27468
|
1 |
(* Title : HSeries.thy
|
|
2 |
Author : Jacques D. Fleuriot
|
|
3 |
Copyright : 1998 University of Cambridge
|
|
4 |
|
|
5 |
Converted to Isar and polished by lcp
|
|
6 |
*)
|
|
7 |
|
|
8 |
header{*Finite Summation and Infinite Series for Hyperreals*}
|
|
9 |
|
|
10 |
theory HSeries
|
|
11 |
imports Series HSEQ
|
|
12 |
begin
|
|
13 |
|
|
14 |
definition
|
|
15 |
sumhr :: "(hypnat * hypnat * (nat=>real)) => hypreal" where
|
|
16 |
[code func del]: "sumhr =
|
|
17 |
(%(M,N,f). starfun2 (%m n. setsum f {m..<n}) M N)"
|
|
18 |
|
|
19 |
definition
|
|
20 |
NSsums :: "[nat=>real,real] => bool" (infixr "NSsums" 80) where
|
|
21 |
"f NSsums s = (%n. setsum f {0..<n}) ----NS> s"
|
|
22 |
|
|
23 |
definition
|
|
24 |
NSsummable :: "(nat=>real) => bool" where
|
|
25 |
[code func del]: "NSsummable f = (\<exists>s. f NSsums s)"
|
|
26 |
|
|
27 |
definition
|
|
28 |
NSsuminf :: "(nat=>real) => real" where
|
|
29 |
"NSsuminf f = (THE s. f NSsums s)"
|
|
30 |
|
|
31 |
lemma sumhr_app: "sumhr(M,N,f) = ( *f2* (\<lambda>m n. setsum f {m..<n})) M N"
|
|
32 |
by (simp add: sumhr_def)
|
|
33 |
|
|
34 |
text{*Base case in definition of @{term sumr}*}
|
|
35 |
lemma sumhr_zero [simp]: "!!m. sumhr (m,0,f) = 0"
|
|
36 |
unfolding sumhr_app by transfer simp
|
|
37 |
|
|
38 |
text{*Recursive case in definition of @{term sumr}*}
|
|
39 |
lemma sumhr_if:
|
|
40 |
"!!m n. sumhr(m,n+1,f) =
|
|
41 |
(if n + 1 \<le> m then 0 else sumhr(m,n,f) + ( *f* f) n)"
|
|
42 |
unfolding sumhr_app by transfer simp
|
|
43 |
|
|
44 |
lemma sumhr_Suc_zero [simp]: "!!n. sumhr (n + 1, n, f) = 0"
|
|
45 |
unfolding sumhr_app by transfer simp
|
|
46 |
|
|
47 |
lemma sumhr_eq_bounds [simp]: "!!n. sumhr (n,n,f) = 0"
|
|
48 |
unfolding sumhr_app by transfer simp
|
|
49 |
|
|
50 |
lemma sumhr_Suc [simp]: "!!m. sumhr (m,m + 1,f) = ( *f* f) m"
|
|
51 |
unfolding sumhr_app by transfer simp
|
|
52 |
|
|
53 |
lemma sumhr_add_lbound_zero [simp]: "!!k m. sumhr(m+k,k,f) = 0"
|
|
54 |
unfolding sumhr_app by transfer simp
|
|
55 |
|
|
56 |
lemma sumhr_add:
|
|
57 |
"!!m n. sumhr (m,n,f) + sumhr(m,n,g) = sumhr(m,n,%i. f i + g i)"
|
|
58 |
unfolding sumhr_app by transfer (rule setsum_addf [symmetric])
|
|
59 |
|
|
60 |
lemma sumhr_mult:
|
|
61 |
"!!m n. hypreal_of_real r * sumhr(m,n,f) = sumhr(m,n,%n. r * f n)"
|
|
62 |
unfolding sumhr_app by transfer (rule setsum_right_distrib)
|
|
63 |
|
|
64 |
lemma sumhr_split_add:
|
|
65 |
"!!n p. n < p ==> sumhr(0,n,f) + sumhr(n,p,f) = sumhr(0,p,f)"
|
|
66 |
unfolding sumhr_app by transfer (simp add: setsum_add_nat_ivl)
|
|
67 |
|
|
68 |
lemma sumhr_split_diff: "n<p ==> sumhr(0,p,f) - sumhr(0,n,f) = sumhr(n,p,f)"
|
|
69 |
by (drule_tac f = f in sumhr_split_add [symmetric], simp)
|
|
70 |
|
|
71 |
lemma sumhr_hrabs: "!!m n. abs(sumhr(m,n,f)) \<le> sumhr(m,n,%i. abs(f i))"
|
|
72 |
unfolding sumhr_app by transfer (rule setsum_abs)
|
|
73 |
|
|
74 |
text{* other general version also needed *}
|
|
75 |
