| author | wenzelm | 
| Tue, 10 Jan 2017 16:03:50 +0100 | |
| changeset 64865 | 778c64c17363 | 
| parent 63820 | 9f004fbf9d5c | 
| child 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 21249 | 1  | 
(* Title: HOL/Lattices.thy  | 
2  | 
Author: Tobias Nipkow  | 
|
3  | 
*)  | 
|
4  | 
||
| 60758 | 5  | 
section \<open>Abstract lattices\<close>  | 
| 21249 | 6  | 
|
7  | 
theory Lattices  | 
|
| 54555 | 8  | 
imports Groups  | 
| 21249 | 9  | 
begin  | 
10  | 
||
| 60758 | 11  | 
subsection \<open>Abstract semilattice\<close>  | 
| 
35301
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
12  | 
|
| 60758 | 13  | 
text \<open>  | 
| 51487 | 14  | 
These locales provide a basic structure for interpretation into  | 
| 
35301
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
15  | 
bigger structures; extensions require careful thinking, otherwise  | 
| 
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
16  | 
undesired effects may occur due to interpretation.  | 
| 60758 | 17  | 
\<close>  | 
| 
35301
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
18  | 
|
| 
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
19  | 
locale semilattice = abel_semigroup +  | 
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
20  | 
assumes idem [simp]: "a \<^bold>* a = a"  | 
| 
35301
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
21  | 
begin  | 
| 
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
22  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
23  | 
lemma left_idem [simp]: "a \<^bold>* (a \<^bold>* b) = a \<^bold>* b"  | 
| 63322 | 24  | 
by (simp add: assoc [symmetric])  | 
| 50615 | 25  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
26  | 
lemma right_idem [simp]: "(a \<^bold>* b) \<^bold>* b = a \<^bold>* b"  | 
| 63322 | 27  | 
by (simp add: assoc)  | 
| 
35301
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
28  | 
|
| 
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
29  | 
end  | 
| 
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
30  | 
|
| 51487 | 31  | 
locale semilattice_neutr = semilattice + comm_monoid  | 
| 
35301
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
32  | 
|
| 51487 | 33  | 
locale semilattice_order = semilattice +  | 
| 63322 | 34  | 
fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<^bold>\<le>" 50)  | 
35  | 
and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<^bold><" 50)  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
36  | 
assumes order_iff: "a \<^bold>\<le> b \<longleftrightarrow> a = a \<^bold>* b"  | 
| 
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
37  | 
and strict_order_iff: "a \<^bold>< b \<longleftrightarrow> a = a \<^bold>* b \<and> a \<noteq> b"  | 
| 51487 | 38  | 
begin  | 
39  | 
||
| 63322 | 40  | 
lemma orderI: "a = a \<^bold>* b \<Longrightarrow> a \<^bold>\<le> b"  | 
| 51487 | 41  | 
by (simp add: order_iff)  | 
42  | 
||
43  | 
lemma orderE:  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
44  | 
assumes "a \<^bold>\<le> b"  | 
| 
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
45  | 
obtains "a = a \<^bold>* b"  | 
| 51487 | 46  | 
using assms by (unfold order_iff)  | 
47  | 
||
| 52152 | 48  | 
sublocale ordering less_eq less  | 
| 51487 | 49  | 
proof  | 
| 63322 | 50  | 
show "a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> a \<noteq> b" for a b  | 
| 
59545
 
12a6088ed195
explicit equivalence for strict order on lattices
 
haftmann 
parents: 
58889 
diff
changeset
 | 
51  | 
by (simp add: order_iff strict_order_iff)  | 
| 51487 | 52  | 
next  | 
| 63588 | 53  | 
show "a \<^bold>\<le> a" for a  | 
| 51487 | 54  | 
by (simp add: order_iff)  | 
55  | 
next  | 
|
56  | 
fix a b  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
57  | 
assume "a \<^bold>\<le> b" "b \<^bold>\<le> a"  | 
| 
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
58  | 
then have "a = a \<^bold>* b" "a \<^bold>* b = b"  | 
| 51487 | 59  | 
by (simp_all add: order_iff commute)  | 
60  | 
then show "a = b" by simp  | 
|
61  | 
next  | 
|
62  | 
fix a b c  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
63  | 
assume "a \<^bold>\<le> b" "b \<^bold>\<le> c"  | 
| 
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
64  | 
then have "a = a \<^bold>* b" "b = b \<^bold>* c"  | 
| 51487 | 65  | 
by (simp_all add: order_iff commute)  | 
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
66  | 
then have "a = a \<^bold>* (b \<^bold>* c)"  | 
| 51487 | 67  | 
by simp  | 
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
68  | 
then have "a = (a \<^bold>* b) \<^bold>* c"  | 
| 51487 | 69  | 
by (simp add: assoc)  | 
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
70  | 
with \<open>a = a \<^bold>* b\<close> [symmetric] have "a = a \<^bold>* c" by simp  | 
| 
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
71  | 
then show "a \<^bold>\<le> c" by (rule orderI)  | 
| 51487 | 72  | 
qed  | 
| 
35301
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
73  | 
|
| 63322 | 74  | 
lemma cobounded1 [simp]: "a \<^bold>* b \<^bold>\<le> a"  | 
75  | 
by (simp add: order_iff commute)  | 
|
| 51487 | 76  | 
|
| 63322 | 77  | 
lemma cobounded2 [simp]: "a \<^bold>* b \<^bold>\<le> b"  | 
| 51487 | 78  | 
by (simp add: order_iff)  | 
79  | 
||
80  | 
lemma boundedI:  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
81  | 
assumes "a \<^bold>\<le> b" and "a \<^bold>\<le> c"  | 
| 
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
82  | 
shows "a \<^bold>\<le> b \<^bold>* c"  | 
| 51487 | 83  | 
proof (rule orderI)  | 
| 63588 | 84  | 
from assms obtain "a \<^bold>* b = a" and "a \<^bold>* c = a"  | 
85  | 
by (auto elim!: orderE)  | 
|
86  | 
then show "a = a \<^bold>* (b \<^bold>* c)"  | 
|
87  | 
by (simp add: assoc [symmetric])  | 
|
| 51487 | 88  | 
qed  | 
89  | 
||
90  | 
lemma boundedE:  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
91  | 
assumes "a \<^bold>\<le> b \<^bold>* c"  | 
| 
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
92  | 
obtains "a \<^bold>\<le> b" and "a \<^bold>\<le> c"  | 
| 51487 | 93  | 
using assms by (blast intro: trans cobounded1 cobounded2)  | 
94  | 
||
| 63322 | 95  | 
lemma bounded_iff [simp]: "a \<^bold>\<le> b \<^bold>* c \<longleftrightarrow> a \<^bold>\<le> b \<and> a \<^bold>\<le> c"  | 
| 51487 | 96  | 
by (blast intro: boundedI elim: boundedE)  | 
97  | 
||
98  | 
lemma strict_boundedE:  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
99  | 
assumes "a \<^bold>< b \<^bold>* c"  | 
| 
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
100  | 
obtains "a \<^bold>< b" and "a \<^bold>< c"  | 
| 54859 | 101  | 
using assms by (auto simp add: commute strict_iff_order elim: orderE intro!: that)+  | 
| 51487 | 102  | 
|
| 63322 | 103  | 
lemma coboundedI1: "a \<^bold>\<le> c \<Longrightarrow> a \<^bold>* b \<^bold>\<le> c"  | 
| 51487 | 104  | 
by (rule trans) auto  | 
105  | 
||
| 63322 | 106  | 
lemma coboundedI2: "b \<^bold>\<le> c \<Longrightarrow> a \<^bold>* b \<^bold>\<le> c"  | 
| 51487 | 107  | 
by (rule trans) auto  | 
108  | 
||
| 63322 | 109  | 
lemma strict_coboundedI1: "a \<^bold>< c \<Longrightarrow> a \<^bold>* b \<^bold>< c"  | 
| 54858 | 110  | 
using irrefl  | 
| 63588 | 111  | 
by (auto intro: not_eq_order_implies_strict coboundedI1 strict_implies_order  | 
112  | 
elim: strict_boundedE)  | 
|
| 54858 | 113  | 
|
| 63322 | 114  | 
lemma strict_coboundedI2: "b \<^bold>< c \<Longrightarrow> a \<^bold>* b \<^bold>< c"  | 
| 54858 | 115  | 
using strict_coboundedI1 [of b c a] by (simp add: commute)  | 
116  | 
||
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
117  | 
lemma mono: "a \<^bold>\<le> c \<Longrightarrow> b \<^bold>\<le> d \<Longrightarrow> a \<^bold>* b \<^bold>\<le> c \<^bold>* d"  | 
| 51487 | 118  | 
by (blast intro: boundedI coboundedI1 coboundedI2)  | 
119  | 
||
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
120  | 
lemma absorb1: "a \<^bold>\<le> b \<Longrightarrow> a \<^bold>* b = a"  | 
| 63588 | 121  | 
by (rule antisym) (auto simp: refl)  | 
| 51487 | 122  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
123  | 
lemma absorb2: "b \<^bold>\<le> a \<Longrightarrow> a \<^bold>* b = b"  | 
| 63588 | 124  | 
by (rule antisym) (auto simp: refl)  | 
| 54858 | 125  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
126  | 
lemma absorb_iff1: "a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>* b = a"  | 
| 54858 | 127  | 
using order_iff by auto  | 
128  | 
||
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
129  | 
lemma absorb_iff2: "b \<^bold>\<le> a \<longleftrightarrow> a \<^bold>* b = b"  | 
| 54858 | 130  | 
using order_iff by (auto simp add: commute)  | 
| 
35301
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
131  | 
|
| 
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
132  | 
end  | 
| 
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
133  | 
|
| 51487 | 134  | 
locale semilattice_neutr_order = semilattice_neutr + semilattice_order  | 
| 52152 | 135  | 
begin  | 
| 51487 | 136  | 
|
| 
63290
 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 
haftmann 
parents: 
61799 
diff
changeset
 | 
137  | 
sublocale ordering_top less_eq less "\<^bold>1"  | 
| 61169 | 138  | 
by standard (simp add: order_iff)  | 
| 51487 | 139  | 
|
| 52152 | 140  | 
end  | 
141  | 
||
| 
63661
 
