| 13262 |      1 | (*<*)theory FP1 = Main:(*>*)
 | 
|  |      2 | 
 | 
| 14138 |      3 | subsection{*Quickcheck*}
 | 
|  |      4 | 
 | 
|  |      5 | lemma "rev(xs @ ys) = rev xs @ rev ys"
 | 
|  |      6 | quickcheck
 | 
|  |      7 | oops
 | 
|  |      8 | 
 | 
|  |      9 | subsection{*More Syntax*}
 | 
|  |     10 | 
 | 
| 13262 |     11 | lemma "if xs = ys
 | 
|  |     12 |        then rev xs = rev ys
 | 
|  |     13 |        else rev xs \<noteq> rev ys"
 | 
|  |     14 | by auto
 | 
|  |     15 | 
 | 
|  |     16 | lemma "case xs of
 | 
|  |     17 |          []   \<Rightarrow> tl xs = xs
 | 
|  |     18 |        | y#ys \<Rightarrow> tl xs \<noteq> xs"
 | 
|  |     19 | apply(case_tac xs)
 | 
|  |     20 | by auto
 | 
|  |     21 | 
 | 
|  |     22 | 
 | 
|  |     23 | subsection{*More Types*}
 | 
|  |     24 | 
 | 
|  |     25 | 
 | 
|  |     26 | subsubsection{*Natural Numbers*}
 | 
|  |     27 | 
 | 
|  |     28 | consts sum :: "nat \<Rightarrow> nat"
 | 
|  |     29 | primrec "sum 0 = 0"
 | 
|  |     30 |         "sum (Suc n) = Suc n + sum n"
 | 
|  |     31 | 
 | 
|  |     32 | lemma "sum n + sum n = n*(Suc n)"
 | 
|  |     33 | apply(induct_tac n)
 | 
|  |     34 | apply(auto)
 | 
|  |     35 | done
 | 
|  |     36 | 
 | 
|  |     37 | text{*Some examples of linear arithmetic:*}
 | 
|  |     38 | 
 | 
|  |     39 | lemma "\<lbrakk> \<not> m < n; m < n+(1::int) \<rbrakk> \<Longrightarrow> m = n"
 | 
|  |     40 | by(auto)
 | 
|  |     41 | 
 | 
|  |     42 | lemma "min i (max j k) = max (min k i) (min i (j::nat))"
 | 
|  |     43 | by(arith)
 | 
|  |     44 | 
 | 
| 14138 |     45 | text{*Full Presburger arithmetic:*}
 | 
|  |     46 | lemma "8 \<le> (n::int) \<Longrightarrow> \<exists>i j. 0\<le>i \<and> 0\<le>j \<and> n = 3*i + 5*j"
 | 
|  |     47 | by(arith)
 | 
|  |     48 | 
 | 
| 13262 |     49 | text{*Not proved automatically because it involves multiplication:*}
 | 
|  |     50 | lemma "n*n = n \<Longrightarrow> n=0 \<or> n=(1::int)"
 | 
|  |     51 | (*<*)oops(*>*)
 | 
|  |     52 | 
 | 
|  |     53 | 
 | 
|  |     54 | subsubsection{*Pairs*}
 | 
|  |     55 | 
 | 
|  |     56 | lemma "fst(x,y) = snd(z,x)"
 | 
|  |     57 | by auto
 | 
|  |     58 | 
 | 
|  |     59 | 
 | 
|  |     60 | subsection{*Definitions*}
 | 
|  |     61 | 
 | 
|  |     62 | consts xor :: "bool \<Rightarrow> bool \<Rightarrow> bool"
 | 
|  |     63 | defs xor_def: "xor x y \<equiv> x \<and> \<not>y \<or> \<not>x \<and> y"
 | 
|  |     64 | 
 | 
|  |     65 | constdefs nand :: "bool \<Rightarrow> bool \<Rightarrow> bool"
 | 
|  |     66 |          "nand x y \<equiv> \<not>(x \<and> y)"
 | 
|  |     67 | 
 | 
|  |     68 | lemma "\<not> xor x x"
 | 
|  |     69 | apply(unfold xor_def)
 | 
|  |     70 | by auto
 | 
|  |     71 | 
 | 
|  |     72 | 
 | 
