author | wenzelm |
Mon, 06 Sep 2010 19:23:35 +0200 | |
changeset 39160 | 75e096565cd3 |
parent 36866 | 426d5781bb25 |
child 44106 | 0e018cbcc0de |
permissions | -rw-r--r-- |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
26806
diff
changeset
|
1 |
(* Title: HOL/UNITY/ELT.thy |
8044 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1999 University of Cambridge |
|
4 |
||
5 |
leadsTo strengthened with a specification of the allowable sets transient parts |
|
8122
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
6 |
|
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
7 |
TRY INSTEAD (to get rid of the {} and to gain strong induction) |
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
8 |
|
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
9 |
elt :: "['a set set, 'a program, 'a set] => ('a set) set" |
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
10 |
|
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
11 |
inductive "elt CC F B" |
13790 | 12 |
intros |
8122
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
13 |
|
13790 | 14 |
Weaken: "A <= B ==> A : elt CC F B" |
8122
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
15 |
|
13790 | 16 |
ETrans: "[| F : A ensures A'; A-A' : CC; A' : elt CC F B |] |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
26806
diff
changeset
|
17 |
==> A : elt CC F B" |
8122
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
18 |
|
13790 | 19 |
Union: "{A. A: S} : Pow (elt CC F B) ==> (Union S) : elt CC F B" |
8122
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
20 |
|
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
21 |
monos Pow_mono |
8044 | 22 |
*) |
23 |
||
13798 | 24 |
header{*Progress Under Allowable Sets*} |
25 |
||
16417 | 26 |
theory ELT imports Project begin |
8044 | 27 |
|
23767 | 28 |
inductive_set |
8044 | 29 |
(*LEADS-TO constant for the inductive definition*) |
30 |
elt :: "['a set set, 'a program] => ('a set * 'a set) set" |
|
23767 | 31 |
for CC :: "'a set set" and F :: "'a program" |
32 |
where |
|
8044 | 33 |
|
13790 | 34 |
Basis: "[| F : A ensures B; A-B : (insert {} CC) |] ==> (A,B) : elt CC F" |
8044 | 35 |
|
23767 | 36 |
| Trans: "[| (A,B) : elt CC F; (B,C) : elt CC F |] ==> (A,C) : elt CC F" |
8044 | 37 |
|
23767 | 38 |
| Union: "ALL A: S. (A,B) : elt CC F ==> (Union S, B) : elt CC F" |
8044 | 39 |
|
40 |
||
36866 | 41 |
definition |
8128 | 42 |
(*the set of all sets determined by f alone*) |
43 |
givenBy :: "['a => 'b] => 'a set set" |
|
36866 | 44 |
where "givenBy f = range (%B. f-` B)" |
8044 | 45 |
|
36866 | 46 |
definition |
8044 | 47 |
(*visible version of the LEADS-TO relation*) |
48 |
leadsETo :: "['a set, 'a set set, 'a set] => 'a program set" |
|
49 |
("(3_/ leadsTo[_]/ _)" [80,0,80] 80) |
|
36866 | 50 |
where "leadsETo A CC B = {F. (A,B) : elt CC F}" |
8044 | 51 |
|
36866 | 52 |
definition |
8044 | 53 |
LeadsETo :: "['a set, 'a set set, 'a set] => 'a program set" |
54 |
("(3_/ LeadsTo[_]/ _)" [80,0,80] 80) |
|
36866 | 55 |
where "LeadsETo A CC B = |
10834 | 56 |
{F. F : (reachable F Int A) leadsTo[(%C. reachable F Int C) ` CC] B}" |
8044 | 57 |
|
13790 | 58 |
|
59 |
(*** givenBy ***) |
|
60 |
||
61 |
lemma givenBy_id [simp]: "givenBy id = UNIV" |
|
62 |
by (unfold givenBy_def, auto) |
|
63 |
||
64 |
lemma givenBy_eq_all: "(givenBy v) = {A. ALL x:A. ALL y. v x = v y --> y: A}" |
|
65 |
apply (unfold givenBy_def, safe) |
|
66 |
apply (rule_tac [2] x = "v ` ?u" in image_eqI, auto) |
|
67 |
done |
|
68 |
||
69 |
lemma givenByI: "(!!x y. [| x:A; v x = v y |] ==> y: A) ==> A: givenBy v" |
|
70 |
