author | wenzelm |
Mon, 06 Sep 2010 19:23:35 +0200 | |
changeset 39160 | 75e096565cd3 |
parent 36866 | 426d5781bb25 |
child 40702 | cf26dd7395e4 |
permissions | -rw-r--r-- |
6297 | 1 |
(* Title: HOL/UNITY/Extend.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
Copyright 1998 University of Cambridge |
|
4 |
||
13798 | 5 |
Extending of state setsExtending of state sets |
6297 | 6 |
function f (forget) maps the extended state to the original state |
7 |
function g (forgotten) maps the extended state to the "extending part" |
|
8 |
*) |
|
9 |
||
13798 | 10 |
header{*Extending State Sets*} |
11 |
||
16417 | 12 |
theory Extend imports Guar begin |
6297 | 13 |
|
36866 | 14 |
definition |
8948
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
paulson
parents:
8703
diff
changeset
|
15 |
(*MOVE to Relation.thy?*) |
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
paulson
parents:
8703
diff
changeset
|
16 |
Restrict :: "[ 'a set, ('a*'b) set] => ('a*'b) set" |
36866 | 17 |
where "Restrict A r = r \<inter> (A <*> UNIV)" |
8948
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
paulson
parents:
8703
diff
changeset
|
18 |
|
36866 | 19 |
definition |
7482 | 20 |
good_map :: "['a*'b => 'c] => bool" |
36866 | 21 |
where "good_map h <-> surj h & (\<forall>x y. fst (inv h (h (x,y))) = x)" |
7482 | 22 |
(*Using the locale constant "f", this is f (h (x,y))) = x*) |
23 |
||
36866 | 24 |
definition |
6297 | 25 |
extend_set :: "['a*'b => 'c, 'a set] => 'c set" |
36866 | 26 |
where "extend_set h A = h ` (A <*> UNIV)" |
6297 | 27 |
|
36866 | 28 |
definition |
7342 | 29 |
project_set :: "['a*'b => 'c, 'c set] => 'a set" |
36866 | 30 |
where "project_set h C = {x. \<exists>y. h(x,y) \<in> C}" |
7342 | 31 |
|
36866 | 32 |
definition |
7342 | 33 |
extend_act :: "['a*'b => 'c, ('a*'a) set] => ('c*'c) set" |
36866 | 34 |
where "extend_act h = (%act. \<Union>(s,s') \<in> act. \<Union>y. {(h(s,y), h(s',y))})" |
6297 | 35 |
|
36866 | 36 |
definition |
7878
43b03d412b82
working version with localTo[C] instead of localTo
paulson
parents:
7826
diff
changeset
|
37 |
project_act :: "['a*'b => 'c, ('c*'c) set] => ('a*'a) set" |
36866 | 38 |
where "project_act h act = {(x,x'). \<exists>y y'. (h(x,y), h(x',y')) \<in> act}" |
7342 | 39 |
|
36866 | 40 |
definition |
6297 | 41 |
extend :: "['a*'b => 'c, 'a program] => 'c program" |
36866 | 42 |
where "extend h F = mk_program (extend_set h (Init F), |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
43 |
extend_act h ` Acts F, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
44 |
project_act h -` AllowedActs F)" |
6297 | 45 |
|
36866 | 46 |
definition |
7878
43b03d412b82
working version with localTo[C] instead of localTo
paulson
parents:
7826
diff
changeset
|
47 |
(*Argument C allows weak safety laws to be projected*) |
7880
62fb24e28e5e
exchanged the first two args of "project" and "drop_prog"
paulson
parents:
7878
diff
changeset
|
48 |
project :: "['a*'b => 'c, 'c set, 'c program] => 'a program" |
36866 | 49 |
where "project h C F = |
10064
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
paulson
parents:
8948
diff
changeset
|
50 |
mk_program (project_set h (Init F), |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
51 |
project_act h ` Restrict C ` Acts F, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
52 |
{act. Restrict (project_set h C) act : |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
53 |
project_act h ` Restrict C ` AllowedActs F})" |
7342 | 54 |
|
6297 | 55 |
locale Extend = |
13790 | 56 |
fixes f :: "'c => 'a" |
57 |
and g :: "'c => 'b" |
|
58 |
and h :: "'a*'b => 'c" (*isomorphism between 'a * 'b and 'c *) |
|
59 |
and slice :: "['c set, 'b] => 'a set" |
|
60 |
assumes |
|
61 |
good_h: "good_map h" |
|
62 |
defines f_def: "f z == fst (inv h z)" |
|
63 |
and g_def: "g z == snd (inv h z)" |
|
13805 | 64 |
and slice_def: "slice Z y == {x. h(x,y) \<in> Z}" |
13790 | 65 |
|
66 |
||
67 |
(** These we prove OUTSIDE the locale. **) |
|
68 |
||
69 |
||
13798 | 70 |
subsection{*Restrict*} |
71 |
(*MOVE to Relation.thy?*) |
|
13790 | 72 |
|
13805 | 73 |
lemma Restrict_iff [iff]: "((x,y): Restrict A r) = ((x,y): r & x \<in> A)" |