lemma sumhr_fun_hypnat_eq:
|
|
76 |
"(\<forall>r. m \<le> r & r < n --> f r = g r) -->
|
|
77 |
sumhr(hypnat_of_nat m, hypnat_of_nat n, f) =
|
|
78 |
sumhr(hypnat_of_nat m, hypnat_of_nat n, g)"
|
|
79 |
unfolding sumhr_app by transfer simp
|
|
80 |
|
|
81 |
lemma sumhr_const:
|
|
82 |
"!!n. sumhr(0, n, %i. r) = hypreal_of_hypnat n * hypreal_of_real r"
|
|
83 |
unfolding sumhr_app by transfer (simp add: real_of_nat_def)
|
|
84 |
|
|
85 |
lemma sumhr_less_bounds_zero [simp]: "!!m n. n < m ==> sumhr(m,n,f) = 0"
|
|
86 |
unfolding sumhr_app by transfer simp
|
|
87 |
|
|
88 |
lemma sumhr_minus: "!!m n. sumhr(m, n, %i. - f i) = - sumhr(m, n, f)"
|
|
89 |
unfolding sumhr_app by transfer (rule setsum_negf)
|
|
90 |
|
|
91 |
lemma sumhr_shift_bounds:
|
|
92 |
"!!m n. sumhr(m+hypnat_of_nat k,n+hypnat_of_nat k,f) =
|
|
93 |
sumhr(m,n,%i. f(i + k))"
|
|
94 |
unfolding sumhr_app by transfer (rule setsum_shift_bounds_nat_ivl)
|
|
95 |
|
|
96 |
|
|
97 |
subsection{*Nonstandard Sums*}
|
|
98 |
|
|
99 |
text{*Infinite sums are obtained by summing to some infinite hypernatural
|
|
100 |
(such as @{term whn})*}
|
|
101 |
lemma sumhr_hypreal_of_hypnat_omega:
|
|
102 |
"sumhr(0,whn,%i. 1) = hypreal_of_hypnat whn"
|
|
103 |
by (simp add: sumhr_const)
|
|
104 |
|
|
105 |
lemma sumhr_hypreal_omega_minus_one: "sumhr(0, whn, %i. 1) = omega - 1"
|
|
106 |
apply (simp add: sumhr_const)
|
|
107 |
(* FIXME: need lemma: hypreal_of_hypnat whn = omega - 1 *)
|
|
108 |
(* maybe define omega = hypreal_of_hypnat whn + 1 *)
|
|
109 |
apply (unfold star_class_defs omega_def hypnat_omega_def
|
|
110 |
of_hypnat_def star_of_def)
|
|
111 |
apply (simp add: starfun_star_n starfun2_star_n real_of_nat_def)
|
|
112 |
done
|
|
113 |
|
|
114 |
lemma sumhr_minus_one_realpow_zero [simp]:
|
|
115 |
"!!N. sumhr(0, N + N, %i. (-1) ^ (i+1)) = 0"
|
|
116 |
unfolding sumhr_app
|
|
117 |
by transfer (simp del: realpow_Suc add: nat_mult_2 [symmetric])
|
|
118 |
|
|
119 |
lemma sumhr_interval_const:
|
|
120 |
"(\<forall>n. m \<le> Suc n --> f n = r) & m \<le> na
|
|
121 |
==> sumhr(hypnat_of_nat m,hypnat_of_nat na,f) =
|
|
122 |
(hypreal_of_nat (na - m) * hypreal_of_real r)"
|
|
123 |
unfolding sumhr_app by transfer simp
|
|
124 |
|
|
125 |
lemma starfunNat_sumr: "!!N. ( *f* (%n. setsum f {0..<n})) N = sumhr(0,N,f)"
|
|
126 |
unfolding sumhr_app by transfer (rule refl)
|
|
127 |
|
|
128 |
lemma sumhr_hrabs_approx [simp]: "sumhr(0, M, f) @= sumhr(0, N, f)
|
|
129 |
==> abs (sumhr(M, N, f)) @= 0"
|
|
130 |
apply (cut_tac x = M and y = N in linorder_less_linear)
|
|
131 |
apply (auto simp add: approx_refl)
|
|
132 |
apply (drule approx_sym [THEN approx_minus_iff [THEN iffD1]])
|
|
133 |
apply (auto dest: approx_hrabs
|
|
134 |
simp add: sumhr_split_diff diff_minus [symmetric])
|
|
135 |
done
|
|
136 |
|
|
137 |
(*----------------------------------------------------------------
|
|
138 |
infinite sums: Standard and NS theorems
|
|
139 |
