| author | wenzelm | 
| Thu, 14 Jun 2007 18:33:29 +0200 | |
| changeset 23388 | 77645da0db85 | 
| parent 23347 | 7bb5dc641158 | 
| child 23431 | 25ca91279a9b | 
| permissions | -rw-r--r-- | 
| 923 | 1  | 
(* Title: HOL/Nat.thy  | 
2  | 
ID: $Id$  | 
|
| 21243 | 3  | 
Author: Tobias Nipkow and Lawrence C Paulson and Markus Wenzel  | 
| 923 | 4  | 
|
| 
9436
 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 
wenzelm 
parents: 
7702 
diff
changeset
 | 
5  | 
Type "nat" is a linear order, and a datatype; arithmetic operators + -  | 
| 
 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 
wenzelm 
parents: 
7702 
diff
changeset
 | 
6  | 
and * (for div, mod and dvd, see theory Divides).  | 
| 923 | 7  | 
*)  | 
8  | 
||
| 13449 | 9  | 
header {* Natural numbers *}
 | 
10  | 
||
| 15131 | 11  | 
theory Nat  | 
| 15140 | 12  | 
imports Wellfounded_Recursion Ring_and_Field  | 
| 23263 | 13  | 
uses  | 
14  | 
"~~/src/Tools/rat.ML"  | 
|
15  | 
"~~/src/Provers/Arith/fast_lin_arith.ML"  | 
|
16  | 
"~~/src/Provers/Arith/cancel_sums.ML"  | 
|
17  | 
  ("arith_data.ML")
 | 
|
| 15131 | 18  | 
begin  | 
| 13449 | 19  | 
|
20  | 
subsection {* Type @{text ind} *}
 | 
|
21  | 
||
22  | 
typedecl ind  | 
|
23  | 
||
| 19573 | 24  | 
axiomatization  | 
25  | 
Zero_Rep :: ind and  | 
|
26  | 
Suc_Rep :: "ind => ind"  | 
|
27  | 
where  | 
|
| 13449 | 28  | 
  -- {* the axiom of infinity in 2 parts *}
 | 
| 19573 | 29  | 
inj_Suc_Rep: "inj Suc_Rep" and  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
30  | 
Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"  | 
| 19573 | 31  | 
|
| 13449 | 32  | 
|
33  | 
subsection {* Type nat *}
 | 
|
34  | 
||
35  | 
text {* Type definition *}
 | 
|
36  | 
||
| 22262 | 37  | 
inductive2 Nat :: "ind \<Rightarrow> bool"  | 
38  | 
where  | 
|
39  | 
Zero_RepI: "Nat Zero_Rep"  | 
|
40  | 
| Suc_RepI: "Nat i ==> Nat (Suc_Rep i)"  | 
|
| 13449 | 41  | 
|
42  | 
global  | 
|
43  | 
||
44  | 
typedef (open Nat)  | 
|
| 22262 | 45  | 
nat = "Collect Nat"  | 
| 21243 | 46  | 
proof  | 
| 22262 | 47  | 
from Nat.Zero_RepI  | 
48  | 
show "Zero_Rep : Collect Nat" ..  | 
|
| 21243 | 49  | 
qed  | 
| 13449 | 50  | 
|
51  | 
text {* Abstract constants and syntax *}
 | 
|
52  | 
||
53  | 
consts  | 
|
54  | 
Suc :: "nat => nat"  | 
|
55  | 
||
56  | 
local  | 
|
57  | 
||
58  | 
defs  | 
|
| 18648 | 59  | 
Suc_def: "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"  | 
| 22718 | 60  | 
|
61  | 
definition  | 
|
62  | 
pred_nat :: "(nat * nat) set" where  | 
|
63  | 
  "pred_nat = {(m, n). n = Suc m}"
 | 
|
| 13449 | 64  | 
|
| 21456 | 65  | 
instance nat :: "{ord, zero, one}"
 | 
66  | 
Zero_nat_def: "0 == Abs_Nat Zero_Rep"  | 
|
67  | 
One_nat_def [simp]: "1 == Suc 0"  | 
|
| 22262 | 68  | 
less_def: "m < n == (m, n) : pred_nat^+"  | 
| 
22744
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22718 
diff
changeset
 | 
69  | 
le_def: "m \<le> (n::nat) == ~ (n < m)" ..  | 
| 
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22718 
diff
changeset
 | 
70  | 
|
| 22845 | 71  | 
lemmas [code func del] = less_def le_def  | 
| 13449 | 72  | 
|
73  | 
text {* Induction *}
 | 
|
| 923 | 74  | 
|
| 22718 | 75  | 
lemma Rep_Nat': "Nat (Rep_Nat x)"  | 
76  | 
by (rule Rep_Nat [simplified mem_Collect_eq])  | 
|
77  | 
||
78  | 
lemma Abs_Nat_inverse': "Nat y \<Longrightarrow> Rep_Nat (Abs_Nat y) = y"  | 
|
79  | 
by (rule Abs_Nat_inverse [simplified mem_Collect_eq])  | 
|
| 22262 | 80  | 
|
| 13449 | 81  | 
theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n"  | 
82  | 
apply (unfold Zero_nat_def Suc_def)  | 
|
83  | 
  apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
 | 
|
| 22262 | 84  | 
apply (erule Rep_Nat' [THEN Nat.induct])  | 
85  | 
apply (iprover elim: Abs_Nat_inverse' [THEN subst])  | 
|
| 13449 | 86  | 
done  | 
87  | 
||
88  | 
text {* Distinctness of constructors *}
 | 
|
89  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
90  | 
lemma Suc_not_Zero [iff]: "Suc m \<noteq> 0"  | 
| 22262 | 91  | 
by (simp add: Zero_nat_def Suc_def Abs_Nat_inject Rep_Nat' Suc_RepI Zero_RepI  | 
| 22718 | 92  | 
Suc_Rep_not_Zero_Rep)  | 
| 13449 | 93  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
94  | 
lemma Zero_not_Suc [iff]: "0 \<noteq> Suc m"  | 
| 13449 | 95  | 
by (rule not_sym, rule Suc_not_Zero not_sym)  | 
96  | 
||
97  | 
lemma Suc_neq_Zero: "Suc m = 0 ==> R"  | 
|
98  | 
by (rule notE, rule Suc_not_Zero)  | 
|
99  | 
||
100  | 
lemma Zero_neq_Suc: "0 = Suc m ==> R"  | 
|
101  | 
by (rule Suc_neq_Zero, erule sym)  | 
|
102  | 
||
103  | 
text {* Injectiveness of @{term Suc} *}
 | 
|
104  | 
||
| 
16733
 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 
nipkow 
parents: 
16635 
diff
changeset
 | 
105  | 
lemma inj_Suc[simp]: "inj_on Suc N"  | 
| 22718 | 106  | 
by (simp add: Suc_def inj_on_def Abs_Nat_inject Rep_Nat' Suc_RepI  | 
107  | 
inj_Suc_Rep [THEN inj_eq] Rep_Nat_inject)  | 
|
| 13449 | 108  | 
|
109  | 
lemma Suc_inject: "Suc x = Suc y ==> x = y"  | 
|
110  | 
by (rule inj_Suc [THEN injD])  | 
|
111  | 
||
112  | 
lemma Suc_Suc_eq [iff]: "(Suc m = Suc n) = (m = n)"  | 
|
| 15413 | 113  | 
by (rule inj_Suc [THEN inj_eq])  | 
| 13449 | 114  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
115  | 
lemma nat_not_singleton: "(\<forall>x. x = (0::nat)) = False"  | 
| 13449 | 116  | 
by auto  | 
117  | 
||
| 21411 | 118  | 
text {* size of a datatype value *}
 | 
| 21243 | 119  | 
|
| 22473 | 120  | 
class size = type +  | 
| 21411 | 121  | 
fixes size :: "'a \<Rightarrow> nat"  | 
| 21243 | 122  | 
|
| 13449 | 123  | 
text {* @{typ nat} is a datatype *}
 | 
| 
9436
 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 
wenzelm 
parents: 
7702 
diff
changeset
 | 
124  | 
|
| 
5188
 