92e037803666
formal passive interpretation proofs for conj and disj
 
haftmann 
parents: 
63588 
diff
changeset
 | 
142  | 
text \<open>Passive interpretations for boolean operators\<close>  | 
| 
 
92e037803666
formal passive interpretation proofs for conj and disj
 
haftmann 
parents: 
63588 
diff
changeset
 | 
143  | 
|
| 
 
92e037803666
formal passive interpretation proofs for conj and disj
 
haftmann 
parents: 
63588 
diff
changeset
 | 
144  | 
lemma semilattice_neutr_and:  | 
| 
 
92e037803666
formal passive interpretation proofs for conj and disj
 
haftmann 
parents: 
63588 
diff
changeset
 | 
145  | 
"semilattice_neutr HOL.conj True"  | 
| 
 
92e037803666
formal passive interpretation proofs for conj and disj
 
haftmann 
parents: 
63588 
diff
changeset
 | 
146  | 
by standard auto  | 
| 
 
92e037803666
formal passive interpretation proofs for conj and disj
 
haftmann 
parents: 
63588 
diff
changeset
 | 
147  | 
|
| 
 
92e037803666
formal passive interpretation proofs for conj and disj
 
haftmann 
parents: 
63588 
diff
changeset
 | 
148  | 
lemma semilattice_neutr_or:  | 
| 
 
92e037803666
formal passive interpretation proofs for conj and disj
 
haftmann 
parents: 
63588 
diff
changeset
 | 
149  | 
"semilattice_neutr HOL.disj False"  | 
| 
 
