|
19203
|
1 |
(* Title: HOL/ZF/LProd.thy
|
|
|
2 |
ID: $Id$
|
|
|
3 |
Author: Steven Obua
|
|
|
4 |
|
|
|
5 |
Introduces the lprod relation.
|
|
|
6 |
See "Partizan Games in Isabelle/HOLZF", available from http://www4.in.tum.de/~obua/partizan
|
|
|
7 |
*)
|
|
|
8 |
|
|
|
9 |
theory LProd
|
|
|
10 |
imports Multiset
|
|
|
11 |
begin
|
|
|
12 |
|
|
|
13 |
consts
|
|
|
14 |
lprod :: "('a * 'a) set \<Rightarrow> ('a list * 'a list) set"
|
|
|
15 |
|
|
|
16 |
inductive "lprod R"
|
|
|
17 |
intros
|
|
|
18 |
lprod_single[intro!]: "(a, b) \<in> R \<Longrightarrow> ([a], [b]) \<in> lprod R"
|
|
|
19 |
lprod_list[intro!]: "(ah@at, bh@bt) \<in> lprod R \<Longrightarrow> (a,b) \<in> R \<or> a = b \<Longrightarrow> (ah@a#at, bh@b#bt) \<in> lprod R"
|
|
|
20 |
|
|
|
21 |
lemma "(as,bs) \<in> lprod R \<Longrightarrow> length as = length bs"
|
|
|
22 |
apply (induct as bs rule: lprod.induct)
|
|
|
23 |
apply auto
|
|
|
24 |
done
|
|
|
25 |
|
|
|
26 |
lemma "(as, bs) \<in> lprod R \<Longrightarrow> 1 \<le> length as \<and> 1 \<le> length bs"
|
|
|
27 |
apply (induct as bs rule: lprod.induct)
|
|
|
28 |
apply auto
|
|
|
29 |
done
|
|
|
30 |
|
|
|
31 |
lemma lprod_subset_elem: "(as, bs) \<in> lprod S \<Longrightarrow> S \<subseteq> R \<Longrightarrow> (as, bs) \<in> lprod R"
|
|
|
32 |
apply (induct as bs rule: lprod.induct)
|
|
|
33 |
apply (auto)
|
|
|
34 |
done
|
|
|
35 |
|
|
|
36 |
lemma lprod_subset: "S \<subseteq> R \<Longrightarrow> lprod S \<subseteq> lprod R"
|
|
|
37 |
by (auto intro: lprod_subset_elem)
|
|
|
38 |
|
|
|
39 |
lemma lprod_implies_mult: "(as, bs) \<in> lprod R \<Longrightarrow> trans R \<Longrightarrow> (multiset_of as, multiset_of bs) \<in> mult R"
|
|
|
40 |
proof (induct as bs rule: lprod.induct)
|
|
|
41 |
case (lprod_single a b)
|
|
|
42 |
note step = one_step_implies_mult[
|
|
|
43 |
where r=R and I="{#}" and K="{#a#}" and J="{#b#}", simplified]
|
|
|
44 |
show ?case by (auto intro: lprod_single step)
|
|
|
45 |
next
|
|
|
46 |
case (lprod_list a ah at b bh bt)
|
|
|
47 |
from prems have transR: "trans R" by auto
|
|
|
48 |
have as: "multiset_of (ah @ a # at) = multiset_of (ah @ at) + {#a#}" (is "_ = ?ma + _")
|
|
|
49 |
by (simp add: ring_eq_simps)
|
|
|
50 |
have bs: "multiset_of (bh @ b # bt) = multiset_of (bh @ bt) + {#b#}" (is "_ = ?mb + _")
|
|
|
51 |
by (simp add: ring_eq_simps)
|
|
|
52 |
from prems have "(?ma, ?mb) \<in> mult R"
|
|
|
53 |
by auto
|
|
|
54 |
with mult_implies_one_step[OF transR] have
|
|
|
55 |
"\<exists>I J K. ?mb = I + J \<and> ?ma = I + K \<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_of K. \<exists>j\<in>set_of J. (k, j) \<in> R)"
|
|
|
56 |
by blast
|
|
|
57 |
then obtain I J K where
|
|
|
58 |
decomposed: "?mb = I + J \<and> ?ma = I + K \<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_of K. \<exists>j\<in>set_of J. (k, j) \<in> R)"
|
|
|
59 |
by blast
|
|
|
60 |
show ?case
|
|
|
61 |
proof (cases "a = b")
|
|
|
62 |
case True
|
|
|
63 |
have "((I + {#b#}) + K, (I + {#b#}) + J) \<in> mult R"
|
|
|
64 |
apply (rule one_step_implies_mult[OF transR])
|
|
|
65 |
apply (auto simp add: decomposed)
|
|
|
66 |
done
|
|
|
67 |
then show ?thesis
|
|
|
68 |