633ec5f6c155
Declaration of type 'nat' as a datatype (this allows usage of
 
berghofe 
parents: 
4640 
diff
changeset
 | 
125  | 
rep_datatype nat  | 
| 13449 | 126  | 
distinct Suc_not_Zero Zero_not_Suc  | 
127  | 
inject Suc_Suc_eq  | 
|
| 21411 | 128  | 
induction nat_induct  | 
129  | 
||
130  | 
declare nat.induct [case_names 0 Suc, induct type: nat]  | 
|
131  | 
declare nat.exhaust [case_names 0 Suc, cases type: nat]  | 
|
| 13449 | 132  | 
|
| 21672 | 133  | 
lemmas nat_rec_0 = nat.recs(1)  | 
134  | 
and nat_rec_Suc = nat.recs(2)  | 
|
135  | 
||
136  | 
lemmas nat_case_0 = nat.cases(1)  | 
|
137  | 
and nat_case_Suc = nat.cases(2)  | 
|
138  | 
||
139  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
140  | 
lemma n_not_Suc_n: "n \<noteq> Suc n"  | 
| 13449 | 141  | 
by (induct n) simp_all  | 
142  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
143  | 
lemma Suc_n_not_n: "Suc t \<noteq> t"  | 
| 13449 | 144  | 
by (rule not_sym, rule n_not_Suc_n)  | 
145  | 
||
146  | 
text {* A special form of induction for reasoning
 | 
|
147  | 
  about @{term "m < n"} and @{term "m - n"} *}
 | 
|
148  | 
||
149  | 
theorem diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>  | 
|
150  | 
(!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"  | 
|
| 14208 | 151  | 
apply (rule_tac x = m in spec)  | 
| 15251 | 152  | 
apply (induct n)  | 
| 13449 | 153  | 
prefer 2  | 
154  | 
apply (rule allI)  | 
|
| 17589 | 155  | 
apply (induct_tac x, iprover+)  | 
| 13449 | 156  | 
done  | 
157  | 
||
158  | 
subsection {* Basic properties of "less than" *}
 | 
|
159  | 
||
160  | 
lemma wf_pred_nat: "wf pred_nat"  | 
|
| 14208 | 161  | 
apply (unfold wf_def pred_nat_def, clarify)  | 
162  | 
apply (induct_tac x, blast+)  | 
|
| 13449 | 163  | 
done  | 
164  | 
||
165  | 
lemma wf_less: "wf {(x, y::nat). x < y}"
 | 
|
166  | 
apply (unfold less_def)  | 
|
| 14208 | 167  | 
apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_subset], blast)  | 
| 13449 | 168  | 
done  | 
169  | 
||
170  | 
lemma less_eq: "((m, n) : pred_nat^+) = (m < n)"  | 
|
171  | 
apply (unfold less_def)  | 
|
172  | 
apply (rule refl)  | 
|
173  | 
done  | 
|
174  | 
||
175  | 
subsubsection {* Introduction properties *}
 | 
|
176  | 
||
177  | 
lemma less_trans: "i < j ==> j < k ==> i < (k::nat)"  | 
|
178  | 
apply (unfold less_def)  | 
|
| 14208 | 179  | 
apply (rule trans_trancl [THEN transD], assumption+)  | 
| 13449 | 180  | 
done  | 
181  | 
||
182  | 
lemma lessI [iff]: "n < Suc n"  | 
|
183  | 
apply (unfold less_def pred_nat_def)  | 
|
184  | 
apply (simp add: r_into_trancl)  | 
|
185  | 
done  | 
|
186  | 
||
187  | 
lemma less_SucI: "i < j ==> i < Suc j"  | 
|
| 14208 | 188  | 
apply (rule less_trans, assumption)  | 
| 13449 | 189  | 
apply (rule lessI)  | 
190  | 
done  | 
|
191  | 
||
192  | 
lemma zero_less_Suc [iff]: "0 < Suc n"  | 
|
193  | 
apply (induct n)  | 
|
194  | 
apply (rule lessI)  | 
|
195  | 
apply (erule less_trans)  | 
|
196  | 
apply (rule lessI)  | 
|
197  | 
done  | 
|
198  | 
||
199  | 
subsubsection {* Elimination properties *}
 | 
|
200  | 
||
201  | 
lemma less_not_sym: "n < m ==> ~ m < (n::nat)"  | 
|
202  | 
apply (unfold less_def)  | 
|
203  | 
apply (blast intro: wf_pred_nat wf_trancl [THEN wf_asym])  | 
|
204  | 
done  | 
|
205  | 
||
206  | 
lemma less_asym:  | 
|
207  | 
assumes h1: "(n::nat) < m" and h2: "~ P ==> m < n" shows P  | 
|
208  | 
apply (rule contrapos_np)  | 
|
209  | 
apply (rule less_not_sym)  | 
|
210  | 
apply (rule h1)  | 
|
211  | 
apply (erule h2)  | 
|
212  | 
done  | 
|
213  | 
||
214  | 
lemma less_not_refl: "~ n < (n::nat)"  | 
|
215  | 
apply (unfold less_def)  | 
|
216  | 
apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_not_refl])  | 
|
217  | 
done  | 
|
218  | 
||
219  | 
lemma less_irrefl [elim!]: "(n::nat) < n ==> R"  | 
|
220  | 
by (rule notE, rule less_not_refl)  | 
|
221  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
222  | 
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" by blast  | 
| 13449 | 223  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
224  | 
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t"  | 
| 13449 | 225  | 
by (rule not_sym, rule less_not_refl2)  | 
226  | 
||
227  | 
lemma lessE:  | 
|
228  | 
assumes major: "i < k"  | 
|
229  | 
and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P"  | 
|
230  | 
shows P  | 
|
| 14208 | 231  | 
apply (rule major [unfolded less_def pred_nat_def, THEN tranclE], simp_all)  | 
| 13449 | 232  | 
apply (erule p1)  | 
233  | 
apply (rule p2)  | 
|
| 14208 | 234  | 
apply (simp add: less_def pred_nat_def, assumption)  | 
| 13449 | 235  | 
done  | 
236  | 
||
237  | 
lemma not_less0 [iff]: "~ n < (0::nat)"  | 
|
238  | 
by (blast elim: lessE)  | 
|
239  | 
||
240  | 
lemma less_zeroE: "(n::nat) < 0 ==> R"  | 
|
241  | 
by (rule notE, rule not_less0)  | 
|
242  | 
||
243  | 
lemma less_SucE: assumes major: "m < Suc n"  | 
|
244  | 
and less: "m < n ==> P" and eq: "m = n ==> P" shows P  | 
|
245  | 
apply (rule major [THEN lessE])  | 
|
| 14208 | 246  | 
apply (rule eq, blast)  | 
247  | 
apply (rule less, blast)  | 
|
| 13449 | 248  | 
done  | 
249  | 
||
250  | 
lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)"  | 
|
251  | 
by (blast elim!: less_SucE intro: less_trans)  | 
|
252  | 
||
253  | 
lemma less_one [iff]: "(n < (1::nat)) = (n = 0)"  | 
|
254  | 
by (simp add: less_Suc_eq)  | 
|
255  | 
||
256  | 
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"  | 
|
257  | 
by (simp add: less_Suc_eq)  | 
|
258  | 
||
259  | 
lemma Suc_mono: "m < n ==> Suc m < Suc n"  | 
|
260  | 
by (induct n) (fast elim: less_trans lessE)+  | 
|
261  | 
||
262  | 
text {* "Less than" is a linear ordering *}
 | 
|
263  | 
lemma less_linear: "m < n | m = n | n < (m::nat)"  | 
|
| 15251 | 264  | 
apply (induct m)  | 
265  | 
apply (induct n)  | 
|
| 13449 | 266  | 
apply (rule refl [THEN disjI1, THEN disjI2])  | 
267  | 
apply (rule zero_less_Suc [THEN disjI1])  | 
|
268  | 
apply (blast intro: Suc_mono less_SucI elim: lessE)  | 
|
269  | 
done  | 
|
270  | 
||
| 14302 | 271  | 
text {* "Less than" is antisymmetric, sort of *}
 | 
272  | 
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n"  | 
|
| 22718 | 273  | 
apply(simp only:less_Suc_eq)  | 
274  | 
apply blast  | 
|
275  | 
done  | 
|
| 14302 | 276  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
277  | 
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)"  | 
| 13449 | 278  | 
using less_linear by blast  | 
279  | 
||
280  | 
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m"  | 
|
281  | 
and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m"  | 
|
282  | 
shows "P n m"  | 
|
283  | 
apply (rule less_linear [THEN disjE])  | 
|
284  | 
apply (erule_tac [2] disjE)  | 
|
285  | 
apply (erule lessCase)  | 
|
286  | 
apply (erule sym [THEN eqCase])  | 
|
287  | 
apply (erule major)  | 
|
288  | 
done  | 
|
289  | 
||
290  | 
||
291  | 
subsubsection {* Inductive (?) properties *}
 | 
|
292  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
293  | 
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n"  | 
| 13449 | 294  | 
apply (simp add: nat_neq_iff)  | 
295  | 
apply (blast elim!: less_irrefl less_SucE elim: less_asym)  | 
|
296  | 
done  | 
|
297  | 
||
298  | 
lemma Suc_lessD: "Suc m < n ==> m < n"  | 
|
299  | 
apply (induct n)  | 
|
300  | 
apply (fast intro!: lessI [THEN less_SucI] elim: less_trans lessE)+  | 
|
301  | 
done  | 
|
302  | 
||
303  | 
lemma Suc_lessE: assumes major: "Suc i < k"  | 
|
304  | 
and minor: "!!j. i < j ==> k = Suc j ==> P" shows P  | 
|
305  | 
apply (rule major [THEN lessE])  | 
|
306  | 
apply (erule lessI [THEN minor])  | 
|
| 14208 | 307  | 
apply (erule Suc_lessD [THEN minor], assumption)  | 
| 13449 | 308  | 
done  | 
309  | 
||
310  | 
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n"  | 
|
311  | 
by (blast elim: lessE dest: Suc_lessD)  | 
|
| 4104 | 312  | 
|
| 16635 | 313  | 
lemma Suc_less_eq [iff, code]: "(Suc m < Suc n) = (m < n)"  | 
| 13449 | 314  | 
apply (rule iffI)  | 
315  | 
apply (erule Suc_less_SucD)  | 
|
316  | 
apply (erule Suc_mono)  | 
|
317  | 
done  | 
|
318  | 
||
319  | 
lemma less_trans_Suc:  | 
|
320  | 
assumes le: "i < j" shows "j < k ==> Suc i < k"  | 
|
| 14208 | 321  | 
apply (induct k, simp_all)  | 
| 13449 | 322  | 
apply (insert le)  | 
323  | 
apply (simp add: less_Suc_eq)  | 
|
324  | 
apply (blast dest: Suc_lessD)  | 
|
325  | 
done  | 
|
326  | 
||
| 16635 | 327  | 
lemma [code]: "((n::nat) < 0) = False" by simp  | 
328  | 
lemma [code]: "(0 < Suc n) = True" by simp  | 
|
329  | 
||
| 13449 | 330  | 
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
 | 
331  | 
lemma not_less_eq: "(~ m < n) = (n < Suc m)"  | 
|
| 22718 | 332  | 
by (induct m n rule: diff_induct) simp_all  | 
| 13449 | 333  | 
|
334  | 
text {* Complete induction, aka course-of-values induction *}
 | 
|
335  | 
lemma nat_less_induct:  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
336  | 
assumes prem: "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n"  | 
| 22718 | 337  | 
apply (induct n rule: wf_induct [OF wf_pred_nat [THEN wf_trancl]])  | 
| 13449 | 338  | 
apply (rule prem)  | 
| 14208 | 339  | 
apply (unfold less_def, assumption)  | 
| 13449 | 340  | 
done  | 
341  | 
||
| 14131 | 342  | 
lemmas less_induct = nat_less_induct [rule_format, case_names less]  | 
343  | 
||
| 21243 | 344  | 
|
| 14131 | 345  | 
subsection {* Properties of "less than or equal" *}
 | 
| 13449 | 346  | 
|
347  | 
text {* Was @{text le_eq_less_Suc}, but this orientation is more useful *}
 | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
348  | 
lemma less_Suc_eq_le: "(m < Suc n) = (m \<le> n)"  | 
| 22718 | 349  | 
unfolding le_def by (rule not_less_eq [symmetric])  | 
| 13449 | 350  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
351  | 
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n"  | 
| 13449 | 352  | 
by (rule less_Suc_eq_le [THEN iffD2])  | 
353  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
354  | 
lemma le0 [iff]: "(0::nat) \<le> n"  | 
| 22718 | 355  | 
unfolding le_def by (rule not_less0)  | 
| 13449 | 356  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
357  | 
lemma Suc_n_not_le_n: "~ Suc n \<le> n"  | 
| 13449 | 358  | 
by (simp add: le_def)  | 
359  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
360  | 
lemma le_0_eq [iff]: "((i::nat) \<le> 0) = (i = 0)"  | 
| 13449 | 361  | 