92e037803666
formal passive interpretation proofs for conj and disj
 
haftmann 
parents: 
63588 
diff
changeset
 | 
150  | 
by standard auto  | 
| 
 
92e037803666
formal passive interpretation proofs for conj and disj
 
haftmann 
parents: 
63588 
diff
changeset
 | 
151  | 
|
| 
35301
 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 
haftmann 
parents: 
35121 
diff
changeset
 | 
152  | 
|
| 60758 | 153  | 
subsection \<open>Syntactic infimum and supremum operations\<close>  | 
| 41082 | 154  | 
|
| 44845 | 155  | 
class inf =  | 
156  | 
fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70)  | 
|
| 25206 | 157  | 
|
| 63322 | 158  | 
class sup =  | 
| 44845 | 159  | 
fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65)  | 
160  | 
||
| 46691 | 161  | 
|
| 60758 | 162  | 
subsection \<open>Concrete lattices\<close>  | 
| 46691 | 163  | 
|
| 44845 | 164  | 
class semilattice_inf = order + inf +  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
165  | 
assumes inf_le1 [simp]: "x \<sqinter> y \<le> x"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
166  | 
and inf_le2 [simp]: "x \<sqinter> y \<le> y"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
167  | 
and inf_greatest: "x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<sqinter> z"  | 
| 21249 | 168  | 
|
| 44845 | 169  | 
class semilattice_sup = order + sup +  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
170  | 
assumes sup_ge1 [simp]: "x \<le> x \<squnion> y"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
171  | 
and sup_ge2 [simp]: "y \<le> x \<squnion> y"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
172  | 
and sup_least: "y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<squnion> z \<le> x"  | 
| 26014 | 173  | 
begin  | 
174  | 
||
| 63588 | 175  | 
text \<open>Dual lattice.\<close>  | 
| 63322 | 176  | 
lemma dual_semilattice: "class.semilattice_inf sup greater_eq greater"  | 
177  | 
by (rule class.semilattice_inf.intro, rule dual_order)  | 
|
178  | 
(unfold_locales, simp_all add: sup_least)  | 
|
| 26014 | 179  | 
|
180  | 
end  | 
|
| 21249 | 181  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34973 
diff
changeset
 | 
182  | 
class lattice = semilattice_inf + semilattice_sup  | 
| 21249 | 183  | 
|
| 25382 | 184  | 
|
| 60758 | 185  | 
subsubsection \<open>Intro and elim rules\<close>  | 
| 21733 | 186  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34973 
diff
changeset
 | 
187  | 
context semilattice_inf  | 
| 21733 | 188  | 
begin  | 
| 21249 | 189  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
190  | 
lemma le_infI1: "a \<le> x \<Longrightarrow> a \<sqinter> b \<le> x"  | 
| 32064 | 191  | 
by (rule order_trans) auto  | 
| 21249 | 192  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
193  | 
lemma le_infI2: "b \<le> x \<Longrightarrow> a \<sqinter> b \<le> x"  | 
| 32064 | 194  | 
by (rule order_trans) auto  | 
| 21733 | 195  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
196  | 
lemma le_infI: "x \<le> a \<Longrightarrow> x \<le> b \<Longrightarrow> x \<le> a \<sqinter> b"  | 
| 54857 | 197  | 
by (fact inf_greatest) (* FIXME: duplicate lemma *)  | 
| 21249 | 198  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
199  | 
lemma le_infE: "x \<le> a \<sqinter> b \<Longrightarrow> (x \<le> a \<Longrightarrow> x \<le> b \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 36008 | 200  | 
by (blast intro: order_trans inf_le1 inf_le2)  | 
| 21249 | 201  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
202  | 
lemma le_inf_iff: "x \<le> y \<sqinter> z \<longleftrightarrow> x \<le> y \<and> x \<le> z"  | 
| 32064 | 203  | 
by (blast intro: le_infI elim: le_infE)  | 
| 21733 | 204  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
205  | 
lemma le_iff_inf: "x \<le> y \<longleftrightarrow> x \<sqinter> y = x"  | 
| 54859 | 206  | 
by (auto intro: le_infI1 antisym dest: eq_iff [THEN iffD1] simp add: le_inf_iff)  | 
| 21249 | 207  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
208  | 
lemma inf_mono: "a \<le> c \<Longrightarrow> b \<le> d \<Longrightarrow> a \<sqinter> b \<le> c \<sqinter> d"  | 
| 36008 | 209  | 
by (fast intro: inf_greatest le_infI1 le_infI2)  | 
210  | 
||
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
211  | 
lemma mono_inf: "mono f \<Longrightarrow> f (A \<sqinter> B) \<le> f A \<sqinter> f B" for f :: "'a \<Rightarrow> 'b::semilattice_inf"  | 
| 25206 | 212  | 
by (auto simp add: mono_def intro: Lattices.inf_greatest)  | 
| 21733 | 213  | 
|
| 25206 | 214  | 
end  | 
| 21733 | 215  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34973 
diff
changeset
 | 
216  | 
context semilattice_sup  | 
| 21733 | 217  | 
begin  | 
| 21249 | 218  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
219  | 
lemma le_supI1: "x \<le> a \<Longrightarrow> x \<le> a \<squnion> b"  | 
| 63322 | 220  | 
by (rule order_trans) auto  | 
221  | 
||
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
222  | 
lemma le_supI2: "x \<le> b \<Longrightarrow> x \<le> a \<squnion> b"  | 
| 25062 | 223  | 
by (rule order_trans) auto  | 
| 21249 | 224  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
225  | 
lemma le_supI: "a \<le> x \<Longrightarrow> b \<le> x \<Longrightarrow> a \<squnion> b \<le> x"  | 
| 54857 | 226  | 
by (fact sup_least) (* FIXME: duplicate lemma *)  | 
| 21249 | 227  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
228  | 
lemma le_supE: "a \<squnion> b \<le> x \<Longrightarrow> (a \<le> x \<Longrightarrow> b \<le> x \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 36008 | 229  | 
by (blast intro: order_trans sup_ge1 sup_ge2)  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
230  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
231  | 
lemma le_sup_iff: "x \<squnion> y \<le> z \<longleftrightarrow> x \<le> z \<and> y \<le> z"  | 
| 32064 | 232  | 
by (blast intro: le_supI elim: le_supE)  | 
| 21733 | 233  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
234  | 
lemma le_iff_sup: "x \<le> y \<longleftrightarrow> x \<squnion> y = y"  | 
| 54859 | 235  | 
by (auto intro: le_supI2 antisym dest: eq_iff [THEN iffD1] simp add: le_sup_iff)  | 
| 21734 | 236  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
237  | 
lemma sup_mono: "a \<le> c \<Longrightarrow> b \<le> d \<Longrightarrow> a \<squnion> b \<le> c \<squnion> d"  | 
| 36008 | 238  | 
by (fast intro: sup_least le_supI1 le_supI2)  | 
239  | 
||
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
240  | 
lemma mono_sup: "mono f \<Longrightarrow> f A \<squnion> f B \<le> f (A \<squnion> B)" for f :: "'a \<Rightarrow> 'b::semilattice_sup"  | 
| 25206 | 241  | 
by (auto simp add: mono_def intro: Lattices.sup_least)  | 
| 21733 | 242  | 
|
| 25206 | 243  | 
end  | 
| 23878 | 244  | 
|
| 21733 | 245  | 
|
| 60758 | 246  | 
subsubsection \<open>Equational laws\<close>  | 
| 21249 | 247  | 
|
| 52152 | 248  | 
context semilattice_inf  | 
249  | 
begin  | 
|
250  | 
||
| 61605 | 251  | 
sublocale inf: semilattice inf  | 
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
252  | 
proof  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
253  | 
fix a b c  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
254  | 
show "(a \<sqinter> b) \<sqinter> c = a \<sqinter> (b \<sqinter> c)"  | 
| 54859 | 255  | 
by (rule antisym) (auto intro: le_infI1 le_infI2 simp add: le_inf_iff)  | 
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
256  | 
show "a \<sqinter> b = b \<sqinter> a"  | 
| 54859 | 257  | 
by (rule antisym) (auto simp add: le_inf_iff)  | 
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
258  | 
show "a \<sqinter> a = a"  | 
| 54859 | 259  | 
by (rule antisym) (auto simp add: le_inf_iff)  | 
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
260  | 
qed  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
261  | 
|
| 61605 | 262  | 
sublocale inf: semilattice_order inf less_eq less  | 
| 61169 | 263  | 
by standard (auto simp add: le_iff_inf less_le)  | 
| 51487 | 264  | 
|
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
265  | 
lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
266  | 
by (fact inf.assoc)  | 
| 21733 | 267  | 
|
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
268  | 
lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)"  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
269  | 
by (fact inf.commute)  | 
| 21733 | 270  | 
|
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
271  | 
lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)"  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
272  | 
by (fact inf.left_commute)  | 
| 21733 | 273  | 
|
| 44921 | 274  | 
lemma inf_idem: "x \<sqinter> x = x"  | 
275  | 
by (fact inf.idem) (* already simp *)  | 
|
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
276  | 
|
| 50615 | 277  | 
lemma inf_left_idem: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y"  | 
278  | 
by (fact inf.left_idem) (* already simp *)  | 
|
279  | 
||
280  | 
lemma inf_right_idem: "(x \<sqinter> y) \<sqinter> y = x \<sqinter> y"  | 
|
281  | 
by (fact inf.right_idem) (* already simp *)  | 
|
| 21733 | 282  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
283  | 
lemma inf_absorb1: "x \<le> y \<Longrightarrow> x \<sqinter> y = x"  | 
| 32064 | 284  | 