13790 | 74 |
by (unfold Restrict_def, blast) |
75 |
||
76 |
lemma Restrict_UNIV [simp]: "Restrict UNIV = id" |
|
77 |
apply (rule ext) |
|
78 |
apply (auto simp add: Restrict_def) |
|
79 |
done |
|
80 |
||
81 |
lemma Restrict_empty [simp]: "Restrict {} r = {}" |
|
82 |
by (auto simp add: Restrict_def) |
|
83 |
||
13805 | 84 |
lemma Restrict_Int [simp]: "Restrict A (Restrict B r) = Restrict (A \<inter> B) r" |
13790 | 85 |
by (unfold Restrict_def, blast) |
86 |
||
13805 | 87 |
lemma Restrict_triv: "Domain r \<subseteq> A ==> Restrict A r = r" |
13790 | 88 |
by (unfold Restrict_def, auto) |
89 |
||
13805 | 90 |
lemma Restrict_subset: "Restrict A r \<subseteq> r" |
13790 | 91 |
by (unfold Restrict_def, auto) |
92 |
||
93 |
lemma Restrict_eq_mono: |
|
13805 | 94 |
"[| A \<subseteq> B; Restrict B r = Restrict B s |] |
13790 | 95 |
==> Restrict A r = Restrict A s" |
96 |
by (unfold Restrict_def, blast) |
|
97 |
||
98 |
lemma Restrict_imageI: |
|
13805 | 99 |
"[| s \<in> RR; Restrict A r = Restrict A s |] |
100 |
==> Restrict A r \<in> Restrict A ` RR" |
|
13790 | 101 |
by (unfold Restrict_def image_def, auto) |
102 |
||
13805 | 103 |
lemma Domain_Restrict [simp]: "Domain (Restrict A r) = A \<inter> Domain r" |
13790 | 104 |
by blast |
105 |
||
13805 | 106 |
lemma Image_Restrict [simp]: "(Restrict A r) `` B = r `` (A \<inter> B)" |
13790 | 107 |
by blast |
108 |
||
109 |
(*Possibly easier than reasoning about "inv h"*) |
|
110 |
lemma good_mapI: |
|
111 |
assumes surj_h: "surj h" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
112 |
and prem: "!! x x' y y'. h(x,y) = h(x',y') ==> x=x'" |
13790 | 113 |
shows "good_map h" |
114 |
apply (simp add: good_map_def) |
|
115 |
apply (safe intro!: surj_h) |
|
116 |
apply (rule prem) |
|
117 |
apply (subst surjective_pairing [symmetric]) |
|
118 |
apply (subst surj_h [THEN surj_f_inv_f]) |
|
119 |
apply (rule refl) |
|
120 |
done |
|
121 |
||
122 |
lemma good_map_is_surj: "good_map h ==> surj h" |
|
123 |
by (unfold good_map_def, auto) |
|
124 |
||
125 |
(*A convenient way of finding a closed form for inv h*) |
|
126 |
lemma fst_inv_equalityI: |
|
127 |
assumes surj_h: "surj h" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
128 |
and prem: "!! x y. g (h(x,y)) = x" |
13790 | 129 |
shows "fst (inv h z) = g z" |
33057 | 130 |
by (metis UNIV_I f_inv_into_f pair_collapse prem surj_h surj_range) |
13790 | 131 |
|
132 |
||
13798 | 133 |
subsection{*Trivial properties of f, g, h*} |
13790 | 134 |
|
135 |
lemma (in Extend) f_h_eq [simp]: "f(h(x,y)) = x" |
|
136 |
by (simp add: f_def good_h [unfolded good_map_def, THEN conjunct2]) |
|
137 |
||
138 |
lemma (in Extend) h_inject1 [dest]: "h(x,y) = h(x',y') ==> x=x'" |
|
139 |
apply (drule_tac f = f in arg_cong) |
|
140 |
apply (simp add: f_def good_h [unfolded good_map_def, THEN conjunct2]) |
|
141 |
done |
|
142 |
||
143 |
lemma (in Extend) h_f_g_equiv: "h(f z, g z) == z" |
|
144 |
by (simp add: f_def g_def |
|
145 |
good_h [unfolded good_map_def, THEN conjunct1, THEN surj_f_inv_f]) |
|
146 |
||
147 |
lemma (in Extend) h_f_g_eq: "h(f z, g z) = z" |
|
148 |
by (simp add: h_f_g_equiv) |
|
149 |
||
150 |
||
151 |
lemma (in Extend) split_extended_all: |
|
152 |
"(!!z. PROP P z) == (!!u y. PROP P (h (u, y)))" |
|
153 |
proof |
|
154 |
assume allP: "\<And>z. PROP P z" |
|
155 |
fix u y |
|
156 |
show "PROP P (h (u, y))" by (rule allP) |
|
157 |
next |
|
158 |
assume allPh: "\<And>u y. PROP P (h(u,y))" |
|
159 |
fix z |
|
160 |
have Phfgz: "PROP P (h (f z, g z))" by (rule allPh) |
|
161 |
show "PROP P z" by (rule Phfgz [unfolded h_f_g_equiv]) |
|
162 |
qed |
|
163 |
||
164 |
||
165 |
||
13798 | 166 |
subsection{*@{term extend_set}: basic properties*} |
13790 | 167 |
|
168 |
lemma project_set_iff [iff]: |
|
13805 | 169 |
"(x \<in> project_set h C) = (\<exists>y. h(x,y) \<in> C)" |
13790 | 170 |
by (simp add: project_set_def) |
171 |
||
13805 | 172 |
lemma extend_set_mono: "A \<subseteq> B ==> extend_set h A \<subseteq> extend_set h B" |
13790 | 173 |
by (unfold extend_set_def, blast) |
174 |
||
13805 | 175 |
lemma (in Extend) mem_extend_set_iff [iff]: "z \<in> extend_set h A = (f z \<in> A)" |
13790 | 176 |