by (induct i) (simp_all add: le_def)  | 
362  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
363  | 
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)"  | 
| 13449 | 364  | 
by (simp del: less_Suc_eq_le add: less_Suc_eq_le [symmetric] less_Suc_eq)  | 
365  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
366  | 
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R"  | 
| 17589 | 367  | 
by (drule le_Suc_eq [THEN iffD1], iprover+)  | 
| 13449 | 368  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
369  | 
lemma Suc_leI: "m < n ==> Suc(m) \<le> n"  | 
| 13449 | 370  | 
apply (simp add: le_def less_Suc_eq)  | 
371  | 
apply (blast elim!: less_irrefl less_asym)  | 
|
372  | 
  done -- {* formerly called lessD *}
 | 
|
373  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
374  | 
lemma Suc_leD: "Suc(m) \<le> n ==> m \<le> n"  | 
| 13449 | 375  | 
by (simp add: le_def less_Suc_eq)  | 
376  | 
||
377  | 
text {* Stronger version of @{text Suc_leD} *}
 | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
378  | 
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n"  | 
| 13449 | 379  | 
apply (simp add: le_def less_Suc_eq)  | 
380  | 
using less_linear  | 
|
381  | 
apply blast  | 
|
382  | 
done  | 
|
383  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
384  | 
lemma Suc_le_eq: "(Suc m \<le> n) = (m < n)"  | 
| 13449 | 385  | 
by (blast intro: Suc_leI Suc_le_lessD)  | 
386  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
387  | 
lemma le_SucI: "m \<le> n ==> m \<le> Suc n"  | 
| 13449 | 388  | 
by (unfold le_def) (blast dest: Suc_lessD)  | 
389  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
390  | 
lemma less_imp_le: "m < n ==> m \<le> (n::nat)"  | 
| 13449 | 391  | 
by (unfold le_def) (blast elim: less_asym)  | 
392  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
393  | 
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
 | 
| 13449 | 394  | 
lemmas le_simps = less_imp_le less_Suc_eq_le Suc_le_eq  | 
395  | 
||
396  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
397  | 
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
 | 
| 13449 | 398  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
399  | 
lemma le_imp_less_or_eq: "m \<le> n ==> m < n | m = (n::nat)"  | 
| 22718 | 400  | 
unfolding le_def  | 
| 13449 | 401  | 
using less_linear  | 
| 22718 | 402  | 
by (blast elim: less_irrefl less_asym)  | 
| 13449 | 403  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
404  | 
lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)"  | 
| 22718 | 405  | 
unfolding le_def  | 
| 13449 | 406  | 
using less_linear  | 
| 22718 | 407  | 
by (blast elim!: less_irrefl elim: less_asym)  | 
| 13449 | 408  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
409  | 
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)"  | 
| 17589 | 410  | 
by (iprover intro: less_or_eq_imp_le le_imp_less_or_eq)  | 
| 13449 | 411  | 
|
| 22718 | 412  | 
text {* Useful with @{text blast}. *}
 | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
413  | 
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n"  | 
| 22718 | 414  | 
by (rule less_or_eq_imp_le) (rule disjI2)  | 
| 13449 | 415  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
416  | 
lemma le_refl: "n \<le> (n::nat)"  | 
| 13449 | 417  | 
by (simp add: le_eq_less_or_eq)  | 
418  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
419  | 
lemma le_less_trans: "[| i \<le> j; j < k |] ==> i < (k::nat)"  | 
| 13449 | 420  | 
by (blast dest!: le_imp_less_or_eq intro: less_trans)  | 
421  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
422  | 
lemma less_le_trans: "[| i < j; j \<le> k |] ==> i < (k::nat)"  | 
| 13449 | 423  | 
by (blast dest!: le_imp_less_or_eq intro: less_trans)  | 
424  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
425  | 
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)"  | 
| 13449 | 426  | 
by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans)  | 
427  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
428  | 
lemma le_anti_sym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"  | 
| 13449 | 429  | 
by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym)  | 
430  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
431  | 
lemma Suc_le_mono [iff]: "(Suc n \<le> Suc m) = (n \<le> m)"  | 
| 13449 | 432  | 
by (simp add: le_simps)  | 
433  | 
||
434  | 
text {* Axiom @{text order_less_le} of class @{text order}: *}
 | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
435  | 
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)"  | 
| 13449 | 436  | 
by (simp add: le_def nat_neq_iff) (blast elim!: less_asym)  | 
437  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
438  | 
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n"  | 
| 13449 | 439  | 
by (rule iffD2, rule nat_less_le, rule conjI)  | 
440  | 
||
441  | 
text {* Axiom @{text linorder_linear} of class @{text linorder}: *}
 | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
442  | 
lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m"  | 
| 13449 | 443  | 
apply (simp add: le_eq_less_or_eq)  | 
| 22718 | 444  | 
using less_linear by blast  | 
| 13449 | 445  | 
|
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
446  | 
text {* Type {@typ nat} is a wellfounded linear order *}
 | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
447  | 
|
| 22318 | 448  | 
instance nat :: wellorder  | 
| 14691 | 449  | 
by intro_classes  | 
450  | 
(assumption |  | 
|
451  | 
rule le_refl le_trans le_anti_sym nat_less_le nat_le_linear wf_less)+  | 
|
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
452  | 
|
| 22718 | 453  | 
lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat]  | 
| 15921 | 454  | 
|
| 13449 | 455  | 
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)"  | 
456  | 
by (blast elim!: less_SucE)  | 
|
457  | 
||
458  | 
text {*
 | 
|
459  | 
  Rewrite @{term "n < Suc m"} to @{term "n = m"}
 | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
460  | 
  if @{term "~ n < m"} or @{term "m \<le> n"} hold.
 | 
| 13449 | 461  | 
Not suitable as default simprules because they often lead to looping  | 
462  | 
*}  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
463  | 
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)"  | 
| 13449 | 464  | 
by (rule not_less_less_Suc_eq, rule leD)  | 
465  | 
||
466  | 
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq  | 
|
467  | 
||
468  | 
||
469  | 
text {*
 | 
|
| 22718 | 470  | 
  Re-orientation of the equations @{text "0 = x"} and @{text "1 = x"}.
 | 
471  | 
No longer added as simprules (they loop)  | 
|
| 13449 | 472  | 
  but via @{text reorient_simproc} in Bin
 | 
473  | 
*}  | 
|
474  | 
||
475  | 
text {* Polymorphic, not just for @{typ nat} *}
 | 
|
476  | 
lemma zero_reorient: "(0 = x) = (x = 0)"  | 
|
477  | 
by auto  | 
|
478  | 
||
479  | 
lemma one_reorient: "(1 = x) = (x = 1)"  | 
|
480  | 
by auto  | 
|
481  | 
||
| 21243 | 482  | 
|
| 13449 | 483  | 
subsection {* Arithmetic operators *}
 | 
| 1660 | 484  | 
|
| 22473 | 485  | 
class power = type +  | 
| 21411 | 486  | 
fixes power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "\<^loc>^" 80)  | 
| 
9436
 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 
wenzelm 
parents: 
7702 
diff
changeset
 | 
487  | 
|
| 13449 | 488  | 
text {* arithmetic operators @{text "+ -"} and @{text "*"} *}
 | 
489  | 
||
| 21456 | 490  | 
instance nat :: "{plus, minus, times}" ..
 | 
| 
9436
 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 
wenzelm 
parents: 
7702 
diff
changeset
 | 
491  | 
|
| 13449 | 492  | 
primrec  | 
493  | 
add_0: "0 + n = n"  | 
|
494  | 
add_Suc: "Suc m + n = Suc (m + n)"  | 
|
495  | 
||
496  | 
primrec  | 
|
497  | 
diff_0: "m - 0 = m"  | 
|
498  | 
diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"  | 
|
| 
9436
 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 
wenzelm 
parents: 
7702 
diff
changeset
 | 
499  | 
|
| 
 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 
wenzelm 
parents: 
7702 
diff
changeset
 | 
500  | 
primrec  | 
| 13449 | 501  | 
mult_0: "0 * n = 0"  | 
502  | 
mult_Suc: "Suc m * n = n + (m * n)"  | 
|
503  | 
||
| 22718 | 504  | 
text {* These two rules ease the use of primitive recursion.
 | 
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
505  | 
NOTE USE OF @{text "=="} *}
 | 
| 13449 | 506  | 
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c"  | 
507  | 
by simp  | 
|
508  | 
||
509  | 
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)"  | 
|
510  | 
by simp  | 
|
511  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
512  | 
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m"  | 
| 22718 | 513  | 
by (cases n) simp_all  | 
| 13449 | 514  | 
|
| 22718 | 515  | 
lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0"  | 
516  | 
by (cases n) simp_all  | 
|
| 13449 | 517  | 
|
| 22718 | 518  | 
lemma neq0_conv [iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)"  | 
519  | 
by (cases n) simp_all  | 
|
| 13449 | 520  | 
|
521  | 
text {* This theorem is useful with @{text blast} *}
 | 
|
522  | 
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n"  | 
|
| 17589 | 523  | 
by (rule iffD1, rule neq0_conv, iprover)  | 
| 13449 | 524  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
525  | 
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)"  | 
| 13449 | 526  | 
by (fast intro: not0_implies_Suc)  | 
527  | 
||
528  | 
lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)"  | 
|
529  | 
apply (rule iffI)  | 
|
| 22718 | 530  | 
apply (rule ccontr)  | 
531  | 
apply simp_all  | 
|
| 13449 | 532  | 
done  | 
533  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
534  | 
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)"  | 
| 13449 | 535  | 
by (induct m') simp_all  | 
536  | 
||
537  | 
text {* Useful in certain inductive arguments *}
 | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
538  | 
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))"  | 
| 22718 | 539  | 
by (cases m) simp_all  | 
| 13449 | 540  | 
|
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
541  | 
lemma nat_induct2: "[|P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))|] ==> P n"  | 
| 13449 | 542  | 
apply (rule nat_less_induct)  | 
543  | 
apply (case_tac n)  | 
|
544  | 
apply (case_tac [2] nat)  | 
|
545  | 
apply (blast intro: less_trans)+  | 
|
546  | 
done  | 
|
547  | 
||
| 21243 | 548  | 
|
| 
15341
 