by (subst givenBy_eq_all, blast) |
|
71 |
||
72 |
lemma givenByD: "[| A: givenBy v; x:A; v x = v y |] ==> y: A" |
|
73 |
by (unfold givenBy_def, auto) |
|
74 |
||
75 |
lemma empty_mem_givenBy [iff]: "{} : givenBy v" |
|
76 |
by (blast intro!: givenByI) |
|
77 |
||
78 |
lemma givenBy_imp_eq_Collect: "A: givenBy v ==> EX P. A = {s. P(v s)}" |
|
79 |
apply (rule_tac x = "%n. EX s. v s = n & s : A" in exI) |
|
80 |
apply (simp (no_asm_use) add: givenBy_eq_all) |
|
81 |
apply blast |
|
82 |
done |
|
83 |
||
84 |
lemma Collect_mem_givenBy: "{s. P(v s)} : givenBy v" |
|
85 |
by (unfold givenBy_def, best) |
|
86 |
||
87 |
lemma givenBy_eq_Collect: "givenBy v = {A. EX P. A = {s. P(v s)}}" |
|
88 |
by (blast intro: Collect_mem_givenBy givenBy_imp_eq_Collect) |
|
89 |
||
90 |
(*preserving v preserves properties given by v*) |
|
91 |
lemma preserves_givenBy_imp_stable: |
|
92 |
"[| F : preserves v; D : givenBy v |] ==> F : stable D" |
|
13798 | 93 |
by (force simp add: preserves_subset_stable [THEN subsetD] givenBy_eq_Collect) |
13790 | 94 |
|
95 |
lemma givenBy_o_subset: "givenBy (w o v) <= givenBy v" |
|
96 |
apply (simp (no_asm) add: givenBy_eq_Collect) |
|
97 |
apply best |
|
98 |
done |
|
99 |
||
100 |
lemma givenBy_DiffI: |
|
101 |
"[| A : givenBy v; B : givenBy v |] ==> A-B : givenBy v" |
|
102 |
apply (simp (no_asm_use) add: givenBy_eq_Collect) |
|
103 |
apply safe |
|
104 |
apply (rule_tac x = "%z. ?R z & ~ ?Q z" in exI) |
|
26806 | 105 |
unfolding set_diff_eq |
26349 | 106 |
apply auto |
13790 | 107 |
done |
108 |
||
109 |
||
110 |
(** Standard leadsTo rules **) |
|
111 |
||
112 |
lemma leadsETo_Basis [intro]: |
|
113 |
"[| F: A ensures B; A-B: insert {} CC |] ==> F : A leadsTo[CC] B" |
|
114 |
apply (unfold leadsETo_def) |
|
115 |
apply (blast intro: elt.Basis) |
|
116 |
done |
|
117 |
||
118 |
lemma leadsETo_Trans: |
|
119 |
"[| F : A leadsTo[CC] B; F : B leadsTo[CC] C |] ==> F : A leadsTo[CC] C" |
|
120 |
apply (unfold leadsETo_def) |
|
121 |
apply (blast intro: elt.Trans) |
|
122 |
done |
|
123 |
||
124 |
||
125 |
(*Useful with cancellation, disjunction*) |
|
126 |
lemma leadsETo_Un_duplicate: |
|
127 |
"F : A leadsTo[CC] (A' Un A') ==> F : A leadsTo[CC] A'" |
|
13819 | 128 |
by (simp add: Un_ac) |
13790 | 129 |
|
130 |
lemma leadsETo_Un_duplicate2: |
|
131 |
"F : A leadsTo[CC] (A' Un C Un C) ==> F : A leadsTo[CC] (A' Un C)" |
|
132 |
by (simp add: Un_ac) |
|
133 |
||
134 |
(*The Union introduction rule as we should have liked to state it*) |
|
135 |
lemma leadsETo_Union: |
|
136 |
"(!!A. A : S ==> F : A leadsTo[CC] B) ==> F : (Union S) leadsTo[CC] B" |
|
137 |
apply (unfold leadsETo_def) |
|
138 |
apply (blast intro: elt.Union) |
|
139 |
done |
|
140 |
||
141 |
lemma leadsETo_UN: |
|
142 |
"(!!i. i : I ==> F : (A i) leadsTo[CC] B) |
|
143 |
==> F : (UN i:I. A i) leadsTo[CC] B" |
|
144 |
apply (subst Union_image_eq [symmetric]) |
|
145 |
apply (blast intro: leadsETo_Union) |
|
146 |
done |
|
147 |
||
148 |
(*The INDUCTION rule as we should have liked to state it*) |
|
149 |
lemma leadsETo_induct: |
|
150 |
"[| F : za leadsTo[CC] zb; |
|
151 |
!!A B. [| F : A ensures B; A-B : insert {} CC |] ==> P A B; |
|
152 |
!!A B C. [| F : A leadsTo[CC] B; P A B; F : B leadsTo[CC] C; P B C |] |
|
153 |
==> P A C; |
|
154 |
!!B S. ALL A:S. F : A leadsTo[CC] B & P A B ==> P (Union S) B |
|
155 |
|] ==> P za zb" |
|
156 |
apply (unfold leadsETo_def) |
|
157 |
apply (drule CollectD) |
|
158 |
apply (erule elt.induct, blast+) |
|
159 |
done |
|
160 |
||
161 |
||
162 |
(** New facts involving leadsETo **) |
|
163 |
||
164 |