by (rule antisym) auto  | 
| 21733 | 285  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
286  | 
lemma inf_absorb2: "y \<le> x \<Longrightarrow> x \<sqinter> y = y"  | 
| 32064 | 287  | 
by (rule antisym) auto  | 
| 63322 | 288  | 
|
| 32064 | 289  | 
lemmas inf_aci = inf_commute inf_assoc inf_left_commute inf_left_idem  | 
| 21733 | 290  | 
|
291  | 
end  | 
|
292  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34973 
diff
changeset
 | 
293  | 
context semilattice_sup  | 
| 21733 | 294  | 
begin  | 
| 21249 | 295  | 
|
| 61605 | 296  | 
sublocale sup: semilattice sup  | 
| 52152 | 297  | 
proof  | 
298  | 
fix a b c  | 
|
299  | 
show "(a \<squnion> b) \<squnion> c = a \<squnion> (b \<squnion> c)"  | 
|
| 54859 | 300  | 
by (rule antisym) (auto intro: le_supI1 le_supI2 simp add: le_sup_iff)  | 
| 52152 | 301  | 
show "a \<squnion> b = b \<squnion> a"  | 
| 54859 | 302  | 
by (rule antisym) (auto simp add: le_sup_iff)  | 
| 52152 | 303  | 
show "a \<squnion> a = a"  | 
| 54859 | 304  | 
by (rule antisym) (auto simp add: le_sup_iff)  | 
| 52152 | 305  | 
qed  | 
306  | 
||
| 61605 | 307  | 
sublocale sup: semilattice_order sup greater_eq greater  | 
| 61169 | 308  | 
by standard (auto simp add: le_iff_sup sup.commute less_le)  | 
| 52152 | 309  | 
|
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
310  | 
lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
311  | 
by (fact sup.assoc)  | 
| 21733 | 312  | 
|
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
313  | 
lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)"  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
314  | 
by (fact sup.commute)  | 
| 21733 | 315  | 
|
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
316  | 
lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)"  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
317  | 
by (fact sup.left_commute)  | 
| 21733 | 318  | 
|
| 44921 | 319  | 
lemma sup_idem: "x \<squnion> x = x"  | 
320  | 
by (fact sup.idem) (* already simp *)  | 
|
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
321  | 
|
| 44918 | 322  | 
lemma sup_left_idem [simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y"  | 
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34209 
diff
changeset
 | 
323  | 
by (fact sup.left_idem)  | 
| 21733 | 324  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
325  | 
lemma sup_absorb1: "y \<le> x \<Longrightarrow> x \<squnion> y = x"  | 
| 32064 | 326  | 
by (rule antisym) auto  | 
| 21733 | 327  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
328  | 
lemma sup_absorb2: "x \<le> y \<Longrightarrow> x \<squnion> y = y"  | 
| 32064 | 329  | 
by (rule antisym) auto  | 
| 21249 | 330  | 
|
| 32064 | 331  | 
lemmas sup_aci = sup_commute sup_assoc sup_left_commute sup_left_idem  | 
| 21733 | 332  | 
|
333  | 
end  | 
|
| 21249 | 334  | 
|
| 21733 | 335  | 
context lattice  | 
336  | 
begin  | 
|
337  | 
||
| 63322 | 338  | 
lemma dual_lattice: "class.lattice sup (op \<ge>) (op >) inf"  | 
| 63588 | 339  | 
by (rule class.lattice.intro,  | 
340  | 
rule dual_semilattice,  | 
|
341  | 
rule class.semilattice_sup.intro,  | 
|
342  | 
rule dual_order)  | 
|
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
343  | 
(unfold_locales, auto)  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
344  | 
|
| 44918 | 345  | 
lemma inf_sup_absorb [simp]: "x \<sqinter> (x \<squnion> y) = x"  | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
346  | 
by (blast intro: antisym inf_le1 inf_greatest sup_ge1)  | 
| 21733 | 347  | 
|
| 44918 | 348  | 
lemma sup_inf_absorb [simp]: "x \<squnion> (x \<sqinter> y) = x"  | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
349  | 
by (blast intro: antisym sup_ge1 sup_least inf_le1)  | 
| 21733 | 350  | 
|
| 32064 | 351  | 
lemmas inf_sup_aci = inf_aci sup_aci  | 
| 21734 | 352  | 
|
| 22454 | 353  | 
lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2  | 
354  | 
||
| 63588 | 355  | 
text \<open>Towards distributivity.\<close>  | 
| 21249 | 356  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
357  | 
lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<le> (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
| 32064 | 358  | 
by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2)  | 
| 21734 | 359  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
360  | 
lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<le> x \<sqinter> (y \<squnion> z)"  | 
| 32064 | 361  | 
by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2)  | 
| 21734 | 362  | 
|
| 63322 | 363  | 
text \<open>If you have one of them, you have them all.\<close>  | 
| 21249 | 364  | 
|
| 21733 | 365  | 
lemma distrib_imp1:  | 
| 63322 | 366  | 
assumes distrib: "\<And>x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"  | 
367  | 
shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
|
| 21249 | 368  | 
proof-  | 
| 63322 | 369  | 
have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)"  | 
370  | 
by simp  | 
|
| 44918 | 371  | 
also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))"  | 
| 63322 | 372  | 
by (simp add: distrib inf_commute sup_assoc del: sup_inf_absorb)  | 
| 21249 | 373  | 
also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)"  | 
| 63322 | 374  | 
by (simp add: inf_commute)  | 
375  | 
also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:distrib)  | 
|
| 21249 | 376  | 
finally show ?thesis .  | 
377  | 
qed  | 
|
378  | 
||
| 21733 | 379  | 
lemma distrib_imp2:  | 
| 63322 | 380  | 
assumes distrib: "\<And>x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
381  | 
shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"  | 
|
| 21249 | 382  | 
proof-  | 
| 63322 | 383  | 
have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)"  | 
384  | 
by simp  | 
|
| 44918 | 385  | 
also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))"  | 
| 63322 | 386  | 
by (simp add: distrib sup_commute inf_assoc del: inf_sup_absorb)  | 
| 21249 | 387  | 
also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)"  | 
| 63322 | 388  | 
by (simp add: sup_commute)  | 
389  | 
also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by (simp add:distrib)  | 
|
| 21249 | 390  | 
finally show ?thesis .  | 
391  | 
qed  | 
|
392  | 
||
| 21733 | 393  | 
end  | 
| 21249 | 394  | 
|
| 63322 | 395  | 
|
| 60758 | 396  | 
subsubsection \<open>Strict order\<close>  | 
| 32568 | 397  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34973 
diff
changeset
 | 
398  | 
context semilattice_inf  | 
| 32568 | 399  | 
begin  | 
400  | 
||
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
401  | 
lemma less_infI1: "a < x \<Longrightarrow> a \<sqinter> b < x"  | 
| 
32642
 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 
haftmann 
parents: 
32568 
diff
changeset
 | 
402  | 
by (auto simp add: less_le inf_absorb1 intro: le_infI1)  | 
| 32568 | 403  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
404  | 
lemma less_infI2: "b < x \<Longrightarrow> a \<sqinter> b < x"  | 
| 
32642
 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 
haftmann 
parents: 
32568 
diff
changeset
 | 
405  | 
by (auto simp add: less_le inf_absorb2 intro: le_infI2)  | 
| 32568 | 406  | 
|
407  | 
end  | 
|
408  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34973 
diff
changeset
 | 
409  | 
context semilattice_sup  | 
| 32568 | 410  | 
begin  | 
411  | 
||
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
412  | 
lemma less_supI1: "x < a \<Longrightarrow> x < a \<squnion> b"  | 
| 44921 | 413  | 
using dual_semilattice  | 
414  | 
by (rule semilattice_inf.less_infI1)  | 
|
| 32568 | 415  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
416  | 
lemma less_supI2: "x < b \<Longrightarrow> x < a \<squnion> b"  | 
| 44921 | 417  | 
using dual_semilattice  | 
418  | 
by (rule semilattice_inf.less_infI2)  | 
|
| 32568 | 419  | 
|
420  | 
end  | 
|
421  | 
||
| 21249 | 422  | 
|
| 60758 | 423  | 
subsection \<open>Distributive lattices\<close>  | 
| 21249 | 424  | 
|
| 22454 | 425  | 
class distrib_lattice = lattice +  | 
| 21249 | 426  | 
assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
427  | 
||
| 21733 | 428  | 
context distrib_lattice  | 
429  | 
begin  | 
|
430  | 
||
| 63322 | 431  | 
lemma sup_inf_distrib2: "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)"  | 
| 44921 | 432  | 
by (simp add: sup_commute sup_inf_distrib1)  | 
| 21249 | 433  | 
|
| 63322 | 434  | 
lemma inf_sup_distrib1: "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"  | 
| 44921 | 435  | 
by (rule distrib_imp2 [OF sup_inf_distrib1])  | 
| 21249 | 436  | 
|
| 63322 | 437  | 
lemma inf_sup_distrib2: "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)"  | 
| 44921 | 438  | 
by (simp add: inf_commute inf_sup_distrib1)  | 
| 21249 | 439  | 
|
| 63322 | 440  | 
lemma dual_distrib_lattice: "class.distrib_lattice sup (op \<ge>) (op >) inf"  | 
| 
36635
 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 
haftmann 
parents: 
36352 
diff
changeset
 | 
441  | 
by (rule class.distrib_lattice.intro, rule dual_lattice)  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
442  | 
(unfold_locales, fact inf_sup_distrib1)  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
443  | 
|
| 63322 | 444  | 