----------------------------------------------------------------*)
|
|
140 |
lemma sums_NSsums_iff: "(f sums l) = (f NSsums l)"
|
|
141 |
by (simp add: sums_def NSsums_def LIMSEQ_NSLIMSEQ_iff)
|
|
142 |
|
|
143 |
lemma summable_NSsummable_iff: "(summable f) = (NSsummable f)"
|
|
144 |
by (simp add: summable_def NSsummable_def sums_NSsums_iff)
|
|
145 |
|
|
146 |
lemma suminf_NSsuminf_iff: "(suminf f) = (NSsuminf f)"
|
|
147 |
by (simp add: suminf_def NSsuminf_def sums_NSsums_iff)
|
|
148 |
|
|
149 |
lemma NSsums_NSsummable: "f NSsums l ==> NSsummable f"
|
|
150 |
by (simp add: NSsums_def NSsummable_def, blast)
|
|
151 |
|
|
152 |
lemma NSsummable_NSsums: "NSsummable f ==> f NSsums (NSsuminf f)"
|
|
153 |
apply (simp add: NSsummable_def NSsuminf_def NSsums_def)
|
|
154 |
apply (blast intro: theI NSLIMSEQ_unique)
|
|
155 |
done
|
|
156 |
|
|
157 |
lemma NSsums_unique: "f NSsums s ==> (s = NSsuminf f)"
|
|
158 |
by (simp add: suminf_NSsuminf_iff [symmetric] sums_NSsums_iff sums_unique)
|
|
159 |
|
|
160 |
lemma NSseries_zero:
|
|
161 |
"\<forall>m. n \<le> Suc m --> f(m) = 0 ==> f NSsums (setsum f {0..<n})"
|
|
162 |
by (simp add: sums_NSsums_iff [symmetric] series_zero)
|
|
163 |
|
|
164 |
lemma NSsummable_NSCauchy:
|
|
165 |
"NSsummable f =
|
|
166 |
(\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. abs (sumhr(M,N,f)) @= 0)"
|
|
167 |
apply (auto simp add: summable_NSsummable_iff [symmetric]
|
|
168 |
summable_convergent_sumr_iff convergent_NSconvergent_iff
|
|
169 |
NSCauchy_NSconvergent_iff [symmetric] NSCauchy_def starfunNat_sumr)
|
|
170 |
apply (cut_tac x = M and y = N in linorder_less_linear)
|
|
171 |
apply (auto simp add: approx_refl)
|
|
172 |
apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym])
|
|
173 |
apply (rule_tac [2] approx_minus_iff [THEN iffD2])
|
|
174 |
apply (auto dest: approx_hrabs_zero_cancel
|
|
175 |
simp add: sumhr_split_diff diff_minus [symmetric])
|
|
176 |
done
|
|
177 |
|
|
178 |
|
|
179 |
text{*Terms of a convergent series tend to zero*}
|
|
180 |
lemma NSsummable_NSLIMSEQ_zero: "NSsummable f ==> f ----NS> 0"
|
|
181 |
apply (auto simp add: NSLIMSEQ_def NSsummable_NSCauchy)
|
|
182 |
apply (drule bspec, auto)
|
|
183 |
apply (drule_tac x = "N + 1 " in bspec)
|
|
184 |
apply (auto intro: HNatInfinite_add_one approx_hrabs_zero_cancel)
|
|
185 |
done
|
|
186 |
|
|
187 |
text{*Nonstandard comparison test*}
|
|
188 |
lemma NSsummable_comparison_test:
|
|
189 |
"[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; NSsummable g |] ==> NSsummable f"
|
|
190 |
apply (fold summable_NSsummable_iff)
|
|
191 |
apply (rule summable_comparison_test, simp, assumption)
|
|
192 |
done
|
|
193 |
|
|
194 |
lemma NSsummable_rabs_comparison_test:
|
|
195 |
"[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; NSsummable g |]
|
|
196 |
==> NSsummable (%k. abs (f k))"
|
|
197 |
apply (rule NSsummable_comparison_test)
|
|
198 |
apply (auto)
|
|
199 |
done
|
|
200 |
|
|
201 |
end
|