254f6f00b60e
converted to Isar script, simplifying some results
 
paulson 
parents: 
15281 
diff
changeset
 | 
549  | 
subsection {* @{text LEAST} theorems for type @{typ nat}*}
 | 
| 13449 | 550  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
551  | 
lemma Least_Suc:  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
552  | 
"[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"  | 
| 14208 | 553  | 
apply (case_tac "n", auto)  | 
| 13449 | 554  | 
apply (frule LeastI)  | 
555  | 
apply (drule_tac P = "%x. P (Suc x) " in LeastI)  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
556  | 
apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))")  | 
| 13449 | 557  | 
apply (erule_tac [2] Least_le)  | 
| 14208 | 558  | 
apply (case_tac "LEAST x. P x", auto)  | 
| 13449 | 559  | 
apply (drule_tac P = "%x. P (Suc x) " in Least_le)  | 
560  | 
apply (blast intro: order_antisym)  | 
|
561  | 
done  | 
|
562  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
563  | 
lemma Least_Suc2:  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
564  | 
"[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
565  | 
by (erule (1) Least_Suc [THEN ssubst], simp)  | 
| 13449 | 566  | 
|
567  | 
||
568  | 
subsection {* @{term min} and @{term max} *}
 | 
|
569  | 
||
570  | 
lemma min_0L [simp]: "min 0 n = (0::nat)"  | 
|
571  | 
by (rule min_leastL) simp  | 
|
572  | 
||
573  | 
lemma min_0R [simp]: "min n 0 = (0::nat)"  | 
|
574  | 
by (rule min_leastR) simp  | 
|
575  | 
||
576  | 
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"  | 
|
577  | 
by (simp add: min_of_mono)  | 
|
578  | 
||
| 22191 | 579  | 
lemma min_Suc1:  | 
580  | 
"min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))"  | 
|
| 22718 | 581  | 
by (simp split: nat.split)  | 
| 22191 | 582  | 
|
583  | 
lemma min_Suc2:  | 
|
584  | 
"min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))"  | 
|
585  | 
by (simp split: nat.split)  | 
|
586  | 
||
| 13449 | 587  | 
lemma max_0L [simp]: "max 0 n = (n::nat)"  | 
588  | 
by (rule max_leastL) simp  | 
|
589  | 
||
590  | 
lemma max_0R [simp]: "max n 0 = (n::nat)"  | 
|
591  | 
by (rule max_leastR) simp  | 
|
592  | 
||
593  | 
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)"  | 
|
594  | 
by (simp add: max_of_mono)  | 
|
595  | 
||
| 22191 | 596  | 
lemma max_Suc1:  | 
597  | 
"max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))"  | 
|
| 22718 | 598  | 
by (simp split: nat.split)  | 
| 22191 | 599  | 
|
600  | 
lemma max_Suc2:  | 
|
601  | 
"max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))"  | 
|
602  | 
by (simp split: nat.split)  | 
|
603  | 
||
| 13449 | 604  | 
|
605  | 
subsection {* Basic rewrite rules for the arithmetic operators *}
 | 
|
606  | 
||
607  | 
text {* Difference *}
 | 
|
608  | 
||
| 
14193
 
30e41f63712e
Improved efficiency of code generated for + and -
 
berghofe 
parents: 
14131 
diff
changeset
 | 
609  | 
lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)"  | 
| 15251 | 610  | 
by (induct n) simp_all  | 
| 13449 | 611  | 
|
| 
14193
 
30e41f63712e
Improved efficiency of code generated for + and -
 
berghofe 
parents: 
14131 
diff
changeset
 | 
612  | 
lemma diff_Suc_Suc [simp, code]: "Suc(m) - Suc(n) = m - n"  | 
| 15251 | 613  | 
by (induct n) simp_all  | 
| 13449 | 614  | 
|
615  | 
||
616  | 
text {*
 | 
|
617  | 
Could be (and is, below) generalized in various ways  | 
|
618  | 
However, none of the generalizations are currently in the simpset,  | 
|
619  | 
and I dread to think what happens if I put them in  | 
|
620  | 
*}  | 
|
621  | 
lemma Suc_pred [simp]: "0 < n ==> Suc (n - Suc 0) = n"  | 
|
622  | 
by (simp split add: nat.split)  | 
|
623  | 
||
| 
14193
 
30e41f63712e
Improved efficiency of code generated for + and -
 
berghofe 
parents: 
14131 
diff
changeset
 | 
624  | 
declare diff_Suc [simp del, code del]  | 
| 13449 | 625  | 
|
626  | 
||
627  | 
subsection {* Addition *}
 | 
|
628  | 
||
629  | 
lemma add_0_right [simp]: "m + 0 = (m::nat)"  | 
|
630  | 
by (induct m) simp_all  | 
|
631  | 
||
632  | 
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"  | 
|
633  | 
by (induct m) simp_all  | 
|
634  | 
||
| 19890 | 635  | 
lemma add_Suc_shift [code]: "Suc m + n = m + Suc n"  | 
636  | 
by simp  | 
|
| 
14193
 