lemma leadsETo_mono: "CC' <= CC ==> (A leadsTo[CC'] B) <= (A leadsTo[CC] B)" |
|
165 |
apply safe |
|
166 |
apply (erule leadsETo_induct) |
|
167 |
prefer 3 apply (blast intro: leadsETo_Union) |
|
168 |
prefer 2 apply (blast intro: leadsETo_Trans) |
|
169 |
apply (blast intro: leadsETo_Basis) |
|
170 |
done |
|
171 |
||
172 |
lemma leadsETo_Trans_Un: |
|
173 |
"[| F : A leadsTo[CC] B; F : B leadsTo[DD] C |] |
|
174 |
==> F : A leadsTo[CC Un DD] C" |
|
175 |
by (blast intro: leadsETo_mono [THEN subsetD] leadsETo_Trans) |
|
176 |
||
177 |
lemma leadsETo_Union_Int: |
|
178 |
"(!!A. A : S ==> F : (A Int C) leadsTo[CC] B) |
|
179 |
==> F : (Union S Int C) leadsTo[CC] B" |
|
180 |
apply (unfold leadsETo_def) |
|
181 |
apply (simp only: Int_Union_Union) |
|
182 |
apply (blast intro: elt.Union) |
|
183 |
done |
|
184 |
||
185 |
(*Binary union introduction rule*) |
|
186 |
lemma leadsETo_Un: |
|
187 |
"[| F : A leadsTo[CC] C; F : B leadsTo[CC] C |] |
|
188 |
==> F : (A Un B) leadsTo[CC] C" |
|
189 |
apply (subst Un_eq_Union) |
|
190 |
apply (blast intro: leadsETo_Union) |
|
191 |
done |
|
192 |
||
193 |
lemma single_leadsETo_I: |
|
194 |
"(!!x. x : A ==> F : {x} leadsTo[CC] B) ==> F : A leadsTo[CC] B" |
|
13819 | 195 |
by (subst UN_singleton [symmetric], rule leadsETo_UN, blast) |
13790 | 196 |
|
197 |
||
198 |
lemma subset_imp_leadsETo: "A<=B ==> F : A leadsTo[CC] B" |
|
13819 | 199 |
by (simp add: subset_imp_ensures [THEN leadsETo_Basis] |
200 |
Diff_eq_empty_iff [THEN iffD2]) |
|
13790 | 201 |
|
202 |
lemmas empty_leadsETo = empty_subsetI [THEN subset_imp_leadsETo, simp] |
|
203 |
||
204 |
||
205 |
||
206 |
(** Weakening laws **) |
|
207 |
||
208 |
lemma leadsETo_weaken_R: |
|
209 |
"[| F : A leadsTo[CC] A'; A'<=B' |] ==> F : A leadsTo[CC] B'" |
|
13819 | 210 |
by (blast intro: subset_imp_leadsETo leadsETo_Trans) |
13790 | 211 |
|
13798 | 212 |
lemma leadsETo_weaken_L [rule_format]: |
13790 | 213 |
"[| F : A leadsTo[CC] A'; B<=A |] ==> F : B leadsTo[CC] A'" |
13819 | 214 |
by (blast intro: leadsETo_Trans subset_imp_leadsETo) |
13790 | 215 |
|
216 |
(*Distributes over binary unions*) |
|
217 |
lemma leadsETo_Un_distrib: |
|
218 |
"F : (A Un B) leadsTo[CC] C = |
|
219 |
(F : A leadsTo[CC] C & F : B leadsTo[CC] C)" |
|
13819 | 220 |
by (blast intro: leadsETo_Un leadsETo_weaken_L) |
13790 | 221 |
|
222 |
lemma leadsETo_UN_distrib: |
|
223 |
"F : (UN i:I. A i) leadsTo[CC] B = |
|
224 |
(ALL i : I. F : (A i) leadsTo[CC] B)" |
|
13819 | 225 |
by (blast intro: leadsETo_UN leadsETo_weaken_L) |
13790 | 226 |
|
227 |
lemma leadsETo_Union_distrib: |
|
228 |
"F : (Union S) leadsTo[CC] B = (ALL A : S. F : A leadsTo[CC] B)" |
|
13819 | 229 |
by (blast intro: leadsETo_Union leadsETo_weaken_L) |
13790 | 230 |
|
231 |
lemma leadsETo_weaken: |
|
232 |
"[| F : A leadsTo[CC'] A'; B<=A; A'<=B'; CC' <= CC |] |
|
233 |
==> F : B leadsTo[CC] B'" |
|
234 |
apply (drule leadsETo_mono [THEN subsetD], assumption) |
|
13819 | 235 |
apply (blast del: subsetCE |
236 |
intro: leadsETo_weaken_R leadsETo_weaken_L leadsETo_Trans) |
|
13790 | 237 |
done |
238 |
||
239 |
lemma leadsETo_givenBy: |
|
240 |
"[| F : A leadsTo[CC] A'; CC <= givenBy v |] |
|
241 |
==> F : A leadsTo[givenBy v] A'" |
|
242 |
by (blast intro: empty_mem_givenBy leadsETo_weaken) |
|
243 |
||
244 |
||
245 |
(*Set difference*) |
|
246 |
lemma leadsETo_Diff: |
|
247 |
"[| F : (A-B) leadsTo[CC] C; F : B leadsTo[CC] C |] |
|
248 |
==> F : A leadsTo[CC] C" |
|
249 |
by (blast intro: leadsETo_Un leadsETo_weaken) |
|
250 |
||
251 |
||
252 |
(*Binary union version*) |
|
253 |
lemma leadsETo_Un_Un: |
|
254 |