apply (simp only: as bs)
|
|
|
69 |
apply (simp only: decomposed True)
|
|
|
70 |
apply (simp add: ring_eq_simps)
|
|
|
71 |
done
|
|
|
72 |
next
|
|
|
73 |
case False
|
|
|
74 |
from False lprod_list have False: "(a, b) \<in> R" by blast
|
|
|
75 |
have "(I + (K + {#a#}), I + (J + {#b#})) \<in> mult R"
|
|
|
76 |
apply (rule one_step_implies_mult[OF transR])
|
|
|
77 |
apply (auto simp add: False decomposed)
|
|
|
78 |
done
|
|
|
79 |
then show ?thesis
|
|
|
80 |
apply (simp only: as bs)
|
|
|
81 |
apply (simp only: decomposed)
|
|
|
82 |
apply (simp add: ring_eq_simps)
|
|
|
83 |
done
|
|
|
84 |
qed
|
|
|
85 |
qed
|
|
|
86 |
|
|
|
87 |
lemma wf_lprod[recdef_wf,simp,intro]:
|
|
|
88 |
assumes wf_R: "wf R"
|
|
|
89 |
shows "wf (lprod R)"
|
|
|
90 |
proof -
|
|
|
91 |
have subset: "lprod (R^+) \<subseteq> inv_image (mult (R^+)) multiset_of"
|
|
|
92 |
by (auto simp add: inv_image_def lprod_implies_mult trans_trancl)
|
|
|
93 |
note lprodtrancl = wf_subset[OF wf_inv_image[where r="mult (R^+)" and f="multiset_of",
|
|
|
94 |
OF wf_mult[OF wf_trancl[OF wf_R]]], OF subset]
|
|
|
95 |
note lprod = wf_subset[OF lprodtrancl, where p="lprod R", OF lprod_subset, simplified]
|
|
|
96 |
show ?thesis by (auto intro: lprod)
|
|
|
97 |
qed
|
|
|
98 |
|
|
|
99 |
constdefs
|
|
|
100 |
gprod_2_2 :: "('a * 'a) set \<Rightarrow> (('a * 'a) * ('a * 'a)) set"
|
|
|
101 |
"gprod_2_2 R \<equiv> { ((a,b), (c,d)) . (a = c \<and> (b,d) \<in> R) \<or> (b = d \<and> (a,c) \<in> R) }"
|
|
|
102 |
gprod_2_1 :: "('a * 'a) set \<Rightarrow> (('a * 'a) * ('a * 'a)) set"
|
|
|
103 |
"gprod_2_1 R \<equiv> { ((a,b), (c,d)) . (a = d \<and> (b,c) \<in> R) \<or> (b = c \<and> (a,d) \<in> R) }"
|
|
|
104 |
|
|
|
105 |
lemma lprod_2_3: "(a, b) \<in> R \<Longrightarrow> ([a, c], [b, c]) \<in> lprod R"
|
|
|
106 |
by (auto intro: lprod_list[where a=c and b=c and
|
|
|
107 |
ah = "[a]" and at = "[]" and bh="[b]" and bt="[]", simplified])
|
|
|
108 |
|
|
|
109 |
lemma lprod_2_4: "(a, b) \<in> R \<Longrightarrow> ([c, a], [c, b]) \<in> lprod R"
|
|
|
110 |
by (auto intro: lprod_list[where a=c and b=c and
|
|
|
111 |
ah = "[]" and at = "[a]" and bh="[]" and bt="[b]", simplified])
|
|
|
112 |
|
|
|
113 |
lemma lprod_2_1: "(a, b) \<in> R \<Longrightarrow> ([c, a], [b, c]) \<in> lprod R"
|
|
|
114 |
by (auto intro: lprod_list[where a=c and b=c and
|
|
|
115 |
ah = "[]" and at = "[a]" and bh="[b]" and bt="[]", simplified])
|
|
|
116 |
|
|
|
117 |
lemma lprod_2_2: "(a, b) \<in> R \<Longrightarrow> ([a, c], [c, b]) \<in> lprod R"
|
|
|
118 |
by (auto intro: lprod_list[where a=c and b=c and
|
|
|
119 |
ah = "[a]" and at = "[]" and bh="[]" and bt="[b]", simplified])
|
|
|
120 |
|
|
|
121 |
lemma [recdef_wf, simp, intro]:
|
|
|
122 |
assumes wfR: "wf R" shows "wf (gprod_2_1 R)"
|
|
|
123 |
proof -
|
|
|
124 |
have "gprod_2_1 R \<subseteq> inv_image (lprod R) (\<lambda> (a,b). [a,b])"
|
|
|
125 |
by (auto simp add: inv_image_def gprod_2_1_def lprod_2_1 lprod_2_2)
|
|
|
126 |
with wfR show ?thesis
|
|
|
127 |
by (rule_tac wf_subset, auto)
|
|
|
128 |
qed
|
|
|
129 |
|
|
|
130 |
lemma [recdef_wf, simp, intro]:
|
|
|
131 |
assumes wfR: "wf R" shows "wf (gprod_2_2 R)"
|
|
|
132 |
proof -