|  |     73 | 
 | 
|  |     74 | subsection{*Simplification*}
 | 
|  |     75 | 
 | 
|  |     76 | 
 | 
|  |     77 | subsubsection{*Simplification Rules*}
 | 
|  |     78 | 
 | 
|  |     79 | lemma fst_conv[simp]: "fst(x,y) = x"
 | 
|  |     80 | by auto
 | 
|  |     81 | 
 | 
|  |     82 | text{*Setting and resetting the @{text simp} attribute:*}
 | 
|  |     83 | 
 | 
|  |     84 | declare fst_conv[simp]
 | 
|  |     85 | declare fst_conv[simp del]
 | 
|  |     86 | 
 | 
|  |     87 | 
 | 
|  |     88 | subsubsection{*The Simplification Method*}
 | 
|  |     89 | 
 | 
|  |     90 | lemma "x*(y+1) = y*(x+1::nat)"
 | 
|  |     91 | apply simp
 | 
|  |     92 | (*<*)oops(*>*)
 | 
|  |     93 | 
 | 
|  |     94 | 
 | 
|  |     95 | subsubsection{*Adding and Deleting Simplification Rules*}
 | 
|  |     96 | 
 | 
|  |     97 | lemma "\<forall>x::nat. x*(y+z) = r"
 | 
|  |     98 | apply (simp add: add_mult_distrib2)
 | 
|  |     99 | (*<*)oops(*>*)text_raw{* \isanewline\isanewline *}
 | 
|  |    100 | 
 | 
|  |    101 | lemma "rev(rev(xs @ [])) = xs"
 | 
|  |    102 | apply (simp del: rev_rev_ident)
 | 
|  |    103 | (*<*)oops(*>*)
 | 
|  |    104 | 
 | 
|  |    105 | 
 | 
|  |    106 | subsubsection{*Rewriting with Definitions*}
 | 
|  |    107 | 
 | 
|  |    108 | lemma "xor A (\<not>A)"
 | 
|  |    109 | apply(simp only: xor_def)
 | 
|  |    110 | apply simp
 | 
|  |    111 | done
 | 
|  |    112 | 
 | 
|  |    113 | 
 | 
|  |    114 | subsubsection{*Conditional Equations*}
 | 
|  |    115 | 
 | 
| 13489 |    116 | (*<*)thm hd_Cons_tl(*>*)
 | 
|  |    117 | text{*A pre-proved simplification rule: @{thm hd_Cons_tl[no_vars]}*}
 | 
|  |    118 | lemma "hd(xs @ [x]) # tl(xs @ [x]) = xs @ [x]"
 | 
| 13262 |    119 | by simp
 | 
|  |    120 | 
 | 
|  |    121 | 
 | 
|  |    122 | subsubsection{*Automatic Case Splits*}
 | 
|  |    123 | 
 | 
|  |    124 | lemma "\<forall>xs. if xs = [] then A else B"
 | 
|  |    125 | apply simp
 | 
|  |    126 | (*<*)oops(*>*)
 | 
| 13489 |    127 | text{*Case-expressions are only split on demand.*}
 | 
| 13262 |    128 | 
 | 
|  |    129 | 
 | 
|  |    130 | subsubsection{*Arithmetic*}
 | 
|  |    131 | 
 | 
| 13489 |    132 | text{*Only simple arithmetic:*}
 | 
| 13262 |    133 | lemma "\<lbrakk> \<not> m < n; m < n+(1::nat) \<rbrakk> \<Longrightarrow> m = n"
 | 
|  |    134 | by simp
 | 
| 13489 |    135 | text{*\noindent Complex goals need @{text arith}-method.*}
 | 
| 13262 |    136 | 
 | 
|  |    137 | (*<*)
 | 
|  |    138 | subsubsection{*Tracing*}
 | 
|  |    139 | 
 | 
|  |    140 | lemma "rev [a] = []"
 | 
|  |    141 | apply(simp)
 | 
|  |    142 | oops
 | 
|  |    143 | (*>*)
 | 
|  |    144 | 
 | 
|  |    145 | 
 | 
|  |    146 | subsection{*Case Study: Compiling Expressions*}
 | 
|  |    147 | 
 | 