"[| F : A leadsTo[CC] A'; F : B leadsTo[CC] B' |] |
|
255 |
==> F : (A Un B) leadsTo[CC] (A' Un B')" |
|
256 |
by (blast intro: leadsETo_Un leadsETo_weaken_R) |
|
257 |
||
258 |
||
259 |
(** The cancellation law **) |
|
260 |
||
261 |
lemma leadsETo_cancel2: |
|
262 |
"[| F : A leadsTo[CC] (A' Un B); F : B leadsTo[CC] B' |] |
|
263 |
==> F : A leadsTo[CC] (A' Un B')" |
|
264 |
by (blast intro: leadsETo_Un_Un subset_imp_leadsETo leadsETo_Trans) |
|
265 |
||
266 |
lemma leadsETo_cancel1: |
|
267 |
"[| F : A leadsTo[CC] (B Un A'); F : B leadsTo[CC] B' |] |
|
268 |
==> F : A leadsTo[CC] (B' Un A')" |
|
269 |
apply (simp add: Un_commute) |
|
270 |
apply (blast intro!: leadsETo_cancel2) |
|
271 |
done |
|
272 |
||
273 |
lemma leadsETo_cancel_Diff1: |
|
274 |
"[| F : A leadsTo[CC] (B Un A'); F : (B-A') leadsTo[CC] B' |] |
|
275 |
==> F : A leadsTo[CC] (B' Un A')" |
|
276 |
apply (rule leadsETo_cancel1) |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13798
diff
changeset
|
277 |
prefer 2 apply assumption |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13798
diff
changeset
|
278 |
apply simp_all |
13790 | 279 |
done |
280 |
||
281 |
||
282 |
(** PSP: Progress-Safety-Progress **) |
|
283 |
||
284 |
(*Special case of PSP: Misra's "stable conjunction"*) |
|
285 |
lemma e_psp_stable: |
|
286 |
"[| F : A leadsTo[CC] A'; F : stable B; ALL C:CC. C Int B : CC |] |
|
287 |
==> F : (A Int B) leadsTo[CC] (A' Int B)" |
|
288 |
apply (unfold stable_def) |
|
289 |
apply (erule leadsETo_induct) |
|
290 |
prefer 3 apply (blast intro: leadsETo_Union_Int) |
|
291 |
prefer 2 apply (blast intro: leadsETo_Trans) |
|
292 |
apply (rule leadsETo_Basis) |
|
293 |
prefer 2 apply (force simp add: Diff_Int_distrib2 [symmetric]) |
|
13819 | 294 |
apply (simp add: ensures_def Diff_Int_distrib2 [symmetric] |
295 |
Int_Un_distrib2 [symmetric]) |
|
13790 | 296 |
apply (blast intro: transient_strengthen constrains_Int) |
297 |
done |
|
298 |
||
299 |
lemma e_psp_stable2: |
|
300 |
"[| F : A leadsTo[CC] A'; F : stable B; ALL C:CC. C Int B : CC |] |
|
301 |
==> F : (B Int A) leadsTo[CC] (B Int A')" |
|
302 |
by (simp (no_asm_simp) add: e_psp_stable Int_ac) |
|
303 |
||
304 |
lemma e_psp: |
|
305 |
"[| F : A leadsTo[CC] A'; F : B co B'; |
|
306 |
ALL C:CC. C Int B Int B' : CC |] |
|
307 |
==> F : (A Int B') leadsTo[CC] ((A' Int B) Un (B' - B))" |
|
308 |
apply (erule leadsETo_induct) |
|
309 |
prefer 3 apply (blast intro: leadsETo_Union_Int) |
|
310 |
(*Transitivity case has a delicate argument involving "cancellation"*) |
|
311 |
apply (rule_tac [2] leadsETo_Un_duplicate2) |
|
312 |
apply (erule_tac [2] leadsETo_cancel_Diff1) |
|
313 |
prefer 2 |
|
314 |
apply (simp add: Int_Diff Diff_triv) |
|
315 |
apply (blast intro: leadsETo_weaken_L dest: constrains_imp_subset) |
|
316 |
(*Basis case*) |
|
317 |
apply (rule leadsETo_Basis) |
|
318 |
apply (blast intro: psp_ensures) |
|
319 |
apply (subgoal_tac "A Int B' - (Ba Int B Un (B' - B)) = (A - Ba) Int B Int B'") |
|
320 |
apply auto |
|
321 |
done |
|
322 |
||
323 |
lemma e_psp2: |
|
324 |
"[| F : A leadsTo[CC] A'; F : B co B'; |
|
325 |
ALL C:CC. C Int B Int B' : CC |] |
|
326 |
==> F : (B' Int A) leadsTo[CC] ((B Int A') Un (B' - B))" |
|
327 |
by (simp add: e_psp Int_ac) |
|
328 |
||
329 |
||
330 |
(*** Special properties involving the parameter [CC] ***) |
|
331 |
||
332 |
(*??IS THIS NEEDED?? or is it just an example of what's provable??*) |
|
333 |
lemma gen_leadsETo_imp_Join_leadsETo: |
|
334 |
"[| F: (A leadsTo[givenBy v] B); G : preserves v; |
|
13819 | 335 |
F\<squnion>G : stable C |] |
336 |