apply (unfold extend_set_def) |
177 |
apply (force intro: h_f_g_eq [symmetric]) |
|
178 |
done |
|
179 |
||
180 |
lemma (in Extend) extend_set_strict_mono [iff]: |
|
13805 | 181 |
"(extend_set h A \<subseteq> extend_set h B) = (A \<subseteq> B)" |
13790 | 182 |
by (unfold extend_set_def, force) |
183 |
||
184 |
lemma extend_set_empty [simp]: "extend_set h {} = {}" |
|
185 |
by (unfold extend_set_def, auto) |
|
186 |
||
187 |
lemma (in Extend) extend_set_eq_Collect: "extend_set h {s. P s} = {s. P(f s)}" |
|
188 |
by auto |
|
189 |
||
190 |
lemma (in Extend) extend_set_sing: "extend_set h {x} = {s. f s = x}" |
|
191 |
by auto |
|
192 |
||
193 |
lemma (in Extend) extend_set_inverse [simp]: |
|
194 |
"project_set h (extend_set h C) = C" |
|
195 |
by (unfold extend_set_def, auto) |
|
196 |
||
197 |
lemma (in Extend) extend_set_project_set: |
|
13805 | 198 |
"C \<subseteq> extend_set h (project_set h C)" |
13790 | 199 |
apply (unfold extend_set_def) |
200 |
apply (auto simp add: split_extended_all, blast) |
|
201 |
done |
|
202 |
||
203 |
lemma (in Extend) inj_extend_set: "inj (extend_set h)" |
|
204 |
apply (rule inj_on_inverseI) |
|
205 |
apply (rule extend_set_inverse) |
|
206 |
done |
|
207 |
||
208 |
lemma (in Extend) extend_set_UNIV_eq [simp]: "extend_set h UNIV = UNIV" |
|
209 |
apply (unfold extend_set_def) |
|
210 |
apply (auto simp add: split_extended_all) |
|
211 |
done |
|
212 |
||
13798 | 213 |
subsection{*@{term project_set}: basic properties*} |
13790 | 214 |
|
215 |
(*project_set is simply image!*) |
|
216 |
lemma (in Extend) project_set_eq: "project_set h C = f ` C" |
|
217 |
by (auto intro: f_h_eq [symmetric] simp add: split_extended_all) |
|
218 |
||
219 |
(*Converse appears to fail*) |
|
13805 | 220 |
lemma (in Extend) project_set_I: "!!z. z \<in> C ==> f z \<in> project_set h C" |
13790 | 221 |
by (auto simp add: split_extended_all) |
222 |
||
223 |
||
13798 | 224 |
subsection{*More laws*} |
13790 | 225 |
|
226 |
(*Because A and B could differ on the "other" part of the state, |
|
227 |
cannot generalize to |
|
13805 | 228 |
project_set h (A \<inter> B) = project_set h A \<inter> project_set h B |
13790 | 229 |
*) |
230 |
lemma (in Extend) project_set_extend_set_Int: |
|
13805 | 231 |
"project_set h ((extend_set h A) \<inter> B) = A \<inter> (project_set h B)" |
13790 | 232 |
by auto |
233 |
||
234 |
(*Unused, but interesting?*) |
|
235 |
lemma (in Extend) project_set_extend_set_Un: |
|
13805 | 236 |
"project_set h ((extend_set h A) \<union> B) = A \<union> (project_set h B)" |
13790 | 237 |
by auto |
238 |
||
239 |
lemma project_set_Int_subset: |
|
13805 | 240 |
"project_set h (A \<inter> B) \<subseteq> (project_set h A) \<inter> (project_set h B)" |
13790 | 241 |
by auto |
242 |
||
243 |
lemma (in Extend) extend_set_Un_distrib: |
|
13805 | 244 |
"extend_set h (A \<union> B) = extend_set h A \<union> extend_set h B" |
13790 | 245 |
by auto |
246 |
||
247 |
lemma (in Extend) extend_set_Int_distrib: |
|
13805 | 248 |
"extend_set h (A \<inter> B) = extend_set h A \<inter> extend_set h B" |
13790 | 249 |
by auto |
250 |
||
251 |
lemma (in Extend) extend_set_INT_distrib: |
|
13805 | 252 |
"extend_set h (INTER A B) = (\<Inter>x \<in> A. extend_set h (B x))" |
13790 | 253 |
by auto |
254 |
||
255 |
lemma (in Extend) extend_set_Diff_distrib: |
|
256 |
"extend_set h (A - B) = extend_set h A - extend_set h B" |
|
257 |
by auto |
|
258 |
||
259 |
lemma (in Extend) extend_set_Union: |
|
13805 | 260 |
"extend_set h (Union A) = (\<Union>X \<in> A. extend_set h X)" |
13790 | 261 |
by blast |
262 |
||
263 |
lemma (in Extend) extend_set_subset_Compl_eq: |
|
13805 | 264 |
"(extend_set h A \<subseteq> - extend_set h B) = (A \<subseteq> - B)" |
13790 | 265 |
by (unfold extend_set_def, auto) |
266 |
||
267 |
||
13798 | 268 |
subsection{*@{term extend_act}*} |
13790 | 269 |
|
270 |
(*Can't strengthen it to |
|
13805 | 271 |
((h(s,y), h(s',y')) \<in> extend_act h act) = ((s, s') \<in> act & y=y') |
13790 | 272 |
because h doesn't have to be injective in the 2nd argument*) |
273 |
lemma (in Extend) mem_extend_act_iff [iff]: |
|
13805 | 274 |
"((h(s,y), h(s',y)) \<in> extend_act h act) = ((s, s') \<in> act)" |
