res_simps)
|
|
127 |
apply (force simp: Arg_Res_simps)
|
|
128 |
apply (rule export_s)
|
|
129 |
apply (rule_tac I1 = "%Z l. even Z = (l Res = 0) " and Q1 = "%Z s. even Z = (s<Arg> = 0) " in Call_invariant [THEN conseq12])
|
|
130 |
apply (rule single_asm [THEN conseq2])
|
|
131 |
apply (clarsimp simp: Arg_Res_simps)
|
|
132 |
apply (force simp: Arg_Res_simps)
|
|
133 |
done
|
|
134 |
|
|
135 |
|
|
136 |
lemma Even_ok_N: "{}|-{Z=Arg+0}. BODY Even .{Res_ok}"
|
|
137 |
apply (rule BodyN)
|
|
138 |
apply (simp (no_asm))
|
|
139 |
apply (rule Even_lemma [THEN hoare_derivs.cut])
|
|
140 |
apply (rule BodyN)
|
|
141 |
apply (simp (no_asm))
|
|
142 |
apply (rule Odd_lemma [THEN thin])
|
|
143 |
apply (simp (no_asm))
|
|
144 |
done
|
|
145 |
|
|
146 |
lemma Even_ok_S: "{}|-{Z=Arg+0}. BODY Even .{Res_ok}"
|
|
147 |
apply (rule conseq1)
|
|
148 |
apply (rule_tac Procs = "{Odd, Even}" and pn = "Even" and P = "%pn. Z=Arg+ (if pn = Odd then 1 else 0) " and Q = "%pn. Res_ok" in Body1)
|
|
149 |
apply auto
|
|
150 |
apply (rule hoare_derivs.insert)
|
|
151 |
apply (rule Odd_lemma [THEN thin])
|
|
152 |
apply (simp (no_asm))
|
|
153 |
apply (rule Even_lemma [THEN thin])
|
|
154 |
apply (simp (no_asm))
|
|
155 |
done
|
8177
|
156 |
|
|
157 |
end
|