30e41f63712e
Improved efficiency of code generated for + and -
 
berghofe 
parents: 
14131 
diff
changeset
 | 
637  | 
|
| 13449 | 638  | 
|
639  | 
text {* Associative law for addition *}
 | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
640  | 
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)"  | 
| 13449 | 641  | 
by (induct m) simp_all  | 
642  | 
||
643  | 
text {* Commutative law for addition *}
 | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
644  | 
lemma nat_add_commute: "m + n = n + (m::nat)"  | 
| 13449 | 645  | 
by (induct m) simp_all  | 
646  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
647  | 
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)"  | 
| 13449 | 648  | 
apply (rule mk_left_commute [of "op +"])  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
649  | 
apply (rule nat_add_assoc)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
650  | 
apply (rule nat_add_commute)  | 
| 13449 | 651  | 
done  | 
652  | 
||
| 14331 | 653  | 
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))"  | 
| 13449 | 654  | 
by (induct k) simp_all  | 
655  | 
||
| 14331 | 656  | 
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))"  | 
| 13449 | 657  | 
by (induct k) simp_all  | 
658  | 
||
| 14331 | 659  | 
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))"  | 
| 13449 | 660  | 
by (induct k) simp_all  | 
661  | 
||
| 14331 | 662  | 
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))"  | 
| 13449 | 663  | 
by (induct k) simp_all  | 
664  | 
||
665  | 
text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
 | 
|
666  | 
||
| 22718 | 667  | 
lemma add_is_0 [iff]: fixes m :: nat shows "(m + n = 0) = (m = 0 & n = 0)"  | 
668  | 
by (cases m) simp_all  | 
|
| 13449 | 669  | 
|
670  | 
lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"  | 
|
| 22718 | 671  | 
by (cases m) simp_all  | 
| 13449 | 672  | 
|
673  | 
lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)"  | 
|
674  | 
by (rule trans, rule eq_commute, rule add_is_1)  | 
|
675  | 
||
676  | 
lemma add_gr_0 [iff]: "!!m::nat. (0 < m + n) = (0 < m | 0 < n)"  | 
|
677  | 
by (simp del: neq0_conv add: neq0_conv [symmetric])  | 
|
678  | 
||
679  | 
lemma add_eq_self_zero: "!!m::nat. m + n = m ==> n = 0"  | 
|
680  | 
apply (drule add_0_right [THEN ssubst])  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
681  | 
apply (simp add: nat_add_assoc del: add_0_right)  | 
| 13449 | 682  | 
done  | 
683  | 
||
| 
16733
 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 
nipkow 
parents: 
16635 
diff
changeset
 | 
684  | 
lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N"  | 
| 22718 | 685  | 
apply (induct k)  | 
686  | 
apply simp  | 
|
687  | 
apply(drule comp_inj_on[OF _ inj_Suc])  | 
|
688  | 
apply (simp add:o_def)  | 
|
689  | 
done  | 
|
| 
16733
 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 
nipkow 
parents: 
16635 
diff
changeset
 | 
690  | 
|
| 
 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 
nipkow 
parents: 
16635 
diff
changeset
 | 
691  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
692  | 
subsection {* Multiplication *}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
693  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
694  | 
text {* right annihilation in product *}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
695  | 
lemma mult_0_right [simp]: "(m::nat) * 0 = 0"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
696  | 
by (induct m) simp_all  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
697  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
698  | 
text {* right successor law for multiplication *}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
699  | 
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
700  | 
by (induct m) (simp_all add: nat_add_left_commute)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
701  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
702  | 
text {* Commutative law for multiplication *}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
703  | 
lemma nat_mult_commute: "m * n = n * (m::nat)"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
704  | 
by (induct m) simp_all  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
705  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
706  | 
text {* addition distributes over multiplication *}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
707  | 
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
708  | 
by (induct m) (simp_all add: nat_add_assoc nat_add_left_commute)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
709  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
710  | 
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
711  | 
by (induct m) (simp_all add: nat_add_assoc)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
712  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
713  | 
text {* Associative law for multiplication *}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
714  | 
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
715  | 
by (induct m) (simp_all add: add_mult_distrib)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
716  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
717  | 
|
| 14740 | 718  | 
text{*The naturals form a @{text comm_semiring_1_cancel}*}
 | 
| 14738 | 719  | 
instance nat :: comm_semiring_1_cancel  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
720  | 
proof  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
721  | 
fix i j k :: nat  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
722  | 
show "(i + j) + k = i + (j + k)" by (rule nat_add_assoc)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
723  | 
show "i + j = j + i" by (rule nat_add_commute)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
724  | 
show "0 + i = i" by simp  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
725  | 
show "(i * j) * k = i * (j * k)" by (rule nat_mult_assoc)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
726  | 
show "i * j = j * i" by (rule nat_mult_commute)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
727  | 
show "1 * i = i" by simp  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
728  | 
show "(i + j) * k = i * k + j * k" by (simp add: add_mult_distrib)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
729  | 
show "0 \<noteq> (1::nat)" by simp  | 
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
730  | 
assume "k+i = k+j" thus "i=j" by simp  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
731  | 
qed  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
732  | 
|
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
733  | 
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)"  | 
| 15251 | 734  | 
apply (induct m)  | 
| 22718 | 735  | 
apply (induct_tac [2] n)  | 
736  | 
apply simp_all  | 
|
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
737  | 
done  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
738  | 
|
| 21243 | 739  | 
|
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
740  | 
subsection {* Monotonicity of Addition *}
 | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
741  | 
|
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
742  | 
text {* strict, in 1st argument *}
 | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
743  | 
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)"  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
744  | 
by (induct k) simp_all  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
745  | 
|
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
746  | 
text {* strict, in both arguments *}
 | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
747  | 
lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)"  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
748  | 
apply (rule add_less_mono1 [THEN less_trans], assumption+)  | 
| 15251 | 749  | 
apply (induct j, simp_all)  | 
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
750  | 
done  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
751  | 
|
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
752  | 
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
 | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
753  | 
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))"  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
754  | 
apply (induct n)  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
755  | 
apply (simp_all add: order_le_less)  | 
| 22718 | 756  | 
apply (blast elim!: less_SucE  | 
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
757  | 
intro!: add_0_right [symmetric] add_Suc_right [symmetric])  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
758  | 
done  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
759  | 
|
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
760  | 
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
 | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
761  | 
lemma mult_less_mono2: "(i::nat) < j ==> 0 < k ==> k * i < k * j"  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
762  | 
apply (erule_tac m1 = 0 in less_imp_Suc_add [THEN exE], simp)  | 
| 22718 | 763  | 
apply (induct_tac x)  | 
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
764  | 
apply (simp_all add: add_less_mono)  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
765  | 
done  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
766  | 
|
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
767  | 
|
| 14740 | 768  | 
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
 | 
| 14738 | 769  | 
instance nat :: ordered_semidom  | 
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
770  | 
proof  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
771  | 
fix i j k :: nat  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
14341 
diff
changeset
 | 
772  | 
show "0 < (1::nat)" by simp  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
773  | 
show "i \<le> j ==> k + i \<le> k + j" by simp  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
774  | 
show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
775  | 
qed  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
776  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
777  | 
lemma nat_mult_1: "(1::nat) * n = n"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
778  | 
by simp  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
779  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
780  | 
lemma nat_mult_1_right: "n * (1::nat) = n"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
781  | 
by simp  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
782  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
783  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
784  | 
subsection {* Additional theorems about "less than" *}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
785  | 
|
| 19870 | 786  | 
text{*An induction rule for estabilishing binary relations*}
 | 
| 22718 | 787  | 
lemma less_Suc_induct:  | 
| 19870 | 788  | 
assumes less: "i < j"  | 
789  | 
and step: "!!i. P i (Suc i)"  | 
|
790  | 
and trans: "!!i j k. P i j ==> P j k ==> P i k"  | 
|
791  | 
shows "P i j"  | 
|
792  | 
proof -  | 
|
| 22718 | 793  | 
from less obtain k where j: "j = Suc(i+k)" by (auto dest: less_imp_Suc_add)  | 
794  | 
have "P i (Suc (i + k))"  | 
|
| 19870 | 795  | 
proof (induct k)  | 
| 22718 | 796  | 
case 0  | 
797  | 
show ?case by (simp add: step)  | 
|
| 19870 | 798  | 
next  | 
799  | 
case (Suc k)  | 
|
| 22718 | 800  | 
thus ?case by (auto intro: assms)  | 
| 19870 | 801  | 
qed  | 
| 22718 | 802  | 
thus "P i j" by (simp add: j)  | 
| 19870 | 803  | 
qed  | 
804  | 
||
805  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
806  | 
text {* A [clumsy] way of lifting @{text "<"}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
807  | 
  monotonicity to @{text "\<le>"} monotonicity *}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
808  | 
lemma less_mono_imp_le_mono:  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
809  | 
assumes lt_mono: "!!i j::nat. i < j ==> f i < f j"  | 
| 22718 | 810  | 
and le: "i \<le> j"  | 
811  | 
shows "f i \<le> ((f j)::nat)"  | 
|
812  | 
using le  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
813  | 
apply (simp add: order_le_less)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
814  | 
apply (blast intro!: lt_mono)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
815  | 
done  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
816  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
817  | 
text {* non-strict, in 1st argument *}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