|  |    148 | 
 | 
|  |    149 | subsubsection{*Expressions*}
 | 
|  |    150 | 
 | 
|  |    151 | types 'v binop = "'v \<Rightarrow> 'v \<Rightarrow> 'v"
 | 
|  |    152 | 
 | 
|  |    153 | datatype ('a,'v)expr = Cex 'v
 | 
|  |    154 |                      | Vex 'a
 | 
|  |    155 |                      | Bex "'v binop"  "('a,'v)expr"  "('a,'v)expr"
 | 
|  |    156 | 
 | 
| 17656 |    157 | consts "value" :: "('a,'v)expr \<Rightarrow> ('a \<Rightarrow> 'v) \<Rightarrow> 'v"
 | 
| 13262 |    158 | primrec
 | 
|  |    159 | "value (Cex v) env = v"
 | 
|  |    160 | "value (Vex a) env = env a"
 | 
|  |    161 | "value (Bex f e1 e2) env = f (value e1 env) (value e2 env)"
 | 
|  |    162 | 
 | 
|  |    163 | 
 | 
|  |    164 | subsubsection{*The Stack Machine*}
 | 
|  |    165 | 
 | 
|  |    166 | datatype ('a,'v) instr = Const 'v
 | 
|  |    167 |                        | Load 'a
 | 
|  |    168 |                        | Apply "'v binop"
 | 
|  |    169 | 
 | 
|  |    170 | consts exec :: "('a,'v)instr list \<Rightarrow> ('a\<Rightarrow>'v) \<Rightarrow> 'v list \<Rightarrow> 'v list"
 | 
|  |    171 | primrec
 | 
|  |    172 | "exec [] s vs = vs"
 | 
|  |    173 | "exec (i#is) s vs = (case i of
 | 
|  |    174 |     Const v  \<Rightarrow> exec is s (v#vs)
 | 
|  |    175 |   | Load a   \<Rightarrow> exec is s ((s a)#vs)
 | 
|  |    176 |   | Apply f  \<Rightarrow> exec is s ((f (hd vs) (hd(tl vs)))#(tl(tl vs))))"
 | 
|  |    177 | 
 | 
|  |    178 | 
 | 
|  |    179 | subsubsection{*The Compiler*}
 | 
|  |    180 | 
 | 
| 14138 |    181 | consts compile :: "('a,'v)expr \<Rightarrow> ('a,'v)instr list"
 | 
| 13262 |    182 | primrec
 | 
| 14138 |    183 | "compile (Cex v)       = [Const v]"
 | 
|  |    184 | "compile (Vex a)       = [Load a]"
 | 
|  |    185 | "compile (Bex f e1 e2) = (compile e2) @ (compile e1) @ [Apply f]"
 | 
| 13262 |    186 | 
 | 
| 14138 |    187 | theorem "exec (compile e) s [] = [value e s]"
 | 
| 13262 |    188 | (*<*)oops(*>*)
 | 
|  |    189 | 
 | 
|  |    190 | 
 | 
|  |    191 | 
 | 
|  |    192 | subsection{*Advanced Datatypes*}
 | 
|  |    193 | 
 | 
|  |    194 | 
 | 
|  |    195 | subsubsection{*Mutual Recursion*}
 | 
|  |    196 | 
 | 
|  |    197 | datatype 'a aexp = IF   "'a bexp" "'a aexp" "'a aexp"
 | 
|  |    198 |                  | Sum  "'a aexp" "'a aexp"
 | 
|  |    199 |                  | Var 'a
 | 
|  |    200 |                  | Num nat
 | 
|  |    201 | and      'a bexp = Less "'a aexp" "'a aexp"
 | 
|  |    202 |                  | And  "'a bexp" "'a bexp"
 | 
|  |    203 |                  | Neg  "'a bexp"
 | 
|  |    204 | 
 | 
|  |    205 | 
 | 
|  |    206 | consts  evala :: "'a aexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> nat"
 | 
|  |    207 |         evalb :: "'a bexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> bool"
