| author | paulson | 
| Tue, 18 Sep 2007 17:53:37 +0200 | |
| changeset 24632 | 779fc4fcbf8b | 
| parent 24093 | 5d0ecd0c8f3c | 
| child 25481 | aa16cd919dcc | 
| permissions | -rw-r--r-- | 
| 23164 | 1  | 
(* Title: HOL/NatBin.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1999 University of Cambridge  | 
|
5  | 
*)  | 
|
6  | 
||
7  | 
header {* Binary arithmetic for the natural numbers *}
 | 
|
8  | 
||
9  | 
theory NatBin  | 
|
10  | 
imports IntDiv  | 
|
11  | 
begin  | 
|
12  | 
||
13  | 
text {*
 | 
|
14  | 
Arithmetic for naturals is reduced to that for the non-negative integers.  | 
|
15  | 
*}  | 
|
16  | 
||
17  | 
instance nat :: number  | 
|
18  | 
nat_number_of_def [code inline]: "number_of v == nat (number_of (v\<Colon>int))" ..  | 
|
19  | 
||
20  | 
abbreviation (xsymbols)  | 
|
21  | 
  square :: "'a::power => 'a"  ("(_\<twosuperior>)" [1000] 999) where
 | 
|
22  | 
"x\<twosuperior> == x^2"  | 
|
23  | 
||
24  | 
notation (latex output)  | 
|
25  | 
  square  ("(_\<twosuperior>)" [1000] 999)
 | 
|
26  | 
||
27  | 
notation (HTML output)  | 
|
28  | 
  square  ("(_\<twosuperior>)" [1000] 999)
 | 
|
29  | 
||
30  | 
||
31  | 
subsection{*Function @{term nat}: Coercion from Type @{typ int} to @{typ nat}*}
 | 
|
32  | 
||
33  | 
declare nat_0 [simp] nat_1 [simp]  | 
|
34  | 
||
35  | 
lemma nat_number_of [simp]: "nat (number_of w) = number_of w"  | 
|
36  | 
by (simp add: nat_number_of_def)  | 
|
37  | 
||
38  | 
lemma nat_numeral_0_eq_0 [simp]: "Numeral0 = (0::nat)"  | 
|
39  | 
by (simp add: nat_number_of_def)  | 
|
40  | 
||
41  | 
lemma nat_numeral_1_eq_1 [simp]: "Numeral1 = (1::nat)"  | 
|
42  | 
by (simp add: nat_1 nat_number_of_def)  | 
|
43  | 
||
44  | 
lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0"  | 
|
45  | 
by (simp add: nat_numeral_1_eq_1)  | 
|
46  | 
||
47  | 
lemma numeral_2_eq_2: "2 = Suc (Suc 0)"  | 
|
48  | 
apply (unfold nat_number_of_def)  | 
|
49  | 
apply (rule nat_2)  | 
|
50  | 
done  | 
|
51  | 
||
52  | 
||
53  | 
text{*Distributive laws for type @{text nat}.  The others are in theory
 | 
|
54  | 
   @{text IntArith}, but these require div and mod to be defined for type
 | 
|
55  | 
"int". They also need some of the lemmas proved above.*}  | 
|
56  | 
||
57  | 
lemma nat_div_distrib: "(0::int) <= z ==> nat (z div z') = nat z div nat z'"  | 
|
58  | 
apply (case_tac "0 <= z'")  | 
|
59  | 
apply (auto simp add: div_nonneg_neg_le0 DIVISION_BY_ZERO_DIV)  | 
|
60  | 
apply (case_tac "z' = 0", simp add: DIVISION_BY_ZERO)  | 
|
| 23365 | 61  | 
apply (auto elim!: nonneg_eq_int)  | 
| 23164 | 62  | 
apply (rename_tac m m')  | 
| 23365 | 63  | 
apply (subgoal_tac "0 <= int m div int m'")  | 
| 23164 | 64  | 
prefer 2 apply (simp add: nat_numeral_0_eq_0 pos_imp_zdiv_nonneg_iff)  | 
| 
23307
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
65  | 
apply (rule of_nat_eq_iff [where 'a=int, THEN iffD1], simp)  | 
| 23365 | 66  | 
apply (rule_tac r = "int (m mod m') " in quorem_div)  | 
| 23164 | 67  | 
prefer 2 apply force  | 
| 23365 | 68  | 
apply (simp add: nat_less_iff [symmetric] quorem_def nat_numeral_0_eq_0  | 
| 
23307
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
69  | 
of_nat_add [symmetric] of_nat_mult [symmetric]  | 
| 
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
70  | 