13790 | 275 |
by (unfold extend_act_def, auto) |
276 |
||
277 |
(*Converse fails: (z,z') would include actions that changed the g-part*) |
|
278 |
lemma (in Extend) extend_act_D: |
|
13805 | 279 |
"(z, z') \<in> extend_act h act ==> (f z, f z') \<in> act" |
13790 | 280 |
by (unfold extend_act_def, auto) |
281 |
||
282 |
lemma (in Extend) extend_act_inverse [simp]: |
|
283 |
"project_act h (extend_act h act) = act" |
|
284 |
by (unfold extend_act_def project_act_def, blast) |
|
285 |
||
286 |
lemma (in Extend) project_act_extend_act_restrict [simp]: |
|
287 |
"project_act h (Restrict C (extend_act h act)) = |
|
288 |
Restrict (project_set h C) act" |
|
289 |
by (unfold extend_act_def project_act_def, blast) |
|
290 |
||
291 |
lemma (in Extend) subset_extend_act_D: |
|
13805 | 292 |
"act' \<subseteq> extend_act h act ==> project_act h act' \<subseteq> act" |
13790 | 293 |
by (unfold extend_act_def project_act_def, force) |
294 |
||
295 |
lemma (in Extend) inj_extend_act: "inj (extend_act h)" |
|
296 |
apply (rule inj_on_inverseI) |
|
297 |
apply (rule extend_act_inverse) |
|
298 |
done |
|
299 |
||
300 |
lemma (in Extend) extend_act_Image [simp]: |
|
301 |
"extend_act h act `` (extend_set h A) = extend_set h (act `` A)" |
|
302 |
by (unfold extend_set_def extend_act_def, force) |
|
303 |
||
304 |
lemma (in Extend) extend_act_strict_mono [iff]: |
|
13805 | 305 |
"(extend_act h act' \<subseteq> extend_act h act) = (act'<=act)" |
13790 | 306 |
by (unfold extend_act_def, auto) |
307 |
||
308 |
declare (in Extend) inj_extend_act [THEN inj_eq, iff] |
|
309 |
(*This theorem is (extend_act h act' = extend_act h act) = (act'=act) *) |
|
310 |
||
311 |
lemma Domain_extend_act: |
|
312 |
"Domain (extend_act h act) = extend_set h (Domain act)" |
|
313 |
by (unfold extend_set_def extend_act_def, force) |
|
314 |
||
315 |
lemma (in Extend) extend_act_Id [simp]: |
|
316 |
"extend_act h Id = Id" |
|
317 |
apply (unfold extend_act_def) |
|
318 |
apply (force intro: h_f_g_eq [symmetric]) |
|
319 |
done |
|
320 |
||
321 |
lemma (in Extend) project_act_I: |
|
13805 | 322 |
"!!z z'. (z, z') \<in> act ==> (f z, f z') \<in> project_act h act" |
13790 | 323 |
apply (unfold project_act_def) |
324 |
apply (force simp add: split_extended_all) |
|
325 |
done |
|
326 |
||
327 |
lemma (in Extend) project_act_Id [simp]: "project_act h Id = Id" |
|
328 |
by (unfold project_act_def, force) |
|
329 |
||
330 |
lemma (in Extend) Domain_project_act: |
|
331 |
"Domain (project_act h act) = project_set h (Domain act)" |
|
332 |
apply (unfold project_act_def) |
|
333 |
apply (force simp add: split_extended_all) |
|
334 |
done |
|
335 |
||
336 |
||
337 |
||
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
338 |
subsection{*extend*} |
13790 | 339 |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
340 |
text{*Basic properties*} |
13790 | 341 |
|
342 |
lemma Init_extend [simp]: |
|
343 |
"Init (extend h F) = extend_set h (Init F)" |
|
344 |
by (unfold extend_def, auto) |
|
345 |
||
346 |
lemma Init_project [simp]: |
|
347 |
"Init (project h C F) = project_set h (Init F)" |
|
348 |
by (unfold project_def, auto) |
|
349 |
||
350 |
lemma (in Extend) Acts_extend [simp]: |
|
351 |
"Acts (extend h F) = (extend_act h ` Acts F)" |
|
352 |
by (simp add: extend_def insert_Id_image_Acts) |
|
353 |
||
354 |
lemma (in Extend) AllowedActs_extend [simp]: |
|
355 |
"AllowedActs (extend h F) = project_act h -` AllowedActs F" |
|
356 |
by (simp add: extend_def insert_absorb) |
|
357 |
||
358 |
lemma Acts_project [simp]: |
|
359 |
"Acts(project h C F) = insert Id (project_act h ` Restrict C ` Acts F)" |
|
360 |
by (auto simp add: project_def image_iff) |
|
361 |
||
362 |
lemma (in Extend) AllowedActs_project [simp]: |
|
363 |
"AllowedActs(project h C F) = |
|
364 |
{act. Restrict (project_set h C) act |
|
13805 | 365 |
\<in> project_act h ` Restrict C ` AllowedActs F}" |
13790 | 366 |
apply (simp (no_asm) add: project_def image_iff) |
367 |
apply (subst insert_absorb) |
|
368 |
apply (auto intro!: bexI [of _ Id] simp add: project_act_def) |
|
369 |
done |
|
370 |
||
371 |
lemma (in Extend) Allowed_extend: |
|
372 |