|
|
|
133 |
have "gprod_2_2 R \<subseteq> inv_image (lprod R) (\<lambda> (a,b). [a,b])"
|
|
|
134 |
by (auto simp add: inv_image_def gprod_2_2_def lprod_2_3 lprod_2_4)
|
|
|
135 |
with wfR show ?thesis
|
|
|
136 |
by (rule_tac wf_subset, auto)
|
|
|
137 |
qed
|
|
|
138 |
|
|
|
139 |
lemma lprod_3_1: assumes "(x', x) \<in> R" shows "([y, z, x'], [x, y, z]) \<in> lprod R"
|
|
|
140 |
apply (rule lprod_list[where a="y" and b="y" and ah="[]" and at="[z,x']" and bh="[x]" and bt="[z]", simplified])
|
|
|
141 |
apply (auto simp add: lprod_2_1 prems)
|
|
|
142 |
done
|
|
|
143 |
|
|
|
144 |
lemma lprod_3_2: assumes "(z',z) \<in> R" shows "([z', x, y], [x,y,z]) \<in> lprod R"
|
|
|
145 |
apply (rule lprod_list[where a="y" and b="y" and ah="[z',x]" and at="[]" and bh="[x]" and bt="[z]", simplified])
|
|
|
146 |
apply (auto simp add: lprod_2_2 prems)
|
|
|
147 |
done
|
|
|
148 |
|
|
|
149 |
lemma lprod_3_3: assumes xr: "(xr, x) \<in> R" shows "([xr, y, z], [x, y, z]) \<in> lprod R"
|
|
|
150 |
apply (rule lprod_list[where a="y" and b="y" and ah="[xr]" and at="[z]" and bh="[x]" and bt="[z]", simplified])
|
|
|
151 |
apply (simp add: xr lprod_2_3)
|
|
|
152 |
done
|
|
|
153 |
|
|
|
154 |
lemma lprod_3_4: assumes yr: "(yr, y) \<in> R" shows "([x, yr, z], [x, y, z]) \<in> lprod R"
|
|
|
155 |
apply (rule lprod_list[where a="x" and b="x" and ah="[]" and at="[yr,z]" and bh="[]" and bt="[y,z]", simplified])
|
|
|
156 |
apply (simp add: yr lprod_2_3)
|
|
|
157 |
done
|
|
|
158 |
|
|
|
159 |
lemma lprod_3_5: assumes zr: "(zr, z) \<in> R" shows "([x, y, zr], [x, y, z]) \<in> lprod R"
|
|
|
160 |
apply (rule lprod_list[where a="x" and b="x" and ah="[]" and at="[y,zr]" and bh="[]" and bt="[y,z]", simplified])
|
|
|
161 |
apply (simp add: zr lprod_2_4)
|
|
|
162 |
done
|
|
|
163 |
|
|
|
164 |
lemma lprod_3_6: assumes y': "(y', y) \<in> R" shows "([x, z, y'], [x, y, z]) \<in> lprod R"
|
|
|
165 |
apply (rule lprod_list[where a="z" and b="z" and ah="[x]" and at="[y']" and bh="[x,y]" and bt="[]", simplified])
|
|
|
166 |
apply (simp add: y' lprod_2_4)
|
|
|
167 |
done
|
|
|
168 |
|
|
|
169 |
lemma lprod_3_7: assumes z': "(z',z) \<in> R" shows "([x, z', y], [x, y, z]) \<in> lprod R"
|
|
|
170 |
apply (rule lprod_list[where a="y" and b="y" and ah="[x, z']" and at="[]" and bh="[x]" and bt="[z]", simplified])
|
|
|
171 |
apply (simp add: z' lprod_2_4)
|
|
|
172 |
done
|
|
|
173 |
|
|
|
174 |
constdefs
|
|
|
175 |
perm :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a set \<Rightarrow> bool"
|
|
|
176 |
"perm f A \<equiv> inj_on f A \<and> f ` A = A"
|
|
|
177 |
|
|
|
178 |
lemma "((as,bs) \<in> lprod R) =
|
|
|
179 |
(\<exists> f. perm f {0 ..< (length as)} \<and>
|
|
|
180 |
(\<forall> j. j < length as \<longrightarrow> ((nth as j, nth bs (f j)) \<in> R \<or> (nth as j = nth bs (f j)))) \<and>
|
|
|
181 |
(\<exists> i. i < length as \<and> (nth as i, nth bs (f i)) \<in> R))"
|
|
|
182 |
oops
|
|
|
183 |
|
|
|
184 |
lemma "trans R \<Longrightarrow> (ah@a#at, bh@b#bt) \<in> lprod R \<Longrightarrow> (b, a) \<in> R \<or> a = b \<Longrightarrow> (ah@at, bh@bt) \<in> lprod R"
|
|
|
185 |
oops
|
|
|
186 |
|
|
|
187 |
|
|
|
188 |
|
|
|
189 |
end |