818  | 
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
819  | 
by (rule add_right_mono)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
820  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
821  | 
text {* non-strict, in both arguments *}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
822  | 
lemma add_le_mono: "[| i \<le> j; k \<le> l |] ==> i + k \<le> j + (l::nat)"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
823  | 
by (rule add_mono)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
824  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
825  | 
lemma le_add2: "n \<le> ((m + n)::nat)"  | 
| 22718 | 826  | 
by (insert add_right_mono [of 0 m n], simp)  | 
| 13449 | 827  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
828  | 
lemma le_add1: "n \<le> ((n + m)::nat)"  | 
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
829  | 
by (simp add: add_commute, rule le_add2)  | 
| 13449 | 830  | 
|
831  | 
lemma less_add_Suc1: "i < Suc (i + m)"  | 
|
832  | 
by (rule le_less_trans, rule le_add1, rule lessI)  | 
|
833  | 
||
834  | 
lemma less_add_Suc2: "i < Suc (m + i)"  | 
|
835  | 
by (rule le_less_trans, rule le_add2, rule lessI)  | 
|
836  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
837  | 
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))"  | 
| 17589 | 838  | 
by (iprover intro!: less_add_Suc1 less_imp_Suc_add)  | 
| 13449 | 839  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
840  | 
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m"  | 
| 13449 | 841  | 
by (rule le_trans, assumption, rule le_add1)  | 
842  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
843  | 
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j"  | 
| 13449 | 844  | 
by (rule le_trans, assumption, rule le_add2)  | 
845  | 
||
846  | 
lemma trans_less_add1: "(i::nat) < j ==> i < j + m"  | 
|
847  | 
by (rule less_le_trans, assumption, rule le_add1)  | 
|
848  | 
||
849  | 
lemma trans_less_add2: "(i::nat) < j ==> i < m + j"  | 
|
850  | 
by (rule less_le_trans, assumption, rule le_add2)  | 
|
851  | 
||
852  | 
lemma add_lessD1: "i + j < (k::nat) ==> i < k"  | 
|
| 22718 | 853  | 
apply (rule le_less_trans [of _ "i+j"])  | 
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
854  | 
apply (simp_all add: le_add1)  | 
| 13449 | 855  | 
done  | 
856  | 
||
857  | 
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))"  | 
|
858  | 
apply (rule notI)  | 
|
859  | 
apply (erule add_lessD1 [THEN less_irrefl])  | 
|
860  | 
done  | 
|
861  | 
||
862  | 
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))"  | 
|
863  | 
by (simp add: add_commute not_add_less1)  | 
|
864  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
865  | 
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)"  | 
| 22718 | 866  | 
apply (rule order_trans [of _ "m+k"])  | 
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
867  | 
apply (simp_all add: le_add1)  | 
| 
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
868  | 
done  | 
| 13449 | 869  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
870  | 
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)"  | 
| 13449 | 871  | 
apply (simp add: add_commute)  | 
872  | 
apply (erule add_leD1)  | 
|
873  | 
done  | 
|
874  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
875  | 
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R"  | 
| 13449 | 876  | 
by (blast dest: add_leD1 add_leD2)  | 
877  | 
||
878  | 
text {* needs @{text "!!k"} for @{text add_ac} to work *}
 | 
|
879  | 
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n"  | 
|
880  | 
by (force simp del: add_Suc_right  | 
|
881  | 
simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac)  | 
|
882  | 
||
883  | 
||
884  | 
subsection {* Difference *}
 | 
|
885  | 
||
886  | 
lemma diff_self_eq_0 [simp]: "(m::nat) - m = 0"  | 
|
887  | 
by (induct m) simp_all  | 
|
888  | 
||
889  | 
text {* Addition is the inverse of subtraction:
 | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
890  | 
  if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
 | 
| 13449 | 891  | 
lemma add_diff_inverse: "~ m < n ==> n + (m - n) = (m::nat)"  | 
892  | 
by (induct m n rule: diff_induct) simp_all  | 
|
893  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
894  | 
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)"  | 
| 16796 | 895  | 
by (simp add: add_diff_inverse linorder_not_less)  | 
| 13449 | 896  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
897  | 
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)"  | 
| 13449 | 898  | 
by (simp add: le_add_diff_inverse add_commute)  | 
899  | 
||
900  | 
||
901  | 
subsection {* More results about difference *}
 | 
|
902  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
903  | 
lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)"  | 
| 13449 | 904  | 
by (induct m n rule: diff_induct) simp_all  | 
905  | 
||
906  | 
lemma diff_less_Suc: "m - n < Suc m"  | 
|
907  | 
apply (induct m n rule: diff_induct)  | 
|
908  | 
apply (erule_tac [3] less_SucE)  | 
|
909  | 
apply (simp_all add: less_Suc_eq)  | 
|
910  | 
done  | 
|
911  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
912  | 
lemma diff_le_self [simp]: "m - n \<le> (m::nat)"  | 
| 13449 | 913  | 
by (induct m n rule: diff_induct) (simp_all add: le_SucI)  | 
914  | 
||
915  | 
lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k"  | 
|
916  | 
by (rule le_less_trans, rule diff_le_self)  | 
|
917  | 
||
918  | 
lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)"  | 
|
919  | 
by (induct i j rule: diff_induct) simp_all  | 
|
920  | 
||
921  | 
lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"  | 
|
922  | 
by (simp add: diff_diff_left)  | 
|
923  | 
||
924  | 
lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n"  | 
|
| 22718 | 925  | 
by (cases n) (auto simp add: le_simps)  | 
| 13449 | 926  | 
|
927  | 
text {* This and the next few suggested by Florian Kammueller *}
 | 
|
928  | 
lemma diff_commute: "(i::nat) - j - k = i - k - j"  | 
|
929  | 
by (simp add: diff_diff_left add_commute)  | 
|
930  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
931  | 
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)"  | 
| 13449 | 932  | 
by (induct j k rule: diff_induct) simp_all  | 
933  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
934  | 
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i"  | 
| 13449 | 935  | 
by (simp add: add_commute diff_add_assoc)  | 
936  | 
||
937  | 
lemma diff_add_inverse: "(n + m) - n = (m::nat)"  | 
|
938  | 
by (induct n) simp_all  | 
|
939  | 
||
940  | 
lemma diff_add_inverse2: "(m + n) - n = (m::nat)"  | 
|
941  | 
by (simp add: diff_add_assoc)  | 
|
942  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
943  | 
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)"  | 
| 22718 | 944  | 
by (auto simp add: diff_add_inverse2)  | 
| 13449 | 945  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
946  | 
lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)"  | 
| 13449 | 947  | 
by (induct m n rule: diff_induct) simp_all  | 
948  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
949  | 
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0"  | 
| 13449 | 950  | 
by (rule iffD2, rule diff_is_0_eq)  | 
951  | 
||
952  | 
lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)"  | 
|
953  | 
by (induct m n rule: diff_induct) simp_all  | 
|
954  | 
||
| 22718 | 955  | 
lemma less_imp_add_positive:  | 
956  | 
assumes "i < j"  | 
|
957  | 
shows "\<exists>k::nat. 0 < k & i + k = j"  | 
|
958  | 
proof  | 
|
959  | 
from assms show "0 < j - i & i + (j - i) = j"  | 
|
960  | 
by (simp add: add_diff_inverse less_not_sym)  | 
|
961  | 
qed  | 
|
| 
9436
 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 
wenzelm 
parents: 
7702 
diff
changeset
 | 
962  | 
|
| 13449 | 963  | 
lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)"  | 
964  | 
by (induct k) simp_all  | 
|
965  | 
||
966  | 
lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)"  | 
|
967  | 
by (simp add: diff_cancel add_commute)  | 
|
968  | 
||
969  | 
lemma diff_add_0: "n - (n + m) = (0::nat)"  | 
|
970  | 
by (induct n) simp_all  | 
|
971  | 
||
972  | 
||
973  | 
text {* Difference distributes over multiplication *}
 | 
|
974  | 
||
975  | 
lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"  | 
|
976  | 
by (induct m n rule: diff_induct) (simp_all add: diff_cancel)  | 
|
977  | 
||
978  | 
lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)"  | 
|
979  | 
by (simp add: diff_mult_distrib mult_commute [of k])  | 
|
980  | 
  -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
 | 
|
981  | 
||
982  | 
lemmas nat_distrib =  | 
|
983  | 
add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2  | 
|
984  | 
||
985  | 
||
986  | 
subsection {* Monotonicity of Multiplication *}
 | 
|
987  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
988  | 
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k"  | 
| 22718 | 989  | 
by (simp add: mult_right_mono)  | 
| 13449 | 990  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
991  | 
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j"  | 
| 22718 | 992  | 
by (simp add: mult_left_mono)  | 
| 13449 | 993  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
994  | 
text {* @{text "\<le>"} monotonicity, BOTH arguments *}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
995  | 
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l"  | 
| 22718 | 996  | 
by (simp add: mult_mono)  | 
| 13449 | 997  | 
|
998  | 
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k"  | 
|
| 22718 | 999  | 
by (simp add: mult_strict_right_mono)  | 
| 13449 | 1000  | 
|
| 14266 | 1001  | 
text{*Differs from the standard @{text zero_less_mult_iff} in that
 | 
1002  | 
there are no negative numbers.*}  | 
|
1003  | 
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)"  | 
|
| 13449 | 1004  | 
apply (induct m)  | 
| 22718 | 1005  | 
apply simp  | 
1006  | 
apply (case_tac n)  | 
|
1007  | 
apply simp_all  | 
|
| 13449 | 1008  | 
done  | 
1009  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
1010  | 
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (1 \<le> m & 1 \<le> n)"  | 
| 13449 | 1011  | 
apply (induct m)  | 
| 22718 | 1012  | 
apply simp  | 
1013  | 
apply (case_tac n)  | 
|
1014  | 
apply simp_all  | 
|
| 13449 | 1015  | 
done  | 
1016  | 
||
1017  | 
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)"  | 
|
| 22718 | 1018  | 
apply (induct m)  | 
1019  | 
apply simp  | 
|
1020  | 
apply (induct n)  | 
|
1021  | 
apply auto  | 
|
| 13449 | 1022  | 
done  | 
1023  | 
||
1024  | 
lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = 1 & n = 1)"  | 
|
1025  | 
apply (rule trans)  | 
|
| 14208 | 1026  | 
apply (rule_tac [2] mult_eq_1_iff, fastsimp)  | 
| 13449 | 1027  | 
done  | 
1028  | 
||
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
1029  | 
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)"  | 
| 13449 | 1030  | 
apply (safe intro!: mult_less_mono1)  | 
| 14208 | 1031  | 
apply (case_tac k, auto)  | 
| 13449 | 1032  | 
apply (simp del: le_0_eq add: linorder_not_le [symmetric])  | 
1033  | 
apply (blast intro: mult_le_mono1)  | 
|
1034  | 
done  | 
|
1035  | 
||
1036  | 
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)"  | 
|
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
1037  | 
by (simp add: mult_commute [of k])  | 
| 13449 | 1038  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
1039  | 
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)"  | 
| 22718 | 1040  | 
by (simp add: linorder_not_less [symmetric], auto)  | 
| 13449 | 1041  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
1042  | 
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)"  | 
| 22718 | 1043  | 
by (simp add: linorder_not_less [symmetric], auto)  | 
| 13449 | 1044  | 
|
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
1045  | 
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))"  | 
| 14208 | 1046  | 
apply (cut_tac less_linear, safe, auto)  | 
| 13449 | 1047  | 
apply (drule mult_less_mono1, assumption, simp)+  | 
1048  | 
done  | 
|
1049  | 
||
1050  | 
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))"  | 
|
| 
14341
 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 
paulson 
parents: 
14331 
diff
changeset
 | 
1051  | 
by (simp add: mult_commute [of k])  | 
| 13449 | 1052  | 
|
1053  | 
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)"  | 
|
1054  | 
by (subst mult_less_cancel1) simp  | 
|
1055  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14266 
diff
changeset
 | 
1056  | 
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)"  | 