==> F\<squnion>G : ((C Int A) leadsTo[(%D. C Int D) ` givenBy v] B)" |
|
13790 | 337 |
apply (erule leadsETo_induct) |
338 |
prefer 3 |
|
339 |
apply (subst Int_Union) |
|
340 |
apply (blast intro: leadsETo_UN) |
|
341 |
prefer 2 |
|
342 |
apply (blast intro: e_psp_stable2 [THEN leadsETo_weaken_L] leadsETo_Trans) |
|
343 |
apply (rule leadsETo_Basis) |
|
13819 | 344 |
apply (auto simp add: Diff_eq_empty_iff [THEN iffD2] |
345 |
Int_Diff ensures_def givenBy_eq_Collect Join_transient) |
|
13790 | 346 |
prefer 3 apply (blast intro: transient_strengthen) |
347 |
apply (drule_tac [2] P1 = P in preserves_subset_stable [THEN subsetD]) |
|
348 |
apply (drule_tac P1 = P in preserves_subset_stable [THEN subsetD]) |
|
349 |
apply (unfold stable_def) |
|
350 |
apply (blast intro: constrains_Int [THEN constrains_weaken])+ |
|
351 |
done |
|
352 |
||
353 |
(**** Relationship with traditional "leadsTo", strong & weak ****) |
|
354 |
||
355 |
(** strong **) |
|
356 |
||
357 |
lemma leadsETo_subset_leadsTo: "(A leadsTo[CC] B) <= (A leadsTo B)" |
|
358 |
apply safe |
|
359 |
apply (erule leadsETo_induct) |
|
13819 | 360 |
prefer 3 apply (blast intro: leadsTo_Union) |
361 |
prefer 2 apply (blast intro: leadsTo_Trans, blast) |
|
13790 | 362 |
done |
363 |
||
364 |
lemma leadsETo_UNIV_eq_leadsTo: "(A leadsTo[UNIV] B) = (A leadsTo B)" |
|
365 |
apply safe |
|
366 |
apply (erule leadsETo_subset_leadsTo [THEN subsetD]) |
|
367 |
(*right-to-left case*) |
|
368 |
apply (erule leadsTo_induct) |
|
13819 | 369 |
prefer 3 apply (blast intro: leadsETo_Union) |
370 |
prefer 2 apply (blast intro: leadsETo_Trans, blast) |
|
13790 | 371 |
done |
372 |
||
373 |
(**** weak ****) |
|
374 |
||
375 |
lemma LeadsETo_eq_leadsETo: |
|
376 |
"A LeadsTo[CC] B = |
|
377 |
{F. F : (reachable F Int A) leadsTo[(%C. reachable F Int C) ` CC] |
|
378 |
(reachable F Int B)}" |
|
379 |
apply (unfold LeadsETo_def) |
|
380 |
apply (blast dest: e_psp_stable2 intro: leadsETo_weaken) |
|
381 |
done |
|
382 |
||
383 |
(*** Introduction rules: Basis, Trans, Union ***) |
|
384 |
||
385 |
lemma LeadsETo_Trans: |
|
386 |
"[| F : A LeadsTo[CC] B; F : B LeadsTo[CC] C |] |
|
387 |
==> F : A LeadsTo[CC] C" |
|
388 |
apply (simp add: LeadsETo_eq_leadsETo) |
|
389 |
apply (blast intro: leadsETo_Trans) |
|
390 |
done |
|
391 |
||
392 |
lemma LeadsETo_Union: |
|
393 |
"(!!A. A : S ==> F : A LeadsTo[CC] B) ==> F : (Union S) LeadsTo[CC] B" |
|
394 |
apply (simp add: LeadsETo_def) |
|
395 |
apply (subst Int_Union) |
|
396 |
apply (blast intro: leadsETo_UN) |
|
397 |
done |
|
398 |
||
399 |
lemma LeadsETo_UN: |
|
400 |
"(!!i. i : I ==> F : (A i) LeadsTo[CC] B) |
|
401 |
==> F : (UN i:I. A i) LeadsTo[CC] B" |
|
402 |
apply (simp only: Union_image_eq [symmetric]) |
|
403 |
apply (blast intro: LeadsETo_Union) |
|
404 |
done |
|
405 |
||
406 |
(*Binary union introduction rule*) |
|
407 |
lemma LeadsETo_Un: |
|
408 |
"[| F : A LeadsTo[CC] C; F : B LeadsTo[CC] C |] |
|
409 |
==> F : (A Un B) LeadsTo[CC] C" |
|
410 |
apply (subst Un_eq_Union) |
|
411 |
apply (blast intro: LeadsETo_Union) |
|
412 |
done |
|
413 |
||
414 |
(*Lets us look at the starting state*) |
|
415 |
lemma single_LeadsETo_I: |
|
416 |
"(!!s. s : A ==> F : {s} LeadsTo[CC] B) ==> F : A LeadsTo[CC] B" |
|
13819 | 417 |
by (subst UN_singleton [symmetric], rule LeadsETo_UN, blast) |
13790 | 418 |
|
419 |
lemma subset_imp_LeadsETo: |
|
420 |
"A <= B ==> F : A LeadsTo[CC] B" |
|
421 |
apply (simp (no_asm) add: LeadsETo_def) |
|
422 |
apply (blast intro: subset_imp_leadsETo) |
|
423 |
done |
|
424 |
||
425 |
lemmas empty_LeadsETo = empty_subsetI [THEN subset_imp_LeadsETo, standard] |