lemmas sup_inf_distrib = sup_inf_distrib1 sup_inf_distrib2  | 
| 36008 | 445  | 
|
| 63322 | 446  | 
lemmas inf_sup_distrib = inf_sup_distrib1 inf_sup_distrib2  | 
| 36008 | 447  | 
|
| 63322 | 448  | 
lemmas distrib = sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2  | 
| 21249 | 449  | 
|
| 21733 | 450  | 
end  | 
451  | 
||
| 21249 | 452  | 
|
| 60758 | 453  | 
subsection \<open>Bounded lattices and boolean algebras\<close>  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
454  | 
|
| 
52729
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
52152 
diff
changeset
 | 
455  | 
class bounded_semilattice_inf_top = semilattice_inf + order_top  | 
| 52152 | 456  | 
begin  | 
| 51487 | 457  | 
|
| 61605 | 458  | 
sublocale inf_top: semilattice_neutr inf top  | 
459  | 
+ inf_top: semilattice_neutr_order inf top less_eq less  | 
|
| 51487 | 460  | 
proof  | 
| 63322 | 461  | 
show "x \<sqinter> \<top> = x" for x  | 
| 51487 | 462  | 
by (rule inf_absorb1) simp  | 
463  | 
qed  | 
|
464  | 
||
| 52152 | 465  | 
end  | 
| 51487 | 466  | 
|
| 
52729
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
52152 
diff
changeset
 | 
467  | 
class bounded_semilattice_sup_bot = semilattice_sup + order_bot  | 
| 52152 | 468  | 
begin  | 
469  | 
||
| 61605 | 470  | 
sublocale sup_bot: semilattice_neutr sup bot  | 
471  | 
+ sup_bot: semilattice_neutr_order sup bot greater_eq greater  | 
|
| 51487 | 472  | 
proof  | 
| 63322 | 473  | 
show "x \<squnion> \<bottom> = x" for x  | 
| 51487 | 474  | 
by (rule sup_absorb1) simp  | 
475  | 
qed  | 
|
476  | 
||
| 52152 | 477  | 
end  | 
478  | 
||
| 
52729
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
52152 
diff
changeset
 | 
479  | 
class bounded_lattice_bot = lattice + order_bot  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
480  | 
begin  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
481  | 
|
| 51487 | 482  | 
subclass bounded_semilattice_sup_bot ..  | 
483  | 
||
| 63322 | 484  | 
lemma inf_bot_left [simp]: "\<bottom> \<sqinter> x = \<bottom>"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
485  | 
by (rule inf_absorb1) simp  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
486  | 
|
| 63322 | 487  | 
lemma inf_bot_right [simp]: "x \<sqinter> \<bottom> = \<bottom>"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
488  | 
by (rule inf_absorb2) simp  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
489  | 
|
| 63322 | 490  | 
lemma sup_bot_left: "\<bottom> \<squnion> x = x"  | 
| 51487 | 491  | 
by (fact sup_bot.left_neutral)  | 
| 
36352
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
492  | 
|
| 63322 | 493  | 
lemma sup_bot_right: "x \<squnion> \<bottom> = x"  | 
| 51487 | 494  | 
by (fact sup_bot.right_neutral)  | 
| 
36352
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
495  | 
|
| 63322 | 496  | 
lemma sup_eq_bot_iff [simp]: "x \<squnion> y = \<bottom> \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>"  | 
| 
36352
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
497  | 
by (simp add: eq_iff)  | 
| 
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
498  | 
|
| 63322 | 499  | 
lemma bot_eq_sup_iff [simp]: "\<bottom> = x \<squnion> y \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>"  | 
| 51593 | 500  | 
by (simp add: eq_iff)  | 
501  | 
||
| 
36352
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
502  | 
end  | 
| 
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
503  | 
|
| 
52729
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
52152 
diff
changeset
 | 
504  | 
class bounded_lattice_top = lattice + order_top  | 
| 
36352
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
505  | 
begin  | 
| 
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
506  | 
|
| 51487 | 507  | 
subclass bounded_semilattice_inf_top ..  | 
508  | 
||
| 63322 | 509  | 
lemma sup_top_left [simp]: "\<top> \<squnion> x = \<top>"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
510  | 
by (rule sup_absorb1) simp  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
511  | 
|
| 63322 | 512  | 
lemma sup_top_right [simp]: "x \<squnion> \<top> = \<top>"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
513  | 
by (rule sup_absorb2) simp  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
514  | 
|
| 63322 | 515  | 
lemma inf_top_left: "\<top> \<sqinter> x = x"  | 
| 51487 | 516  | 
by (fact inf_top.left_neutral)  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
517  | 
|
| 63322 | 518  | 
lemma inf_top_right: "x \<sqinter> \<top> = x"  | 
| 51487 | 519  | 
by (fact inf_top.right_neutral)  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
520  | 
|
| 63322 | 521  | 
lemma inf_eq_top_iff [simp]: "x \<sqinter> y = \<top> \<longleftrightarrow> x = \<top> \<and> y = \<top>"  | 
| 36008 | 522  | 
by (simp add: eq_iff)  | 
| 32568 | 523  | 
|
| 
36352
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
524  | 
end  | 
| 
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
525  | 
|
| 
52729
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
52152 
diff
changeset
 | 
526  | 
class bounded_lattice = lattice + order_bot + order_top  | 
| 
36352
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
527  | 
begin  | 
| 
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
528  | 
|
| 51487 | 529  | 
subclass bounded_lattice_bot ..  | 
530  | 
subclass bounded_lattice_top ..  | 
|
531  | 
||
| 63322 | 532  | 
lemma dual_bounded_lattice: "class.bounded_lattice sup greater_eq greater inf \<top> \<bottom>"  | 
| 
36352
 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 
Cezary Kaliszyk <kaliszyk@in.tum.de> 
parents: 
36096 
diff
changeset
 | 
533  | 
by unfold_locales (auto simp add: less_le_not_le)  | 
| 32568 | 534  | 
|
| 
34007
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
535  | 
end  | 
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
536  | 
|
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
537  | 
class boolean_algebra = distrib_lattice + bounded_lattice + minus + uminus +  | 
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
538  | 
assumes inf_compl_bot: "x \<sqinter> - x = \<bottom>"  | 
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
539  | 
and sup_compl_top: "x \<squnion> - x = \<top>"  | 
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
540  | 
assumes diff_eq: "x - y = x \<sqinter> - y"  | 
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
541  | 
begin  | 
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
542  | 
|
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
543  | 
lemma dual_boolean_algebra:  | 
| 44845 | 544  | 
"class.boolean_algebra (\<lambda>x y. x \<squnion> - y) uminus sup greater_eq greater inf \<top> \<bottom>"  | 
| 63588 | 545  | 
by (rule class.boolean_algebra.intro,  | 
546  | 
rule dual_bounded_lattice,  | 
|
547  | 
rule dual_distrib_lattice)  | 
|
| 
34007
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
548  | 
(unfold_locales, auto simp add: inf_compl_bot sup_compl_top diff_eq)  | 
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
549  | 
|
| 63322 | 550  | 
lemma compl_inf_bot [simp]: "- x \<sqinter> x = \<bottom>"  | 
| 
34007
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
551  | 
by (simp add: inf_commute inf_compl_bot)  | 
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
552  | 
|
| 63322 | 553  | 
lemma compl_sup_top [simp]: "- x \<squnion> x = \<top>"  | 
| 
34007
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
554  | 
by (simp add: sup_commute sup_compl_top)  | 
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
555  | 
|
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
556  | 
lemma compl_unique:  | 
| 
34007
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
557  | 
assumes "x \<sqinter> y = \<bottom>"  | 
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
558  | 
and "x \<squnion> y = \<top>"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
559  | 
shows "- x = y"  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
560  | 
proof -  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
561  | 
have "(x \<sqinter> - x) \<squnion> (- x \<sqinter> y) = (x \<sqinter> y) \<squnion> (- x \<sqinter> y)"  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
562  | 
using inf_compl_bot assms(1) by simp  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
563  | 
then have "(- x \<sqinter> x) \<squnion> (- x \<sqinter> y) = (y \<sqinter> x) \<squnion> (y \<sqinter> - x)"  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
564  | 
by (simp add: inf_commute)  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
565  | 
then have "- x \<sqinter> (x \<squnion> y) = y \<sqinter> (x \<squnion> - x)"  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
566  | 
by (simp add: inf_sup_distrib1)  | 
| 
34007
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
567  | 
then have "- x \<sqinter> \<top> = y \<sqinter> \<top>"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
568  | 
using sup_compl_top assms(2) by simp  | 
| 34209 | 569  | 
then show "- x = y" by simp  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
570  | 
qed  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
571  | 
|
| 63322 | 572  | 
lemma double_compl [simp]: "- (- x) = x"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