| 13449 | 1057  | 
by (subst mult_le_cancel1) simp  | 
1058  | 
||
1059  | 
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)"  | 
|
1060  | 
by (subst mult_cancel1) simp  | 
|
1061  | 
||
1062  | 
text {* Lemma for @{text gcd} *}
 | 
|
1063  | 
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0"  | 
|
1064  | 
apply (drule sym)  | 
|
1065  | 
apply (rule disjCI)  | 
|
1066  | 
apply (rule nat_less_cases, erule_tac [2] _)  | 
|
1067  | 
apply (fastsimp elim!: less_SucE)  | 
|
1068  | 
apply (fastsimp dest: mult_less_mono2)  | 
|
1069  | 
done  | 
|
| 
9436
 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 
wenzelm 
parents: 
7702 
diff
changeset
 | 
1070  | 
|
| 20588 | 1071  | 
|
| 18702 | 1072  | 
subsection {* Code generator setup *}
 | 
1073  | 
||
| 22718 | 1074  | 
lemma one_is_Suc_zero [code inline]: "1 = Suc 0"  | 
| 20355 | 1075  | 
by simp  | 
1076  | 
||
| 20588 | 1077  | 
instance nat :: eq ..  | 
1078  | 
||
1079  | 
lemma [code func]:  | 
|
| 22718 | 1080  | 
"(0\<Colon>nat) = 0 \<longleftrightarrow> True"  | 
1081  | 
"Suc n = Suc m \<longleftrightarrow> n = m"  | 
|
1082  | 
"Suc n = 0 \<longleftrightarrow> False"  | 
|
1083  | 
"0 = Suc m \<longleftrightarrow> False"  | 
|
| 22348 | 1084  | 
by auto  | 
| 20588 | 1085  | 
|
1086  | 
lemma [code func]:  | 
|
| 22718 | 1087  | 
"(0\<Colon>nat) \<le> m \<longleftrightarrow> True"  | 
1088  | 
"Suc (n\<Colon>nat) \<le> m \<longleftrightarrow> n < m"  | 
|
1089  | 
"(n\<Colon>nat) < 0 \<longleftrightarrow> False"  | 
|
1090  | 
"(n\<Colon>nat) < Suc m \<longleftrightarrow> n \<le> m"  | 
|
| 22348 | 1091  | 
using Suc_le_eq less_Suc_eq_le by simp_all  | 
| 20588 | 1092  | 
|
| 21243 | 1093  | 
|
1094  | 
subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
 | 
|
1095  | 
||
| 22845 | 1096  | 
lemma subst_equals:  | 
1097  | 
assumes 1: "t = s" and 2: "u = t"  | 
|
1098  | 
shows "u = s"  | 
|
1099  | 
using 2 1 by (rule trans)  | 
|
1100  | 
||
| 21243 | 1101  | 
use "arith_data.ML"  | 
1102  | 
setup arith_setup  | 
|
1103  | 
||
1104  | 
text{*The following proofs may rely on the arithmetic proof procedures.*}
 | 
|
1105  | 
||
1106  | 
lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)"  | 
|
1107  | 
by (auto simp: le_eq_less_or_eq dest: less_imp_Suc_add)  | 
|
1108  | 
||
1109  | 
lemma pred_nat_trancl_eq_le: "((m, n) : pred_nat^*) = (m \<le> n)"  | 
|
| 22718 | 1110  | 
by (simp add: less_eq reflcl_trancl [symmetric] del: reflcl_trancl, arith)  | 
| 21243 | 1111  | 
|
1112  | 
lemma nat_diff_split:  | 
|
| 22718 | 1113  | 
"P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"  | 
| 21243 | 1114  | 
    -- {* elimination of @{text -} on @{text nat} *}
 | 
| 22718 | 1115  | 
by (cases "a<b" rule: case_split) (auto simp add: diff_is_0_eq [THEN iffD2])  | 
| 21243 | 1116  | 
|
1117  | 
lemma nat_diff_split_asm:  | 
|
1118  | 
"P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))"  | 
|
1119  | 
    -- {* elimination of @{text -} on @{text nat} in assumptions *}
 | 
|
1120  | 
by (simp split: nat_diff_split)  | 
|
1121  | 
||
1122  | 
lemmas [arith_split] = nat_diff_split split_min split_max  | 
|
1123  | 
||
1124  | 
||
1125  | 
lemma le_square: "m \<le> m * (m::nat)"  | 
|
1126  | 
by (induct m) auto  | 
|
1127  | 
||
1128  | 
lemma le_cube: "(m::nat) \<le> m * (m * m)"  | 
|
1129  | 
by (induct m) auto  | 
|
1130  | 
||
1131  | 
||
1132  | 
text{*Subtraction laws, mostly by Clemens Ballarin*}
 | 
|
1133  | 
||
1134  | 
lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c"  | 
|
| 22718 | 1135  | 
by arith  | 
| 21243 | 1136  | 
|
1137  | 
lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))"  | 
|
| 22718 | 1138  | 
by arith  | 
| 21243 | 1139  | 
|
1140  | 
lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)"  | 
|
| 22718 | 1141  | 
by arith  | 
| 21243 | 1142  | 
|
1143  | 
lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))"  | 
|
| 22718 | 1144  | 
by arith  | 
| 21243 | 1145  | 
|
1146  | 
lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i"  | 
|
| 22718 | 1147  | 
by arith  | 
| 21243 | 1148  | 
|
1149  | 
lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k"  | 
|
| 22718 | 1150  | 
by arith  | 
| 21243 | 1151  | 
|
1152  | 
(*Replaces the previous diff_less and le_diff_less, which had the stronger  | 
|
1153  | 
second premise n\<le>m*)  | 
|
1154  | 
lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m"  | 
|
| 22718 | 1155  | 
by arith  | 
| 21243 | 1156  | 
|
1157  | 
||
1158  | 
(** Simplification of relational expressions involving subtraction **)  | 
|
1159  | 
||
1160  | 
lemma diff_diff_eq: "[| k \<le> m; k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)"  | 
|
| 22718 | 1161  | 
by (simp split add: nat_diff_split)  | 
| 21243 | 1162  | 
|
1163  | 
lemma eq_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)"  | 
|
| 22718 | 1164  | 
by (auto split add: nat_diff_split)  | 
| 21243 | 1165  | 
|
1166  | 
lemma less_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)"  | 
|
| 22718 | 1167  | 
by (auto split add: nat_diff_split)  | 
| 21243 | 1168  | 
|
1169  | 
lemma le_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)"  | 
|
| 22718 | 1170  | 
by (auto split add: nat_diff_split)  | 
| 21243 | 1171  | 
|
1172  | 
||
1173  | 
text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*}
 | 
|
1174  | 
||
1175  | 
(* Monotonicity of subtraction in first argument *)  | 
|
1176  | 
lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)"  | 
|
| 22718 | 1177  | 
by (simp split add: nat_diff_split)  | 
| 21243 | 1178  | 
|
1179  | 
lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)"  | 
|
| 22718 | 1180  | 
by (simp split add: nat_diff_split)  | 
| 21243 | 1181  | 
|
1182  | 
lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)"  | 
|
| 22718 | 1183  | 
by (simp split add: nat_diff_split)  | 
| 21243 | 1184  | 
|
1185  | 
lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==> m=n"  | 
|
| 22718 | 1186  | 
by (simp split add: nat_diff_split)  | 
| 21243 | 1187  | 
|
1188  | 
text{*Lemmas for ex/Factorization*}
 | 
|
1189  | 
||
1190  | 
lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n"  | 
|
| 22718 | 1191  | 
by (cases m) auto  | 
| 21243 | 1192  | 
|
1193  | 
lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n"  | 
|
| 22718 | 1194  | 
by (cases m) auto  | 
| 21243 | 1195  | 
|
1196  | 
lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m"  | 
|
| 22718 | 1197  | 
by (cases m) auto  | 
| 21243 | 1198  | 
|
| 
23001
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1199  | 
text {* Specialized induction principles that work "backwards": *}
 | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1200  | 
|
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1201  | 
lemma inc_induct[consumes 1, case_names base step]:  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1202  | 
assumes less: "i <= j"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1203  | 
assumes base: "P j"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1204  | 
assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1205  | 
shows "P i"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1206  | 
using less  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1207  | 
proof (induct d=="j - i" arbitrary: i)  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1208  | 
case (0 i)  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1209  | 
hence "i = j" by simp  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1210  | 
with base show ?case by simp  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1211  | 
next  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1212  | 
case (Suc d i)  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1213  | 
hence "i < j" "P (Suc i)"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1214  | 
by simp_all  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1215  | 
thus "P i" by (rule step)  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1216  | 
qed  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1217  | 
|
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1218  | 
lemma strict_inc_induct[consumes 1, case_names base step]:  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1219  | 
assumes less: "i < j"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1220  | 
assumes base: "!!i. j = Suc i ==> P i"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1221  | 
assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1222  | 
shows "P i"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1223  | 
using less  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1224  | 
proof (induct d=="j - i - 1" arbitrary: i)  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1225  | 
case (0 i)  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1226  | 
with `i < j` have "j = Suc i" by simp  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1227  | 
with base show ?case by simp  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1228  | 
next  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1229  | 
case (Suc d i)  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1230  | 
hence "i < j" "P (Suc i)"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1231  | 
by simp_all  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1232  | 
thus "P i" by (rule step)  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1233  | 
qed  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1234  | 
|
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1235  | 
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1236  | 
using inc_induct[of "k - i" k P, simplified] by blast  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1237  | 
|
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1238  | 
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0"  | 
| 
 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 
krauss 
parents: 
22920 
diff
changeset
 | 
1239  | 
using inc_induct[of 0 k P] by blast  | 
| 21243 | 1240  | 
|
1241  | 
text{*Rewriting to pull differences out*}
 | 
|
1242  | 
||
1243  | 
lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j"  | 
|
| 22718 | 1244  | 
by arith  | 
| 21243 | 1245  | 
|
1246  | 
lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j"  | 
|
| 22718 | 1247  | 
by arith  | 
| 21243 | 1248  | 
|
1249  | 
lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)"  | 
|
| 22718 | 1250  | 
by arith  | 
| 21243 | 1251  | 
|
1252  | 
(*The others are  | 
|
1253  | 
i - j - k = i - (j + k),  | 
|
1254  | 
k \<le> j ==> j - k + i = j + i - k,  | 
|
1255  | 
k \<le> j ==> i + (j - k) = i + j - k *)  | 
|
1256  | 
lemmas add_diff_assoc = diff_add_assoc [symmetric]  | 
|
1257  | 
lemmas add_diff_assoc2 = diff_add_assoc2[symmetric]  | 
|
1258  | 
declare diff_diff_left [simp] add_diff_assoc [simp] add_diff_assoc2[simp]  | 
|
1259  | 
||
1260  | 
text{*At present we prove no analogue of @{text not_less_Least} or @{text
 | 
|
1261  | 
Least_Suc}, since there appears to be no need.*}  | 
|
1262  | 
||
1263  | 
ML  | 
|
1264  | 
{*
 | 
|
1265  | 
val pred_nat_trancl_eq_le = thm "pred_nat_trancl_eq_le";  | 
|
1266  | 
val nat_diff_split = thm "nat_diff_split";  | 
|
1267  | 
val nat_diff_split_asm = thm "nat_diff_split_asm";  | 
|
1268  | 
val le_square = thm "le_square";  | 
|
1269  | 
val le_cube = thm "le_cube";  | 
|
1270  | 
val diff_less_mono = thm "diff_less_mono";  | 
|
1271  | 
val less_diff_conv = thm "less_diff_conv";  | 
|
1272  | 
val le_diff_conv = thm "le_diff_conv";  | 
|
1273  | 
val le_diff_conv2 = thm "le_diff_conv2";  | 
|
1274  | 
val diff_diff_cancel = thm "diff_diff_cancel";  | 
|
1275  | 
val le_add_diff = thm "le_add_diff";  | 
|
1276  | 
val diff_less = thm "diff_less";  | 
|
1277  | 
val diff_diff_eq = thm "diff_diff_eq";  | 
|
1278  | 
val eq_diff_iff = thm "eq_diff_iff";  | 
|
1279  | 
val less_diff_iff = thm "less_diff_iff";  | 
|
1280  | 
val le_diff_iff = thm "le_diff_iff";  | 
|
1281  | 
val diff_le_mono = thm "diff_le_mono";  | 
|
1282  | 
val diff_le_mono2 = thm "diff_le_mono2";  | 
|
1283  | 
val diff_less_mono2 = thm "diff_less_mono2";  | 
|
1284  | 
val diffs0_imp_equal = thm "diffs0_imp_equal";  | 
|
1285  | 
val one_less_mult = thm "one_less_mult";  | 
|
1286  | 
val n_less_m_mult_n = thm "n_less_m_mult_n";  | 
|
1287  | 
val n_less_n_mult_m = thm "n_less_n_mult_m";  | 
|
1288  | 
val diff_diff_right = thm "diff_diff_right";  | 
|
1289  | 
val diff_Suc_diff_eq1 = thm "diff_Suc_diff_eq1";  | 
|
1290  | 
val diff_Suc_diff_eq2 = thm "diff_Suc_diff_eq2";  | 
|
1291  | 
*}  | 
|
1292  | 
||
| 22718 | 1293  | 
|
1294  | 
subsection{*Embedding of the Naturals into any
 | 
|
| 
23276
 