"Allowed (extend h F) = project h UNIV -` Allowed F" |
|
373 |
apply (simp (no_asm) add: AllowedActs_extend Allowed_def) |
|
374 |
apply blast |
|
375 |
done |
|
376 |
||
377 |
lemma (in Extend) extend_SKIP [simp]: "extend h SKIP = SKIP" |
|
378 |
apply (unfold SKIP_def) |
|
379 |
apply (rule program_equalityI, auto) |
|
380 |
done |
|
381 |
||
382 |
lemma project_set_UNIV [simp]: "project_set h UNIV = UNIV" |
|
383 |
by auto |
|
384 |
||
385 |
lemma project_set_Union: |
|
13805 | 386 |
"project_set h (Union A) = (\<Union>X \<in> A. project_set h X)" |
13790 | 387 |
by blast |
388 |
||
6297 | 389 |
|
13790 | 390 |
(*Converse FAILS: the extended state contributing to project_set h C |
391 |
may not coincide with the one contributing to project_act h act*) |
|
392 |
lemma (in Extend) project_act_Restrict_subset: |
|
13805 | 393 |
"project_act h (Restrict C act) \<subseteq> |
13790 | 394 |
Restrict (project_set h C) (project_act h act)" |
395 |
by (auto simp add: project_act_def) |
|
396 |
||
397 |
lemma (in Extend) project_act_Restrict_Id_eq: |
|
398 |
"project_act h (Restrict C Id) = Restrict (project_set h C) Id" |
|
399 |
by (auto simp add: project_act_def) |
|
400 |
||
401 |
lemma (in Extend) project_extend_eq: |
|
402 |
"project h C (extend h F) = |
|
403 |
mk_program (Init F, Restrict (project_set h C) ` Acts F, |
|
404 |
{act. Restrict (project_set h C) act |
|
13805 | 405 |
\<in> project_act h ` Restrict C ` |
13790 | 406 |
(project_act h -` AllowedActs F)})" |
407 |
apply (rule program_equalityI) |
|
408 |
apply simp |
|
409 |
apply (simp add: image_eq_UN) |
|
410 |
apply (simp add: project_def) |
|
411 |
done |
|
412 |
||
413 |
lemma (in Extend) extend_inverse [simp]: |
|
414 |
"project h UNIV (extend h F) = F" |
|
415 |
apply (simp (no_asm_simp) add: project_extend_eq image_eq_UN |
|
416 |
subset_UNIV [THEN subset_trans, THEN Restrict_triv]) |
|
417 |
apply (rule program_equalityI) |
|
418 |
apply (simp_all (no_asm)) |
|
419 |
apply (subst insert_absorb) |
|
420 |
apply (simp (no_asm) add: bexI [of _ Id]) |
|
421 |
apply auto |
|
422 |
apply (rename_tac "act") |
|
423 |
apply (rule_tac x = "extend_act h act" in bexI, auto) |
|
424 |
done |
|
425 |
||
426 |
lemma (in Extend) inj_extend: "inj (extend h)" |
|
427 |
apply (rule inj_on_inverseI) |
|
428 |
apply (rule extend_inverse) |
|
429 |
done |
|
430 |
||
431 |
lemma (in Extend) extend_Join [simp]: |
|
13819 | 432 |
"extend h (F\<squnion>G) = extend h F\<squnion>extend h G" |
13790 | 433 |
apply (rule program_equalityI) |
434 |
apply (simp (no_asm) add: extend_set_Int_distrib) |
|
435 |
apply (simp add: image_Un, auto) |
|
436 |
done |
|
437 |
||
438 |
lemma (in Extend) extend_JN [simp]: |
|
13805 | 439 |
"extend h (JOIN I F) = (\<Squnion>i \<in> I. extend h (F i))" |
13790 | 440 |
apply (rule program_equalityI) |
441 |
apply (simp (no_asm) add: extend_set_INT_distrib) |
|
442 |
apply (simp add: image_UN, auto) |
|
443 |
done |
|
444 |
||
445 |
(** These monotonicity results look natural but are UNUSED **) |
|
446 |
||
13805 | 447 |
lemma (in Extend) extend_mono: "F \<le> G ==> extend h F \<le> extend h G" |
13790 | 448 |
by (force simp add: component_eq_subset) |
449 |
||
13805 | 450 |
lemma (in Extend) project_mono: "F \<le> G ==> project h C F \<le> project h C G" |
13790 | 451 |
by (simp add: component_eq_subset, blast) |
452 |
||
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
453 |
lemma (in Extend) all_total_extend: "all_total F ==> all_total (extend h F)" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
454 |
by (simp add: all_total_def Domain_extend_act) |
13790 | 455 |
|
13798 | 456 |
subsection{*Safety: co, stable*} |
13790 | 457 |
|
458 |
lemma (in Extend) extend_constrains: |
|
13805 | 459 |
"(extend h F \<in> (extend_set h A) co (extend_set h B)) = |
460 |
(F \<in> A co B)" |
|
13790 | 461 |
by (simp add: constrains_def) |
462 |
||
463 |
lemma (in Extend) extend_stable: |
|
13805 | 464 |
"(extend h F \<in> stable (extend_set h A)) = (F \<in> stable A)" |
13790 | 465 |
by (simp add: stable_def extend_constrains) |
466 |
||
467 |
lemma (in Extend) extend_invariant: |
|
13805 | 468 |
"(extend h F \<in> invariant (extend_set h A)) = (F \<in> invariant A)" |