573  | 
using compl_inf_bot compl_sup_top by (rule compl_unique)  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
574  | 
|
| 63322 | 575  | 
lemma compl_eq_compl_iff [simp]: "- x = - y \<longleftrightarrow> x = y"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
576  | 
proof  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
577  | 
assume "- x = - y"  | 
| 36008 | 578  | 
then have "- (- x) = - (- y)" by (rule arg_cong)  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
579  | 
then show "x = y" by simp  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
580  | 
next  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
581  | 
assume "x = y"  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
582  | 
then show "- x = - y" by simp  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
583  | 
qed  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
584  | 
|
| 63322 | 585  | 
lemma compl_bot_eq [simp]: "- \<bottom> = \<top>"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
586  | 
proof -  | 
| 
34007
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
587  | 
from sup_compl_top have "\<bottom> \<squnion> - \<bottom> = \<top>" .  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
588  | 
then show ?thesis by simp  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
589  | 
qed  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
590  | 
|
| 63322 | 591  | 
lemma compl_top_eq [simp]: "- \<top> = \<bottom>"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
592  | 
proof -  | 
| 
34007
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
593  | 
from inf_compl_bot have "\<top> \<sqinter> - \<top> = \<bottom>" .  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
594  | 
then show ?thesis by simp  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
595  | 
qed  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
596  | 
|
| 63322 | 597  | 
lemma compl_inf [simp]: "- (x \<sqinter> y) = - x \<squnion> - y"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
598  | 
proof (rule compl_unique)  | 
| 36008 | 599  | 
have "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = (y \<sqinter> (x \<sqinter> - x)) \<squnion> (x \<sqinter> (y \<sqinter> - y))"  | 
600  | 
by (simp only: inf_sup_distrib inf_aci)  | 
|
601  | 
then show "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = \<bottom>"  | 
|
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
602  | 
by (simp add: inf_compl_bot)  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
603  | 
next  | 
| 36008 | 604  | 
have "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = (- y \<squnion> (x \<squnion> - x)) \<sqinter> (- x \<squnion> (y \<squnion> - y))"  | 
605  | 
by (simp only: sup_inf_distrib sup_aci)  | 
|
606  | 
then show "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = \<top>"  | 
|
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
607  | 
by (simp add: sup_compl_top)  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
608  | 
qed  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
609  | 
|
| 63322 | 610  | 
lemma compl_sup [simp]: "- (x \<squnion> y) = - x \<sqinter> - y"  | 
| 44921 | 611  | 
using dual_boolean_algebra  | 
612  | 
by (rule boolean_algebra.compl_inf)  | 
|
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
613  | 
|
| 36008 | 614  | 
lemma compl_mono:  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
615  | 
assumes "x \<le> y"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
616  | 
shows "- y \<le> - x"  | 
| 36008 | 617  | 
proof -  | 
| 63322 | 618  | 
from assms have "x \<squnion> y = y" by (simp only: le_iff_sup)  | 
| 36008 | 619  | 
then have "- (x \<squnion> y) = - y" by simp  | 
620  | 
then have "- x \<sqinter> - y = - y" by simp  | 
|
621  | 
then have "- y \<sqinter> - x = - y" by (simp only: inf_commute)  | 
|
| 63322 | 622  | 
then show ?thesis by (simp only: le_iff_inf)  | 
| 36008 | 623  | 
qed  | 
624  | 
||
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
625  | 
lemma compl_le_compl_iff [simp]: "- x \<le> - y \<longleftrightarrow> y \<le> x"  | 
| 43873 | 626  | 
by (auto dest: compl_mono)  | 
627  | 
||
628  | 
lemma compl_le_swap1:  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
629  | 
assumes "y \<le> - x"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
630  | 
shows "x \<le> -y"  | 
| 43873 | 631  | 
proof -  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
632  | 
from assms have "- (- x) \<le> - y" by (simp only: compl_le_compl_iff)  | 
| 43873 | 633  | 
then show ?thesis by simp  | 
634  | 
qed  | 
|
635  | 
||
636  | 
lemma compl_le_swap2:  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
637  | 
assumes "- y \<le> x"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
638  | 
shows "- x \<le> y"  | 
| 43873 | 639  | 
proof -  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
640  | 
from assms have "- x \<le> - (- y)" by (simp only: compl_le_compl_iff)  | 
| 43873 | 641  | 
then show ?thesis by simp  | 
642  | 
qed  | 
|
643  | 
||
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
644  | 
lemma compl_less_compl_iff: "- x < - y \<longleftrightarrow> y < x" (* TODO: declare [simp] ? *)  | 
| 44919 | 645  | 
by (auto simp add: less_le)  | 
| 43873 | 646  | 
|
647  | 
lemma compl_less_swap1:  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
648  | 
assumes "y < - x"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
649  | 
shows "x < - y"  | 
| 43873 | 650  | 
proof -  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
651  | 
from assms have "- (- x) < - y" by (simp only: compl_less_compl_iff)  | 
| 43873 | 652  | 
then show ?thesis by simp  | 
653  | 
qed  | 
|
654  | 
||
655  | 
lemma compl_less_swap2:  | 
|
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
656  | 
assumes "- y < x"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
657  | 
shows "- x < y"  | 
| 43873 | 658  | 
proof -  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
659  | 
from assms have "- x < - (- y)"  | 
| 63588 | 660  | 
by (simp only: compl_less_compl_iff)  | 
| 43873 | 661  | 
then show ?thesis by simp  | 
662  | 
qed  | 
|
| 36008 | 663  | 
|
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
664  | 
lemma sup_cancel_left1: "sup (sup x a) (sup (- x) b) = top"  | 
| 63322 | 665  | 
by (simp add: inf_sup_aci sup_compl_top)  | 
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
666  | 
|
| 
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
667  | 
lemma sup_cancel_left2: "sup (sup (- x) a) (sup x b) = top"  | 
| 63322 | 668  | 
by (simp add: inf_sup_aci sup_compl_top)  | 
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
669  | 
|
| 
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
670  | 
lemma inf_cancel_left1: "inf (inf x a) (inf (- x) b) = bot"  | 
| 63322 | 671  | 
by (simp add: inf_sup_aci inf_compl_bot)  | 
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
672  | 
|
| 
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
673  | 
lemma inf_cancel_left2: "inf (inf (- x) a) (inf x b) = bot"  | 
| 63322 | 674  | 
by (simp add: inf_sup_aci inf_compl_bot)  | 
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
675  | 
|
| 63588 | 676  | 
declare inf_compl_bot [simp]  | 
677  | 
and sup_compl_top [simp]  | 
|
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
678  | 
|
| 
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
679  | 
lemma sup_compl_top_left1 [simp]: "sup (- x) (sup x y) = top"  | 
| 63322 | 680  | 
by (simp add: sup_assoc[symmetric])  | 
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
681  | 
|
| 
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
682  | 
lemma sup_compl_top_left2 [simp]: "sup x (sup (- x) y) = top"  | 
| 63322 | 683  | 
using sup_compl_top_left1[of "- x" y] by simp  | 
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
684  | 
|
| 
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
685  | 
lemma inf_compl_bot_left1 [simp]: "inf (- x) (inf x y) = bot"  | 
| 63322 | 686  | 
by (simp add: inf_assoc[symmetric])  | 
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
687  | 
|
| 
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
688  | 
lemma inf_compl_bot_left2 [simp]: "inf x (inf (- x) y) = bot"  | 
| 63322 | 689  | 
using inf_compl_bot_left1[of "- x" y] by simp  | 
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
690  | 
|
| 
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
691  | 
lemma inf_compl_bot_right [simp]: "inf x (inf y (- x)) = bot"  | 
| 63322 | 692  | 
by (subst inf_left_commute) simp  | 
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
693  | 
|
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
694  | 
end  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
695  | 
|
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
696  | 
ML_file "Tools/boolean_algebra_cancel.ML"  | 
| 
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
697  | 
|
| 
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
698  | 
simproc_setup boolean_algebra_cancel_sup ("sup a b::'a::boolean_algebra") =
 | 
| 61799 | 699  | 
\<open>fn phi => fn ss => try Boolean_Algebra_Cancel.cancel_sup_conv\<close>  | 
| 
61629
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
700  | 
|
| 
 