|
426 |
||
13798 | 427 |
lemma LeadsETo_weaken_R [rule_format]: |
13790 | 428 |
"[| F : A LeadsTo[CC] A'; A' <= B' |] ==> F : A LeadsTo[CC] B'" |
429 |
apply (simp (no_asm_use) add: LeadsETo_def) |
|
430 |
apply (blast intro: leadsETo_weaken_R) |
|
431 |
done |
|
432 |
||
13798 | 433 |
lemma LeadsETo_weaken_L [rule_format]: |
13790 | 434 |
"[| F : A LeadsTo[CC] A'; B <= A |] ==> F : B LeadsTo[CC] A'" |
435 |
apply (simp (no_asm_use) add: LeadsETo_def) |
|
436 |
apply (blast intro: leadsETo_weaken_L) |
|
437 |
done |
|
438 |
||
439 |
lemma LeadsETo_weaken: |
|
440 |
"[| F : A LeadsTo[CC'] A'; |
|
441 |
B <= A; A' <= B'; CC' <= CC |] |
|
442 |
==> F : B LeadsTo[CC] B'" |
|
443 |
apply (simp (no_asm_use) add: LeadsETo_def) |
|
444 |
apply (blast intro: leadsETo_weaken) |
|
445 |
done |
|
446 |
||
447 |
lemma LeadsETo_subset_LeadsTo: "(A LeadsTo[CC] B) <= (A LeadsTo B)" |
|
448 |
apply (unfold LeadsETo_def LeadsTo_def) |
|
449 |
apply (blast intro: leadsETo_subset_leadsTo [THEN subsetD]) |
|
450 |
done |
|
451 |
||
452 |
(*Postcondition can be strengthened to (reachable F Int B) *) |
|
453 |
lemma reachable_ensures: |
|
454 |
"F : A ensures B ==> F : (reachable F Int A) ensures B" |
|
455 |
apply (rule stable_ensures_Int [THEN ensures_weaken_R], auto) |
|
456 |
done |
|
457 |
||
458 |
lemma lel_lemma: |
|
459 |
"F : A leadsTo B ==> F : (reachable F Int A) leadsTo[Pow(reachable F)] B" |
|
460 |
apply (erule leadsTo_induct) |
|
461 |
apply (blast intro: reachable_ensures leadsETo_Basis) |
|
462 |
apply (blast dest: e_psp_stable2 intro: leadsETo_Trans leadsETo_weaken_L) |
|
463 |
apply (subst Int_Union) |
|
464 |
apply (blast intro: leadsETo_UN) |
|
465 |
done |
|
466 |
||
467 |
lemma LeadsETo_UNIV_eq_LeadsTo: "(A LeadsTo[UNIV] B) = (A LeadsTo B)" |
|
468 |
apply safe |
|
469 |
apply (erule LeadsETo_subset_LeadsTo [THEN subsetD]) |
|
470 |
(*right-to-left case*) |
|
471 |
apply (unfold LeadsETo_def LeadsTo_def) |
|
13836 | 472 |
apply (blast intro: lel_lemma [THEN leadsETo_weaken]) |
13790 | 473 |
done |
474 |
||
475 |
||
476 |
(**** EXTEND/PROJECT PROPERTIES ****) |
|
477 |
||
13819 | 478 |
lemma (in Extend) givenBy_o_eq_extend_set: |
479 |
"givenBy (v o f) = extend_set h ` (givenBy v)" |
|
13836 | 480 |
apply (simp add: givenBy_eq_Collect) |
481 |
apply (rule equalityI, best) |
|
482 |
apply blast |
|
483 |
done |
|
13790 | 484 |
|
485 |
lemma (in Extend) givenBy_eq_extend_set: "givenBy f = range (extend_set h)" |
|
13836 | 486 |
by (simp add: givenBy_eq_Collect, best) |
13790 | 487 |
|
488 |
lemma (in Extend) extend_set_givenBy_I: |
|
489 |
"D : givenBy v ==> extend_set h D : givenBy (v o f)" |
|
13836 | 490 |
apply (simp (no_asm_use) add: givenBy_eq_all, blast) |
13790 | 491 |
done |
492 |
||
493 |
lemma (in Extend) leadsETo_imp_extend_leadsETo: |
|
494 |
"F : A leadsTo[CC] B |
|
495 |
==> extend h F : (extend_set h A) leadsTo[extend_set h ` CC] |
|
496 |
(extend_set h B)" |
|
497 |
apply (erule leadsETo_induct) |
|
498 |
apply (force intro: leadsETo_Basis subset_imp_ensures |
|
499 |
simp add: extend_ensures extend_set_Diff_distrib [symmetric]) |
|
500 |
apply (blast intro: leadsETo_Trans) |
|
501 |
apply (simp add: leadsETo_UN extend_set_Union) |
|
502 |
done |
|
503 |
||
504 |
||
505 |
(*This version's stronger in the "ensures" precondition |
|
506 |
BUT there's no ensures_weaken_L*) |
|
507 |
lemma (in Extend) Join_project_ensures_strong: |
|
508 |
"[| project h C G ~: transient (project_set h C Int (A-B)) | |
|
509 |
project_set h C Int (A - B) = {}; |
|
13819 | 510 |
extend h F\<squnion>G : stable C; |