13790 | 469 |
by (simp add: invariant_def extend_stable) |
470 |
||
471 |
(*Projects the state predicates in the property satisfied by extend h F. |
|
472 |
Converse fails: A and B may differ in their extra variables*) |
|
473 |
lemma (in Extend) extend_constrains_project_set: |
|
13805 | 474 |
"extend h F \<in> A co B ==> F \<in> (project_set h A) co (project_set h B)" |
13790 | 475 |
by (auto simp add: constrains_def, force) |
476 |
||
477 |
lemma (in Extend) extend_stable_project_set: |
|
13805 | 478 |
"extend h F \<in> stable A ==> F \<in> stable (project_set h A)" |
13790 | 479 |
by (simp add: stable_def extend_constrains_project_set) |
480 |
||
481 |
||
13798 | 482 |
subsection{*Weak safety primitives: Co, Stable*} |
13790 | 483 |
|
484 |
lemma (in Extend) reachable_extend_f: |
|
13805 | 485 |
"p \<in> reachable (extend h F) ==> f p \<in> reachable F" |
13790 | 486 |
apply (erule reachable.induct) |
487 |
apply (auto intro: reachable.intros simp add: extend_act_def image_iff) |
|
488 |
done |
|
489 |
||
490 |
lemma (in Extend) h_reachable_extend: |
|
13805 | 491 |
"h(s,y) \<in> reachable (extend h F) ==> s \<in> reachable F" |
13790 | 492 |
by (force dest!: reachable_extend_f) |
493 |
||
494 |
lemma (in Extend) reachable_extend_eq: |
|
495 |
"reachable (extend h F) = extend_set h (reachable F)" |
|
496 |
apply (unfold extend_set_def) |
|
497 |
apply (rule equalityI) |
|
498 |
apply (force intro: h_f_g_eq [symmetric] dest!: reachable_extend_f, clarify) |
|
499 |
apply (erule reachable.induct) |
|
500 |
apply (force intro: reachable.intros)+ |
|
501 |
done |
|
502 |
||
503 |
lemma (in Extend) extend_Constrains: |
|
13805 | 504 |
"(extend h F \<in> (extend_set h A) Co (extend_set h B)) = |
505 |
(F \<in> A Co B)" |
|
13790 | 506 |
by (simp add: Constrains_def reachable_extend_eq extend_constrains |
507 |
extend_set_Int_distrib [symmetric]) |
|
508 |
||
509 |
lemma (in Extend) extend_Stable: |
|
13805 | 510 |
"(extend h F \<in> Stable (extend_set h A)) = (F \<in> Stable A)" |
13790 | 511 |
by (simp add: Stable_def extend_Constrains) |
512 |
||
513 |
lemma (in Extend) extend_Always: |
|
13805 | 514 |
"(extend h F \<in> Always (extend_set h A)) = (F \<in> Always A)" |
13790 | 515 |
by (simp (no_asm_simp) add: Always_def extend_Stable) |
516 |
||
517 |
||
518 |
(** Safety and "project" **) |
|
519 |
||
520 |
(** projection: monotonicity for safety **) |
|
521 |
||
522 |
lemma project_act_mono: |
|
13805 | 523 |
"D \<subseteq> C ==> |
524 |
project_act h (Restrict D act) \<subseteq> project_act h (Restrict C act)" |
|
13790 | 525 |
by (auto simp add: project_act_def) |
526 |
||
527 |
lemma (in Extend) project_constrains_mono: |
|
13805 | 528 |
"[| D \<subseteq> C; project h C F \<in> A co B |] ==> project h D F \<in> A co B" |
13790 | 529 |
apply (auto simp add: constrains_def) |
530 |
apply (drule project_act_mono, blast) |
|
531 |
done |
|
532 |
||
533 |
lemma (in Extend) project_stable_mono: |
|
13805 | 534 |
"[| D \<subseteq> C; project h C F \<in> stable A |] ==> project h D F \<in> stable A" |
13790 | 535 |
by (simp add: stable_def project_constrains_mono) |
536 |
||
537 |
(*Key lemma used in several proofs about project and co*) |
|
538 |
lemma (in Extend) project_constrains: |
|
13805 | 539 |
"(project h C F \<in> A co B) = |
540 |
(F \<in> (C \<inter> extend_set h A) co (extend_set h B) & A \<subseteq> B)" |
|
13790 | 541 |
apply (unfold constrains_def) |
542 |
apply (auto intro!: project_act_I simp add: ball_Un) |
|
543 |
apply (force intro!: project_act_I dest!: subsetD) |
|
544 |
(*the <== direction*) |
|
545 |
apply (unfold project_act_def) |
|
546 |
apply (force dest!: subsetD) |
|
547 |
done |
|
548 |
||
549 |
lemma (in Extend) project_stable: |
|
13805 | 550 |
"(project h UNIV F \<in> stable A) = (F \<in> stable (extend_set h A))" |
13790 | 551 |
apply (unfold stable_def) |
552 |
apply (simp (no_asm) add: project_constrains) |
|
553 |
done |
|
554 |
||
555 |
lemma (in Extend) project_stable_I: |
|
13805 | 556 |
"F \<in> stable (extend_set h A) ==> project h C F \<in> stable A" |
13790 | 557 |
apply (drule project_stable [THEN iffD2]) |
558 |