a70934b63910
generalize of_nat and related constants to class semiring_1
 
huffman 
parents: 
23263 
diff
changeset
 | 
1295  | 
  @{text semiring_1}: @{term of_nat}*}
 | 
| 21243 | 1296  | 
|
| 
23276
 
a70934b63910
generalize of_nat and related constants to class semiring_1
 
huffman 
parents: 
23263 
diff
changeset
 | 
1297  | 
consts of_nat :: "nat => 'a::semiring_1"  | 
| 21243 | 1298  | 
|
1299  | 
primrec  | 
|
1300  | 
of_nat_0: "of_nat 0 = 0"  | 
|
1301  | 
of_nat_Suc: "of_nat (Suc m) = of_nat m + 1"  | 
|
1302  | 
||
| 22920 | 1303  | 
lemma of_nat_id [simp]: "(of_nat n \<Colon> nat) = n"  | 
1304  | 
by (induct n) auto  | 
|
1305  | 
||
| 21243 | 1306  | 
lemma of_nat_1 [simp]: "of_nat 1 = 1"  | 
| 22718 | 1307  | 
by simp  | 
| 21243 | 1308  | 
|
1309  | 
lemma of_nat_add [simp]: "of_nat (m+n) = of_nat m + of_nat n"  | 
|
| 22718 | 1310  | 
by (induct m) (simp_all add: add_ac)  | 
| 21243 | 1311  | 
|
1312  | 
lemma of_nat_mult [simp]: "of_nat (m*n) = of_nat m * of_nat n"  | 
|
| 22718 | 1313  | 
by (induct m) (simp_all add: add_ac left_distrib)  | 
| 21243 | 1314  | 
|
1315  | 
lemma zero_le_imp_of_nat: "0 \<le> (of_nat m::'a::ordered_semidom)"  | 
|
| 22718 | 1316  | 
apply (induct m, simp_all)  | 
1317  | 
apply (erule order_trans)  | 
|
1318  | 
apply (rule less_add_one [THEN order_less_imp_le])  | 
|
1319  | 
done  | 
|
| 21243 | 1320  | 
|
1321  | 
lemma less_imp_of_nat_less:  | 
|
| 22718 | 1322  | 
"m < n ==> of_nat m < (of_nat n::'a::ordered_semidom)"  | 
1323  | 
apply (induct m n rule: diff_induct, simp_all)  | 
|
1324  | 
apply (insert add_le_less_mono [OF zero_le_imp_of_nat zero_less_one], force)  | 
|
1325  | 
done  | 
|
| 21243 | 1326  | 
|
1327  | 
lemma of_nat_less_imp_less:  | 
|
| 22718 | 1328  | 
"of_nat m < (of_nat n::'a::ordered_semidom) ==> m < n"  | 
1329  | 
apply (induct m n rule: diff_induct, simp_all)  | 
|
1330  | 
apply (insert zero_le_imp_of_nat)  | 
|
1331  | 
apply (force simp add: linorder_not_less [symmetric])  | 
|
1332  | 
done  | 
|
| 21243 | 1333  | 
|
1334  | 
lemma of_nat_less_iff [simp]:  | 
|
| 22718 | 1335  | 
"(of_nat m < (of_nat n::'a::ordered_semidom)) = (m<n)"  | 
1336  | 
by (blast intro: of_nat_less_imp_less less_imp_of_nat_less)  | 
|
| 21243 | 1337  | 
|
1338  | 
text{*Special cases where either operand is zero*}
 | 
|
| 22718 | 1339  | 
|
1340  | 
lemma of_nat_0_less_iff [simp]: "((0::'a::ordered_semidom) < of_nat n) = (0 < n)"  | 
|
1341  | 
by (rule of_nat_less_iff [of 0, simplified])  | 
|
1342  | 
||
1343  | 
lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < (0::'a::ordered_semidom)"  | 
|
1344  | 
by (rule of_nat_less_iff [of _ 0, simplified])  | 
|
| 21243 | 1345  | 
|
1346  | 
lemma of_nat_le_iff [simp]:  | 
|
| 22718 | 1347  | 
"(of_nat m \<le> (of_nat n::'a::ordered_semidom)) = (m \<le> n)"  | 
1348  | 
by (simp add: linorder_not_less [symmetric])  | 
|
| 21243 | 1349  | 
|
1350  | 
text{*Special cases where either operand is zero*}
 | 
|
| 22718 | 1351  | 
lemma of_nat_0_le_iff [simp]: "(0::'a::ordered_semidom) \<le> of_nat n"  | 
1352  | 
by (rule of_nat_le_iff [of 0, simplified])  | 
|
1353  | 
lemma of_nat_le_0_iff [simp]: "(of_nat m \<le> (0::'a::ordered_semidom)) = (m = 0)"  | 
|
1354  | 
by (rule of_nat_le_iff [of _ 0, simplified])  | 
|
| 21243 | 1355  | 
|
| 
23282
 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 
huffman 
parents: 
23276 
diff
changeset
 | 
1356  | 
text{*Class for unital semirings with characteristic zero.
 | 
| 
 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 
huffman 
parents: 
23276 
diff
changeset
 | 
1357  | 
Includes non-ordered rings like the complex numbers.*}  | 
| 
 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 
huffman 
parents: 
23276 
diff
changeset
 | 
1358  | 
axclass semiring_char_0 < semiring_1  | 
| 
 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 
huffman 
parents: 
23276 
diff
changeset
 | 
1359  | 
of_nat_eq_iff [simp]: "(of_nat m = of_nat n) = (m = n)"  | 
| 
 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 
huffman 
parents: 
23276 
diff
changeset
 | 
1360  | 
|
| 
 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 
huffman 
parents: 
23276 
diff
changeset
 | 
1361  | 
text{*Every @{text ordered_semidom} has characteristic zero.*}
 | 
| 
 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 
huffman 
parents: 
23276 
diff
changeset
 | 
1362  | 
instance ordered_semidom < semiring_char_0  | 
| 
 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 
huffman 
parents: 
23276 
diff
changeset
 | 
1363  | 
by intro_classes (simp add: order_eq_iff)  | 
| 21243 | 1364  | 
|
1365  | 
text{*Special cases where either operand is zero*}
 | 
|
| 
23282
 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 
huffman 
parents: 
23276 
diff
changeset
 | 
1366  | 
lemma of_nat_0_eq_iff [simp]: "((0::'a::semiring_char_0) = of_nat n) = (0 = n)"  | 
| 22718 | 1367  | 
by (rule of_nat_eq_iff [of 0, simplified])  | 
| 
23282
 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 
huffman 
parents: 
23276 
diff
changeset
 | 
1368  | 
lemma of_nat_eq_0_iff [simp]: "(of_nat m = (0::'a::semiring_char_0)) = (m = 0)"  | 
| 22718 | 1369  | 
by (rule of_nat_eq_iff [of _ 0, simplified])  | 
| 21243 | 1370  | 
|
| 23347 | 1371  | 
lemma inj_of_nat: "inj (of_nat :: nat \<Rightarrow> 'a::semiring_char_0)"  | 
1372  | 
by (simp add: inj_on_def)  | 
|
1373  | 
||
| 21243 | 1374  | 
lemma of_nat_diff [simp]:  | 
| 22718 | 1375  | 
"n \<le> m ==> of_nat (m - n) = of_nat m - (of_nat n :: 'a::ring_1)"  | 
1376  | 
by (simp del: of_nat_add  | 
|
1377  | 
add: compare_rls of_nat_add [symmetric] split add: nat_diff_split)  | 
|
| 21243 | 1378  | 
|
| 22483 | 1379  | 
instance nat :: distrib_lattice  | 
1380  | 
"inf \<equiv> min"  | 
|
1381  | 
"sup \<equiv> max"  | 
|
1382  | 
by intro_classes (auto simp add: inf_nat_def sup_nat_def)  | 
|
1383  | 
||
| 22157 | 1384  | 
|
1385  | 
subsection {* Size function *}
 | 
|
1386  | 
||
| 22920 | 1387  | 
lemma nat_size [simp, code func]: "size (n\<Colon>nat) = n"  | 
| 22157 | 1388  | 
by (induct n) simp_all  | 
1389  | 
||
| 923 | 1390  | 
end  |