511 |
F\<squnion>project h C G : (project_set h C Int A) ensures B |] |
|
512 |
==> extend h F\<squnion>G : (C Int extend_set h A) ensures (extend_set h B)" |
|
13790 | 513 |
apply (subst Int_extend_set_lemma [symmetric]) |
514 |
apply (rule Join_project_ensures) |
|
515 |
apply (auto simp add: Int_Diff) |
|
516 |
done |
|
517 |
||
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13798
diff
changeset
|
518 |
(*NOT WORKING. MODIFY AS IN Project.thy |
13790 | 519 |
lemma (in Extend) pld_lemma: |
13819 | 520 |
"[| extend h F\<squnion>G : stable C; |
521 |
F\<squnion>project h C G : (project_set h C Int A) leadsTo[(%D. project_set h C Int D)`givenBy v] B; |
|
13790 | 522 |
G : preserves (v o f) |] |
13819 | 523 |
==> extend h F\<squnion>G : |
13790 | 524 |
(C Int extend_set h (project_set h C Int A)) |
525 |
leadsTo[(%D. C Int extend_set h D)`givenBy v] (extend_set h B)" |
|
526 |
apply (erule leadsETo_induct) |
|
527 |
prefer 3 |
|
528 |
apply (simp del: UN_simps add: Int_UN_distrib leadsETo_UN extend_set_Union) |
|
529 |
prefer 2 |
|
530 |
apply (blast intro: e_psp_stable2 [THEN leadsETo_weaken_L] leadsETo_Trans) |
|
531 |
txt{*Base case is hard*} |
|
532 |
apply auto |
|
533 |
apply (force intro: leadsETo_Basis subset_imp_ensures) |
|
534 |
apply (rule leadsETo_Basis) |
|
535 |
prefer 2 |
|
536 |
apply (simp add: Int_Diff Int_extend_set_lemma extend_set_Diff_distrib [symmetric]) |
|
537 |
apply (rule Join_project_ensures_strong) |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13798
diff
changeset
|
538 |
apply (auto intro: project_stable_project_set simp add: Int_left_absorb) |
13790 | 539 |
apply (simp (no_asm_simp) add: stable_ensures_Int [THEN ensures_weaken_R] Int_lower2 project_stable_project_set extend_stable_project_set) |
540 |
done |
|
541 |
||
542 |
lemma (in Extend) project_leadsETo_D_lemma: |
|
13819 | 543 |
"[| extend h F\<squnion>G : stable C; |
544 |
F\<squnion>project h C G : |
|
13790 | 545 |
(project_set h C Int A) |
546 |
leadsTo[(%D. project_set h C Int D)`givenBy v] B; |
|
547 |
G : preserves (v o f) |] |
|
13819 | 548 |
==> extend h F\<squnion>G : (C Int extend_set h A) |
13790 | 549 |
leadsTo[(%D. C Int extend_set h D)`givenBy v] (extend_set h B)" |
550 |
apply (rule pld_lemma [THEN leadsETo_weaken]) |
|
551 |
apply (auto simp add: split_extended_all) |
|
552 |
done |
|
553 |
||
554 |
lemma (in Extend) project_leadsETo_D: |
|
13819 | 555 |
"[| F\<squnion>project h UNIV G : A leadsTo[givenBy v] B; |
13790 | 556 |
G : preserves (v o f) |] |
13819 | 557 |
==> extend h F\<squnion>G : (extend_set h A) |
13790 | 558 |
leadsTo[givenBy (v o f)] (extend_set h B)" |
559 |
apply (cut_tac project_leadsETo_D_lemma [of _ _ UNIV], auto) |
|
560 |
apply (erule leadsETo_givenBy) |
|
561 |
apply (rule givenBy_o_eq_extend_set [THEN equalityD2]) |
|
562 |
done |
|
563 |
||
564 |
lemma (in Extend) project_LeadsETo_D: |
|
13819 | 565 |
"[| F\<squnion>project h (reachable (extend h F\<squnion>G)) G |
13790 | 566 |
: A LeadsTo[givenBy v] B; |
567 |
G : preserves (v o f) |] |
|
13819 | 568 |
==> extend h F\<squnion>G : |
13790 | 569 |
(extend_set h A) LeadsTo[givenBy (v o f)] (extend_set h B)" |
570 |
apply (cut_tac subset_refl [THEN stable_reachable, THEN project_leadsETo_D_lemma]) |
|
571 |
apply (auto simp add: LeadsETo_def) |
|
572 |
apply (erule leadsETo_mono [THEN [2] rev_subsetD]) |
|
573 |
apply (blast intro: extend_set_givenBy_I) |
|
574 |
apply (simp add: project_set_reachable_extend_eq [symmetric]) |
|
575 |
done |
|
576 |
||
577 |
lemma (in Extend) extending_leadsETo: |
|
578 |