apply (blast intro: project_stable_mono) |
|
559 |
done |
|
560 |
||
561 |
lemma (in Extend) Int_extend_set_lemma: |
|
13805 | 562 |
"A \<inter> extend_set h ((project_set h A) \<inter> B) = A \<inter> extend_set h B" |
13790 | 563 |
by (auto simp add: split_extended_all) |
564 |
||
565 |
(*Strange (look at occurrences of C) but used in leadsETo proofs*) |
|
566 |
lemma project_constrains_project_set: |
|
13805 | 567 |
"G \<in> C co B ==> project h C G \<in> project_set h C co project_set h B" |
13790 | 568 |
by (simp add: constrains_def project_def project_act_def, blast) |
569 |
||
570 |
lemma project_stable_project_set: |
|
13805 | 571 |
"G \<in> stable C ==> project h C G \<in> stable (project_set h C)" |
13790 | 572 |
by (simp add: stable_def project_constrains_project_set) |
573 |
||
574 |
||
13798 | 575 |
subsection{*Progress: transient, ensures*} |
13790 | 576 |
|
577 |
lemma (in Extend) extend_transient: |
|
13805 | 578 |
"(extend h F \<in> transient (extend_set h A)) = (F \<in> transient A)" |
13790 | 579 |
by (auto simp add: transient_def extend_set_subset_Compl_eq Domain_extend_act) |
580 |
||
581 |
lemma (in Extend) extend_ensures: |
|
13805 | 582 |
"(extend h F \<in> (extend_set h A) ensures (extend_set h B)) = |
583 |
(F \<in> A ensures B)" |
|
13790 | 584 |
by (simp add: ensures_def extend_constrains extend_transient |
585 |
extend_set_Un_distrib [symmetric] extend_set_Diff_distrib [symmetric]) |
|
586 |
||
587 |
lemma (in Extend) leadsTo_imp_extend_leadsTo: |
|
13805 | 588 |
"F \<in> A leadsTo B |
589 |
==> extend h F \<in> (extend_set h A) leadsTo (extend_set h B)" |
|
13790 | 590 |
apply (erule leadsTo_induct) |
591 |
apply (simp add: leadsTo_Basis extend_ensures) |
|
592 |
apply (blast intro: leadsTo_Trans) |
|
593 |
apply (simp add: leadsTo_UN extend_set_Union) |
|
594 |
done |
|
595 |
||
13798 | 596 |
subsection{*Proving the converse takes some doing!*} |
13790 | 597 |
|
13805 | 598 |
lemma (in Extend) slice_iff [iff]: "(x \<in> slice C y) = (h(x,y) \<in> C)" |
13790 | 599 |
by (simp (no_asm) add: slice_def) |
600 |
||
13805 | 601 |
lemma (in Extend) slice_Union: "slice (Union S) y = (\<Union>x \<in> S. slice x y)" |
13790 | 602 |
by auto |
603 |
||
604 |
lemma (in Extend) slice_extend_set: "slice (extend_set h A) y = A" |
|
605 |
by auto |
|
606 |
||
607 |
lemma (in Extend) project_set_is_UN_slice: |
|
13805 | 608 |
"project_set h A = (\<Union>y. slice A y)" |
13790 | 609 |
by auto |
610 |
||
611 |
lemma (in Extend) extend_transient_slice: |
|
13805 | 612 |
"extend h F \<in> transient A ==> F \<in> transient (slice A y)" |
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
613 |
by (unfold transient_def, auto) |
13790 | 614 |
|
615 |
(*Converse?*) |
|
616 |
lemma (in Extend) extend_constrains_slice: |
|
13805 | 617 |
"extend h F \<in> A co B ==> F \<in> (slice A y) co (slice B y)" |
13790 | 618 |
by (auto simp add: constrains_def) |
619 |
||
620 |
lemma (in Extend) extend_ensures_slice: |
|
13805 | 621 |
"extend h F \<in> A ensures B ==> F \<in> (slice A y) ensures (project_set h B)" |
13790 | 622 |
apply (auto simp add: ensures_def extend_constrains extend_transient) |
623 |
apply (erule_tac [2] extend_transient_slice [THEN transient_strengthen]) |
|
624 |
apply (erule extend_constrains_slice [THEN constrains_weaken], auto) |
|
625 |
done |
|
626 |
||
627 |
lemma (in Extend) leadsTo_slice_project_set: |
|
13805 | 628 |
"\<forall>y. F \<in> (slice B y) leadsTo CU ==> F \<in> (project_set h B) leadsTo CU" |
13790 | 629 |
apply (simp (no_asm) add: project_set_is_UN_slice) |
630 |
apply (blast intro: leadsTo_UN) |
|
631 |
done |
|
632 |
||
13798 | 633 |
lemma (in Extend) extend_leadsTo_slice [rule_format]: |
13805 | 634 |
"extend h F \<in> AU leadsTo BU |
635 |
==> \<forall>y. F \<in> (slice AU y) leadsTo (project_set h BU)" |
|
13790 | 636 |
apply (erule leadsTo_induct) |
637 |
apply (blast intro: extend_ensures_slice leadsTo_Basis) |
|
638 |
apply (blast intro: leadsTo_slice_project_set leadsTo_Trans) |
|
639 |
apply (simp add: leadsTo_UN slice_Union) |
|
640 |
done |
|
641 |
||
642 |
lemma (in Extend) extend_leadsTo: |
|
13805 | 643 |