 | 
|  |    208 | 
 | 
|  |    209 | primrec
 | 
|  |    210 |   "evala (IF b a1 a2) env =
 | 
|  |    211 |      (if evalb b env then evala a1 env else evala a2 env)"
 | 
|  |    212 |   "evala (Sum a1 a2) env = evala a1 env + evala a2 env"
 | 
|  |    213 |   "evala (Var v) env = env v"
 | 
|  |    214 |   "evala (Num n) env = n"
 | 
|  |    215 | 
 | 
|  |    216 |   "evalb (Less a1 a2) env = (evala a1 env < evala a2 env)"
 | 
|  |    217 |   "evalb (And b1 b2) env = (evalb b1 env \<and> evalb b2 env)"
 | 
|  |    218 |   "evalb (Neg b) env = (\<not> evalb b env)"
 | 
|  |    219 | 
 | 
|  |    220 | consts substa :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a aexp \<Rightarrow> 'b aexp"
 | 
|  |    221 |        substb :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a bexp \<Rightarrow> 'b bexp"
 | 
|  |    222 | 
 | 
|  |    223 | primrec
 | 
|  |    224 |   "substa s (IF b a1 a2) =
 | 
|  |    225 |      IF (substb s b) (substa s a1) (substa s a2)"
 | 
|  |    226 |   "substa s (Sum a1 a2) = Sum (substa s a1) (substa s a2)"
 | 
|  |    227 |   "substa s (Var v) = s v"
 | 
|  |    228 |   "substa s (Num n) = Num n"
 | 
|  |    229 | 
 | 
|  |    230 |   "substb s (Less a1 a2) = Less (substa s a1) (substa s a2)"
 | 
|  |    231 |   "substb s (And b1 b2) = And (substb s b1) (substb s b2)"
 | 
|  |    232 |   "substb s (Neg b) = Neg (substb s b)"
 | 
|  |    233 | 
 | 
|  |    234 | lemma substitution_lemma:
 | 
|  |    235 |  "evala (substa s a) env = evala a (\<lambda>x. evala (s x) env) \<and>
 | 
|  |    236 |   evalb (substb s b) env = evalb b (\<lambda>x. evala (s x) env)"
 | 
|  |    237 | apply(induct_tac a and b)
 | 
|  |    238 | by simp_all
 | 
|  |    239 | 
 | 
|  |    240 | 
 | 
|  |    241 | subsubsection{*Nested Recursion*}
 | 
|  |    242 | 
 | 
| 14138 |    243 | datatype tree = Tree "tree list"
 | 
| 13262 |    244 | 
 | 
|  |    245 | text{*Some trees:*}
 | 
| 14138 |    246 | term "Tree []"
 | 
|  |    247 | term "Tree [Tree [Tree []], Tree []]"
 | 
| 13262 |    248 | 
 | 
|  |    249 | consts
 | 
|  |    250 | mirror :: "tree \<Rightarrow> tree"
 | 
|  |    251 | mirrors:: "tree list \<Rightarrow> tree list"
 | 
|  |    252 | 
 | 
|  |    253 | primrec
 | 
| 14138 |    254 |   "mirror(Tree ts) = Tree(mirrors ts)"
 | 
| 13262 |    255 | 
 | 
|  |    256 |   "mirrors [] = []"
 | 
|  |    257 |   "mirrors (t # ts) = mirrors ts @ [mirror t]"
 | 
|  |    258 | 
 | 
|  |    259 | lemma "mirror(mirror t) = t \<and> mirrors(mirrors ts) = ts"
 | 
|  |    260 | apply(induct_tac t and ts)
 | 
|  |    261 | apply simp_all
 | 
|  |    262 | (*<*)oops(*>*)
 | 
|  |    263 | 
 | 
|  |    264 | text{*
 | 
|  |    265 | \begin{exercise}
 | 
|  |    266 | Complete the above proof.