"(ALL G. extend h F ok G --> G : preserves (v o f)) |
|
579 |
==> extending (%G. UNIV) h F |
|
580 |
(extend_set h A leadsTo[givenBy (v o f)] extend_set h B) |
|
581 |
(A leadsTo[givenBy v] B)" |
|
582 |
apply (unfold extending_def) |
|
583 |
apply (auto simp add: project_leadsETo_D) |
|
584 |
done |
|
585 |
||
586 |
lemma (in Extend) extending_LeadsETo: |
|
587 |
"(ALL G. extend h F ok G --> G : preserves (v o f)) |
|
13819 | 588 |
==> extending (%G. reachable (extend h F\<squnion>G)) h F |
13790 | 589 |
(extend_set h A LeadsTo[givenBy (v o f)] extend_set h B) |
590 |
(A LeadsTo[givenBy v] B)" |
|
591 |
apply (unfold extending_def) |
|
592 |
apply (blast intro: project_LeadsETo_D) |
|
593 |
done |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13798
diff
changeset
|
594 |
*) |
13790 | 595 |
|
596 |
||
597 |
(*** leadsETo in the precondition ***) |
|
598 |
||
599 |
(*Lemma for the Trans case*) |
|
600 |
lemma (in Extend) pli_lemma: |
|
13819 | 601 |
"[| extend h F\<squnion>G : stable C; |
602 |
F\<squnion>project h C G |
|
13790 | 603 |
: project_set h C Int project_set h A leadsTo project_set h B |] |
13819 | 604 |
==> F\<squnion>project h C G |
13790 | 605 |
: project_set h C Int project_set h A leadsTo |
606 |
project_set h C Int project_set h B" |
|
607 |
apply (rule psp_stable2 [THEN leadsTo_weaken_L]) |
|
608 |
apply (auto simp add: project_stable_project_set extend_stable_project_set) |
|
609 |
done |
|
610 |
||
611 |
lemma (in Extend) project_leadsETo_I_lemma: |
|
13819 | 612 |
"[| extend h F\<squnion>G : stable C; |
613 |
extend h F\<squnion>G : |
|
13790 | 614 |
(C Int A) leadsTo[(%D. C Int D)`givenBy f] B |] |
13819 | 615 |
==> F\<squnion>project h C G |
13790 | 616 |
: (project_set h C Int project_set h (C Int A)) leadsTo (project_set h B)" |
617 |
apply (erule leadsETo_induct) |
|
618 |
prefer 3 |
|
619 |
apply (simp only: Int_UN_distrib project_set_Union) |
|
620 |
apply (blast intro: leadsTo_UN) |
|
621 |
prefer 2 apply (blast intro: leadsTo_Trans pli_lemma) |
|
622 |
apply (simp add: givenBy_eq_extend_set) |
|
623 |
apply (rule leadsTo_Basis) |
|
624 |
apply (blast intro: ensures_extend_set_imp_project_ensures) |
|
625 |
done |
|
626 |
||
627 |
lemma (in Extend) project_leadsETo_I: |
|
13819 | 628 |
"extend h F\<squnion>G : (extend_set h A) leadsTo[givenBy f] (extend_set h B) |
629 |
==> F\<squnion>project h UNIV G : A leadsTo B" |
|
13790 | 630 |
apply (rule project_leadsETo_I_lemma [THEN leadsTo_weaken], auto) |
631 |
done |
|
632 |
||
633 |
lemma (in Extend) project_LeadsETo_I: |
|
13819 | 634 |
"extend h F\<squnion>G : (extend_set h A) LeadsTo[givenBy f] (extend_set h B) |
635 |
==> F\<squnion>project h (reachable (extend h F\<squnion>G)) G |
|
13790 | 636 |
: A LeadsTo B" |
637 |
apply (simp (no_asm_use) add: LeadsTo_def LeadsETo_def) |
|
638 |
apply (rule project_leadsETo_I_lemma [THEN leadsTo_weaken]) |
|
639 |
apply (auto simp add: project_set_reachable_extend_eq [symmetric]) |
|
640 |
done |
|
641 |
||
642 |
lemma (in Extend) projecting_leadsTo: |
|
643 |
"projecting (%G. UNIV) h F |
|
644 |
(extend_set h A leadsTo[givenBy f] extend_set h B) |
|
645 |
(A leadsTo B)" |
|
646 |
apply (unfold projecting_def) |
|
647 |
apply (force dest: project_leadsETo_I) |
|
648 |
done |
|
649 |
||
650 |
lemma (in Extend) projecting_LeadsTo: |
|
13819 | 651 |
"projecting (%G. reachable (extend h F\<squnion>G)) h F |
13790 | 652 |
(extend_set h A LeadsTo[givenBy f] extend_set h B) |
653 |
(A LeadsTo B)" |
|
654 |
apply (unfold projecting_def) |
|
655 |
apply (force dest: project_LeadsETo_I) |
|
656 |
done |
|
657 |
||
8044 | 658 |
end |