"(extend h F \<in> (extend_set h A) leadsTo (extend_set h B)) = |
644 |
(F \<in> A leadsTo B)" |
|
13790 | 645 |
apply safe |
646 |
apply (erule_tac [2] leadsTo_imp_extend_leadsTo) |
|
647 |
apply (drule extend_leadsTo_slice) |
|
648 |
apply (simp add: slice_extend_set) |
|
649 |
done |
|
650 |
||
651 |
lemma (in Extend) extend_LeadsTo: |
|
13805 | 652 |
"(extend h F \<in> (extend_set h A) LeadsTo (extend_set h B)) = |
653 |
(F \<in> A LeadsTo B)" |
|
13790 | 654 |
by (simp add: LeadsTo_def reachable_extend_eq extend_leadsTo |
655 |
extend_set_Int_distrib [symmetric]) |
|
656 |
||
657 |
||
13798 | 658 |
subsection{*preserves*} |
13790 | 659 |
|
660 |
lemma (in Extend) project_preserves_I: |
|
13805 | 661 |
"G \<in> preserves (v o f) ==> project h C G \<in> preserves v" |
13790 | 662 |
by (auto simp add: preserves_def project_stable_I extend_set_eq_Collect) |
663 |
||
664 |
(*to preserve f is to preserve the whole original state*) |
|
665 |
lemma (in Extend) project_preserves_id_I: |
|
13805 | 666 |
"G \<in> preserves f ==> project h C G \<in> preserves id" |
13790 | 667 |
by (simp add: project_preserves_I) |
668 |
||
669 |
lemma (in Extend) extend_preserves: |
|
13805 | 670 |
"(extend h G \<in> preserves (v o f)) = (G \<in> preserves v)" |
13790 | 671 |
by (auto simp add: preserves_def extend_stable [symmetric] |
672 |
extend_set_eq_Collect) |
|
673 |
||
13805 | 674 |
lemma (in Extend) inj_extend_preserves: "inj h ==> (extend h G \<in> preserves g)" |
13790 | 675 |
by (auto simp add: preserves_def extend_def extend_act_def stable_def |
676 |
constrains_def g_def) |
|
677 |
||
678 |
||
13798 | 679 |
subsection{*Guarantees*} |
13790 | 680 |
|
681 |
lemma (in Extend) project_extend_Join: |
|
13819 | 682 |
"project h UNIV ((extend h F)\<squnion>G) = F\<squnion>(project h UNIV G)" |
13790 | 683 |
apply (rule program_equalityI) |
684 |
apply (simp add: project_set_extend_set_Int) |
|
685 |
apply (simp add: image_eq_UN UN_Un, auto) |
|
686 |
done |
|
687 |
||
688 |
lemma (in Extend) extend_Join_eq_extend_D: |
|
13819 | 689 |
"(extend h F)\<squnion>G = extend h H ==> H = F\<squnion>(project h UNIV G)" |
13790 | 690 |
apply (drule_tac f = "project h UNIV" in arg_cong) |
691 |
apply (simp add: project_extend_Join) |
|
692 |
done |
|
693 |
||
694 |
(** Strong precondition and postcondition; only useful when |
|
695 |
the old and new state sets are in bijection **) |
|
696 |
||
697 |
||
698 |
lemma (in Extend) ok_extend_imp_ok_project: |
|
699 |
"extend h F ok G ==> F ok project h UNIV G" |
|
700 |
apply (auto simp add: ok_def) |
|
701 |
apply (drule subsetD) |
|
702 |
apply (auto intro!: rev_image_eqI) |
|
703 |
done |
|
704 |
||
705 |
lemma (in Extend) ok_extend_iff: "(extend h F ok extend h G) = (F ok G)" |
|
706 |
apply (simp add: ok_def, safe) |
|
707 |
apply (force+) |
|
708 |
done |
|
709 |
||
710 |
lemma (in Extend) OK_extend_iff: "OK I (%i. extend h (F i)) = (OK I F)" |
|
711 |
apply (unfold OK_def, safe) |
|
712 |
apply (drule_tac x = i in bspec) |
|
713 |
apply (drule_tac [2] x = j in bspec) |
|
714 |
apply (force+) |
|
715 |
done |
|
716 |
||
717 |
lemma (in Extend) guarantees_imp_extend_guarantees: |
|
13805 | 718 |
"F \<in> X guarantees Y ==> |
719 |
extend h F \<in> (extend h ` X) guarantees (extend h ` Y)" |
|
13790 | 720 |
apply (rule guaranteesI, clarify) |
721 |
apply (blast dest: ok_extend_imp_ok_project extend_Join_eq_extend_D |
|
722 |
guaranteesD) |
|
723 |
done |
|
724 |
||
725 |
lemma (in Extend) extend_guarantees_imp_guarantees: |
|
13805 | 726 |
"extend h F \<in> (extend h ` X) guarantees (extend h ` Y) |
727 |
==> F \<in> X guarantees Y" |
|
13790 | 728 |
apply (auto simp add: guar_def) |
729 |
apply (drule_tac x = "extend h G" in spec) |
|
730 |
apply (simp del: extend_Join |
|
731 |
add: extend_Join [symmetric] ok_extend_iff |
|
732 |
inj_extend [THEN inj_image_mem_iff]) |
|
733 |
done |
|
734 |
||
735 |
lemma (in Extend) extend_guarantees_eq: |
|
13805 | 736 |
"(extend h F \<in> (extend h ` X) guarantees (extend h ` Y)) = |
737 |
(F \<in> X guarantees Y)" |
|
13790 | 738 |
by (blast intro: guarantees_imp_extend_guarantees |
739 |
extend_guarantees_imp_guarantees) |
|
6297 | 740 |
|
741 |
end |