 | 
|  |    267 | \end{exercise}
 | 
|  |    268 | *}
 | 
|  |    269 | 
 | 
|  |    270 | subsubsection{*Datatypes Involving Functions*}
 | 
|  |    271 | 
 | 
|  |    272 | datatype ('a,'i)bigtree = Tip | Br 'a "'i \<Rightarrow> ('a,'i)bigtree"
 | 
|  |    273 | 
 | 
|  |    274 | text{*A big tree:*}
 | 
|  |    275 | term "Br 0 (\<lambda>i. Br i (\<lambda>n. Tip))"
 | 
|  |    276 | 
 | 
|  |    277 | consts map_bt :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a,'i)bigtree \<Rightarrow> ('b,'i)bigtree"
 | 
|  |    278 | primrec
 | 
|  |    279 | "map_bt f Tip      = Tip"
 | 
|  |    280 | "map_bt f (Br a F) = Br (f a) (\<lambda>i. map_bt f (F i))"
 | 
|  |    281 | 
 | 
|  |    282 | lemma "map_bt (g o f) T = map_bt g (map_bt f T)"
 | 
|  |    283 | apply(induct_tac T, rename_tac[2] F)
 | 
|  |    284 | apply simp_all
 | 
|  |    285 | done
 | 
|  |    286 | 
 | 
| 14138 |    287 | text{*The ordinals:*}
 | 
|  |    288 | datatype ord = Zero | Succ ord | Lim "nat \<Rightarrow> ord"
 | 
|  |    289 | 
 | 
|  |    290 | thm ord.induct[no_vars]
 | 
|  |    291 | 
 | 
|  |    292 | instance ord :: plus ..
 | 
|  |    293 | instance ord :: times ..
 | 
|  |    294 | 
 | 
|  |    295 | primrec
 | 
|  |    296 | "a + Zero   = a"
 | 
|  |    297 | "a + Succ b = Succ(a+b)"
 | 
|  |    298 | "a + Lim F  = Lim(\<lambda>n. a + F n)"
 | 
|  |    299 | 
 | 
|  |    300 | primrec
 | 
|  |    301 | "a * Zero   = Zero"
 | 
|  |    302 | "a * Succ b = a*b + a"
 | 
|  |    303 | "a * Lim F  = Lim(\<lambda>n. a * F n)"
 | 
|  |    304 | 
 | 
|  |    305 | text{*An example provided by Stan Wainer:*}
 | 
|  |    306 | consts H :: "ord \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat)"
 | 
|  |    307 | primrec
 | 
|  |    308 | "H Zero     f n = n"
 | 
|  |    309 | "H (Succ b) f n = H b f (f n)"
 | 
|  |    310 | "H (Lim F)  f n = H (F n) f n"
 | 
|  |    311 | 
 | 
|  |    312 | lemma [simp]: "H (a+b) f = H a f \<circ> H b f"
 | 
|  |    313 | apply(induct b)
 | 
|  |    314 | apply auto
 | 
|  |    315 | done
 | 
|  |    316 | 
 | 
|  |    317 | lemma [simp]: "H (a*b) = H b \<circ> H a"
 | 
|  |    318 | apply(induct b)
 | 
|  |    319 | apply auto
 | 
|  |    320 | done
 | 
|  |    321 | 
 | 
| 13262 |    322 | text{* This is \emph{not} allowed:
 | 
|  |    323 | \begin{verbatim}
 | 
|  |    324 | datatype lambda = C "lambda => lambda"
 | 
|  |    325 | \end{verbatim}
 | 
|  |    326 | 
 | 
|  |    327 | \begin{exercise}
 | 
| 14138 |    328 | Define the ordinal $\Gamma_0$.
 | 
| 13262 |    329 | \end{exercise}
 | 
|  |    330 | *}
 | 
|  |    331 | (*<*)end(*>*)
 |