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
 
Andreas Lochbihler 
parents: 
61605 
diff
changeset
 | 
701  | 
simproc_setup boolean_algebra_cancel_inf ("inf a b::'a::boolean_algebra") =
 | 
| 61799 | 702  | 
\<open>fn phi => fn ss => try Boolean_Algebra_Cancel.cancel_inf_conv\<close>  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
703  | 
|
| 63322 | 704  | 
|
| 61799 | 705  | 
subsection \<open>\<open>min/max\<close> as special case of lattice\<close>  | 
| 
51540
 
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
 
haftmann 
parents: 
51489 
diff
changeset
 | 
706  | 
|
| 
54861
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
707  | 
context linorder  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
708  | 
begin  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
709  | 
|
| 61605 | 710  | 
sublocale min: semilattice_order min less_eq less  | 
711  | 
+ max: semilattice_order max greater_eq greater  | 
|
| 61169 | 712  | 
by standard (auto simp add: min_def max_def)  | 
| 
51540
 
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
 
haftmann 
parents: 
51489 
diff
changeset
 | 
713  | 
|
| 63322 | 714  | 
lemma min_le_iff_disj: "min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z"  | 
| 
54861
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
715  | 
unfolding min_def using linear by (auto intro: order_trans)  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
716  | 
|
| 63322 | 717  | 
lemma le_max_iff_disj: "z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y"  | 
| 
54861
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
718  | 
unfolding max_def using linear by (auto intro: order_trans)  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
719  | 
|
| 63322 | 720  | 
lemma min_less_iff_disj: "min x y < z \<longleftrightarrow> x < z \<or> y < z"  | 
| 
54861
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
721  | 
unfolding min_def le_less using less_linear by (auto intro: less_trans)  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
722  | 
|
| 63322 | 723  | 
lemma less_max_iff_disj: "z < max x y \<longleftrightarrow> z < x \<or> z < y"  | 
| 
54861
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
724  | 
unfolding max_def le_less using less_linear by (auto intro: less_trans)  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
725  | 
|
| 63322 | 726  | 
lemma min_less_iff_conj [simp]: "z < min x y \<longleftrightarrow> z < x \<and> z < y"  | 
| 
54861
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
727  | 
unfolding min_def le_less using less_linear by (auto intro: less_trans)  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
728  | 
|
| 63322 | 729  | 
lemma max_less_iff_conj [simp]: "max x y < z \<longleftrightarrow> x < z \<and> y < z"  | 
| 
54861
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
730  | 
unfolding max_def le_less using less_linear by (auto intro: less_trans)  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
731  | 
|
| 63322 | 732  | 
lemma min_max_distrib1: "min (max b c) a = max (min b a) (min c a)"  | 
| 54862 | 733  | 
by (auto simp add: min_def max_def not_le dest: le_less_trans less_trans intro: antisym)  | 
734  | 
||
| 63322 | 735  | 
lemma min_max_distrib2: "min a (max b c) = max (min a b) (min a c)"  | 
| 54862 | 736  | 
by (auto simp add: min_def max_def not_le dest: le_less_trans less_trans intro: antisym)  | 
737  | 
||
| 63322 | 738  | 
lemma max_min_distrib1: "max (min b c) a = min (max b a) (max c a)"  | 
| 54862 | 739  | 
by (auto simp add: min_def max_def not_le dest: le_less_trans less_trans intro: antisym)  | 
740  | 
||
| 63322 | 741  | 
lemma max_min_distrib2: "max a (min b c) = min (max a b) (max a c)"  | 
| 54862 | 742  | 
by (auto simp add: min_def max_def not_le dest: le_less_trans less_trans intro: antisym)  | 
743  | 
||
744  | 
lemmas min_max_distribs = min_max_distrib1 min_max_distrib2 max_min_distrib1 max_min_distrib2  | 
|
745  | 
||
| 63322 | 746  | 
lemma split_min [no_atp]: "P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)"  | 
| 
54861
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
747  | 
by (simp add: min_def)  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
748  | 
|
| 63322 | 749  | 
lemma split_max [no_atp]: "P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)"  | 
| 
54861
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
750  | 
by (simp add: max_def)  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
751  | 
|
| 63322 | 752  | 
lemma min_of_mono: "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)" for f :: "'a \<Rightarrow> 'b::linorder"  | 
| 
54861
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
753  | 
by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym)  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
754  | 
|
| 63322 | 755  | 
lemma max_of_mono: "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)" for f :: "'a \<Rightarrow> 'b::linorder"  | 
| 
54861
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
756  | 
by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym)  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
757  | 
|
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
758  | 
end  | 
| 
 
00d551179872
postponed min/max lemmas until abstract lattice is available
 
haftmann 
parents: 
54859 
diff
changeset
 | 
759  | 
|
| 61076 | 760  | 
lemma inf_min: "inf = (min :: 'a::{semilattice_inf,linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 
51540
 
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
 
haftmann 
parents: 
51489 
diff
changeset
 | 
761  | 
by (auto intro: antisym simp add: min_def fun_eq_iff)  | 
| 
 
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
 
haftmann 
parents: 
51489 
diff
changeset
 | 
762  | 
|
| 61076 | 763  | 
lemma sup_max: "sup = (max :: 'a::{semilattice_sup,linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 
51540
 
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
 
haftmann 
parents: 
51489 
diff
changeset
 | 
764  | 
by (auto intro: antisym simp add: max_def fun_eq_iff)  | 
| 
 
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
 
haftmann 
parents: 
51489 
diff
changeset
 | 
765  | 
|
| 
 
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
 
haftmann 
parents: 
51489 
diff
changeset
 | 
766  | 
|
| 60758 | 767  | 
subsection \<open>Uniqueness of inf and sup\<close>  | 
| 22454 | 768  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34973 
diff
changeset
 | 
769  | 
lemma (in semilattice_inf) inf_unique:  | 
| 63322 | 770  | 
fixes f (infixl "\<triangle>" 70)  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
771  | 
assumes le1: "\<And>x y. x \<triangle> y \<le> x"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
772  | 
and le2: "\<And>x y. x \<triangle> y \<le> y"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
773  | 
and greatest: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z"  | 
| 22737 | 774  | 
shows "x \<sqinter> y = x \<triangle> y"  | 
| 22454 | 775  | 
proof (rule antisym)  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
776  | 
show "x \<triangle> y \<le> x \<sqinter> y"  | 
| 63322 | 777  | 
by (rule le_infI) (rule le1, rule le2)  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
778  | 
have leI: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z"  | 
| 63322 | 779  | 
by (blast intro: greatest)  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
780  | 
show "x \<sqinter> y \<le> x \<triangle> y"  | 
| 63322 | 781  | 
by (rule leI) simp_all  | 
| 22454 | 782  | 
qed  | 
783  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34973 
diff
changeset
 | 
784  | 
lemma (in semilattice_sup) sup_unique:  | 
| 63322 | 785  | 
fixes f (infixl "\<nabla>" 70)  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
786  | 
assumes ge1 [simp]: "\<And>x y. x \<le> x \<nabla> y"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
787  | 
and ge2: "\<And>x y. y \<le> x \<nabla> y"  | 
| 
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
788  | 
and least: "\<And>x y z. y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<nabla> z \<le> x"  | 
| 22737 | 789  | 
shows "x \<squnion> y = x \<nabla> y"  | 
| 22454 | 790  | 
proof (rule antisym)  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
791  | 
show "x \<squnion> y \<le> x \<nabla> y"  | 
| 63322 | 792  | 
by (rule le_supI) (rule ge1, rule ge2)  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
793  | 
have leI: "\<And>x y z. x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x \<nabla> y \<le> z"  | 
| 63322 | 794  | 
by (blast intro: least)  | 
| 
63820
 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 
haftmann 
parents: 
63661 
diff
changeset
 | 
795  | 
show "x \<nabla> y \<le> x \<squnion> y"  | 
| 63322 | 796  | 
by (rule leI) simp_all  | 
| 22454 | 797  | 
qed  | 
| 36008 | 798  | 
|
| 22454 | 799  | 
|
| 60758 | 800  | 
subsection \<open>Lattice on @{typ bool}\<close>
 | 
| 22454 | 801  | 
|
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
802  | 
instantiation bool :: boolean_algebra  | 
| 25510 | 803  | 
begin  | 
804  | 
||
| 63322 | 805  | 
definition bool_Compl_def [simp]: "uminus = Not"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
806  | 
|
| 63322 | 807  | 
definition bool_diff_def [simp]: "A - B \<longleftrightarrow> A \<and> \<not> B"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
808  | 
|
| 63322 | 809  | 
definition [simp]: "P \<sqinter> Q \<longleftrightarrow> P \<and> Q"  | 
| 25510 | 810  | 
|
| 63322 | 811  | 
definition [simp]: "P \<squnion> Q \<longleftrightarrow> P \<or> Q"  | 
| 25510 | 812  | 
|
| 63322 | 813  | 
instance by standard auto  | 
| 22454 | 814  | 
|
| 25510 | 815  | 
end  | 
816  | 
||
| 63322 | 817  | 
lemma sup_boolI1: "P \<Longrightarrow> P \<squnion> Q"  | 
| 41080 | 818  | 
by simp  | 
| 32781 | 819  | 
|
| 63322 | 820  | 
lemma sup_boolI2: "Q \<Longrightarrow> P \<squnion> Q"  | 
| 41080 | 821  | 
by simp  | 
| 32781 | 822  | 
|
| 63322 | 823  | 
lemma sup_boolE: "P \<squnion> Q \<Longrightarrow> (P \<Longrightarrow> R) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"  | 
| 41080 | 824  | 
by auto  | 
| 32781 | 825  | 
|
| 23878 | 826  | 
|
| 60758 | 827  | 
subsection \<open>Lattice on @{typ "_ \<Rightarrow> _"}\<close>
 | 
| 23878 | 828  | 
|
| 51387 | 829  | 
instantiation "fun" :: (type, semilattice_sup) semilattice_sup  | 
| 25510 | 830  | 
begin  | 
831  | 
||
| 63322 | 832  | 
definition "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)"  | 
| 41080 | 833  | 
|
| 63322 | 834  | 
lemma sup_apply [simp, code]: "(f \<squnion> g) x = f x \<squnion> g x"  | 
| 41080 | 835  | 
by (simp add: sup_fun_def)  | 
| 25510 | 836  | 
|
| 63588 | 837  | 
instance  | 
838  | 
by standard (simp_all add: le_fun_def)  | 
|
| 23878 | 839  | 
|
| 25510 | 840  | 
end  | 
| 23878 | 841  | 
|
| 51387 | 842  | 
instantiation "fun" :: (type, semilattice_inf) semilattice_inf  | 
843  | 
begin  | 
|
844  | 
||
| 63322 | 845  | 
definition "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)"  | 
| 51387 | 846  | 
|
| 63322 | 847  | 
lemma inf_apply [simp, code]: "(f \<sqinter> g) x = f x \<sqinter> g x"  | 
| 51387 | 848  | 
by (simp add: inf_fun_def)  | 
849  | 
||
| 63322 | 850  | 
instance by standard (simp_all add: le_fun_def)  | 
| 51387 | 851  | 
|
852  | 
end  | 
|
853  | 
||
854  | 
instance "fun" :: (type, lattice) lattice ..  | 
|
855  | 
||
| 63322 | 856  | 
instance "fun" :: (type, distrib_lattice) distrib_lattice  | 
857  | 
by standard (rule ext, simp add: sup_inf_distrib1)  | 
|
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
858  | 
|
| 
34007
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
859  | 
instance "fun" :: (type, bounded_lattice) bounded_lattice ..  | 
| 
 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 
haftmann 
parents: 
32781 
diff
changeset
 | 
860  | 
|
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
861  | 
instantiation "fun" :: (type, uminus) uminus  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
862  | 
begin  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
863  | 
|
| 63322 | 864  | 
definition fun_Compl_def: "- A = (\<lambda>x. - A x)"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
865  | 
|
| 63322 | 866  | 
lemma uminus_apply [simp, code]: "(- A) x = - (A x)"  | 
| 41080 | 867  | 
by (simp add: fun_Compl_def)  | 
868  | 
||
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
869  | 
instance ..  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
870  | 
|
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
871  | 
end  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
872  | 
|
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
873  | 
instantiation "fun" :: (type, minus) minus  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
874  | 
begin  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
875  | 
|
| 63322 | 876  | 
definition fun_diff_def: "A - B = (\<lambda>x. A x - B x)"  | 
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
877  | 
|
| 63322 | 878  | 
lemma minus_apply [simp, code]: "(A - B) x = A x - B x"  | 
| 41080 | 879  | 
by (simp add: fun_diff_def)  | 
880  | 
||
| 
31991
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
881  | 
instance ..  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
882  | 
|
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
883  | 
end  | 
| 
 
37390299214a
added boolean_algebra type class; tuned lattice duals
 
haftmann 
parents: 
30729 
diff
changeset
 | 
884  | 
|
| 63322 | 885  | 
instance "fun" :: (type, boolean_algebra) boolean_algebra  | 
886  | 
by standard (rule ext, simp_all add: inf_compl_bot sup_compl_top diff_eq)+  | 
|
| 26794 | 887  | 
|
| 
46631
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
888  | 
|
| 60758 | 889  | 
subsection \<open>Lattice on unary and binary predicates\<close>  | 
| 
46631
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
890  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
891  | 
lemma inf1I: "A x \<Longrightarrow> B x \<Longrightarrow> (A \<sqinter> B) x"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
892  | 
by (simp add: inf_fun_def)  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
893  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
894  | 
lemma inf2I: "A x y \<Longrightarrow> B x y \<Longrightarrow> (A \<sqinter> B) x y"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
895  | 
by (simp add: inf_fun_def)  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
896  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
897  | 
lemma inf1E: "(A \<sqinter> B) x \<Longrightarrow> (A x \<Longrightarrow> B x \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
898  | 
by (simp add: inf_fun_def)  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
899  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
900  | 
lemma inf2E: "(A \<sqinter> B) x y \<Longrightarrow> (A x y \<Longrightarrow> B x y \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
901  | 
by (simp add: inf_fun_def)  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
902  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
903  | 
lemma inf1D1: "(A \<sqinter> B) x \<Longrightarrow> A x"  | 
| 54857 | 904  | 
by (rule inf1E)  | 
| 
46631
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
905  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
906  | 
lemma inf2D1: "(A \<sqinter> B) x y \<Longrightarrow> A x y"  | 
| 54857 | 907  | 
by (rule inf2E)  | 
| 
46631
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
908  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
909  | 
lemma inf1D2: "(A \<sqinter> B) x \<Longrightarrow> B x"  | 
| 54857 | 910  | 
by (rule inf1E)  | 
| 
46631
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
911  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
912  | 
lemma inf2D2: "(A \<sqinter> B) x y \<Longrightarrow> B x y"  | 
| 54857 | 913  | 
by (rule inf2E)  | 
| 
46631
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
914  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
915  | 
lemma sup1I1: "A x \<Longrightarrow> (A \<squnion> B) x"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
916  | 
by (simp add: sup_fun_def)  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
917  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
918  | 
lemma sup2I1: "A x y \<Longrightarrow> (A \<squnion> B) x y"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
919  | 
by (simp add: sup_fun_def)  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
920  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
921  | 
lemma sup1I2: "B x \<Longrightarrow> (A \<squnion> B) x"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
922  | 
by (simp add: sup_fun_def)  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
923  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
924  | 
lemma sup2I2: "B x y \<Longrightarrow> (A \<squnion> B) x y"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
925  | 
by (simp add: sup_fun_def)  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
926  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
927  | 
lemma sup1E: "(A \<squnion> B) x \<Longrightarrow> (A x \<Longrightarrow> P) \<Longrightarrow> (B x \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
928  | 
by (simp add: sup_fun_def) iprover  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
929  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
930  | 
lemma sup2E: "(A \<squnion> B) x y \<Longrightarrow> (A x y \<Longrightarrow> P) \<Longrightarrow> (B x y \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
931  | 
by (simp add: sup_fun_def) iprover  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
932  | 
|
| 63322 | 933  | 
text \<open> \<^medskip> Classical introduction rule: no commitment to \<open>A\<close> vs \<open>B\<close>.\<close>  | 
| 
46631
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
934  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
935  | 
lemma sup1CI: "(\<not> B x \<Longrightarrow> A x) \<Longrightarrow> (A \<squnion> B) x"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
936  | 
by (auto simp add: sup_fun_def)  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
937  | 
|
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
938  | 
lemma sup2CI: "(\<not> B x y \<Longrightarrow> A x y) \<Longrightarrow> (A \<squnion> B) x y"  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
939  | 
by (auto simp add: sup_fun_def)  | 
| 
 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 
haftmann 
parents: 
46557 
diff
changeset
 | 
940  | 
|
| 21249 | 941  | 
end  |