del: of_nat_add of_nat_mult)  | 
| 23164 | 71  | 
done  | 
72  | 
||
73  | 
(*Fails if z'<0: the LHS collapses to (nat z) but the RHS doesn't*)  | 
|
74  | 
lemma nat_mod_distrib:  | 
|
75  | 
"[| (0::int) <= z; 0 <= z' |] ==> nat (z mod z') = nat z mod nat z'"  | 
|
76  | 
apply (case_tac "z' = 0", simp add: DIVISION_BY_ZERO)  | 
|
| 23365 | 77  | 
apply (auto elim!: nonneg_eq_int)  | 
| 23164 | 78  | 
apply (rename_tac m m')  | 
| 23365 | 79  | 
apply (subgoal_tac "0 <= int m mod int m'")  | 
80  | 
prefer 2 apply (simp add: nat_less_iff nat_numeral_0_eq_0 pos_mod_sign)  | 
|
81  | 
apply (rule int_int_eq [THEN iffD1], simp)  | 
|
82  | 
apply (rule_tac q = "int (m div m') " in quorem_mod)  | 
|
| 23164 | 83  | 
prefer 2 apply force  | 
| 23365 | 84  | 
apply (simp add: nat_less_iff [symmetric] quorem_def nat_numeral_0_eq_0  | 
| 
23307
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
85  | 
of_nat_add [symmetric] of_nat_mult [symmetric]  | 
| 
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
86  | 
del: of_nat_add of_nat_mult)  | 
| 23164 | 87  | 
done  | 
88  | 
||
89  | 
text{*Suggested by Matthias Daum*}
 | 
|
90  | 
lemma int_div_less_self: "\<lbrakk>0 < x; 1 < k\<rbrakk> \<Longrightarrow> x div k < (x::int)"  | 
|
91  | 
apply (subgoal_tac "nat x div nat k < nat x")  | 
|
92  | 
apply (simp (asm_lr) add: nat_div_distrib [symmetric])  | 
|
93  | 
apply (rule Divides.div_less_dividend, simp_all)  | 
|
94  | 
done  | 
|
95  | 
||
96  | 
subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*}
 | 
|
97  | 
||
98  | 
(*"neg" is used in rewrite rules for binary comparisons*)  | 
|
99  | 
lemma int_nat_number_of [simp]:  | 
|
| 23365 | 100  | 
"int (number_of v) =  | 
| 
23307
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
101  | 
(if neg (number_of v :: int) then 0  | 
| 
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
102  | 
else (number_of v :: int))"  | 
| 
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
103  | 
by (simp del: nat_number_of  | 
| 
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
104  | 
add: neg_nat nat_number_of_def not_neg_nat add_assoc)  | 
| 
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
105  | 
|
| 23164 | 106  | 
|
107  | 
subsubsection{*Successor *}
 | 
|
108  | 
||
109  | 
lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)"  | 
|
110  | 
apply (rule sym)  | 
|
111  | 
apply (simp add: nat_eq_iff int_Suc)  | 
|
112  | 
done  | 
|
113  | 
||
114  | 
lemma Suc_nat_number_of_add:  | 
|
115  | 
"Suc (number_of v + n) =  | 
|
116  | 
(if neg (number_of v :: int) then 1+n else number_of (Numeral.succ v) + n)"  | 
|
117  | 
by (simp del: nat_number_of  | 
|
118  | 
add: nat_number_of_def neg_nat  | 
|
119  | 
Suc_nat_eq_nat_zadd1 number_of_succ)  | 
|
120  | 
||
121  | 
lemma Suc_nat_number_of [simp]:  | 
|
122  | 
"Suc (number_of v) =  | 
|
123  | 
(if neg (number_of v :: int) then 1 else number_of (Numeral.succ v))"  | 
|
124  | 
apply (cut_tac n = 0 in Suc_nat_number_of_add)  | 
|
125  | 
apply (simp cong del: if_weak_cong)  | 
|
126  | 
done  | 
|
127  | 
||
128  | 
||
129  | 
subsubsection{*Addition *}
 | 
|
130  | 
||
131  | 
(*"neg" is used in rewrite rules for binary comparisons*)  | 
|
132  | 
lemma add_nat_number_of [simp]:  | 
|
133  | 
"(number_of v :: nat) + number_of v' =  | 
|
134  | 
(if neg (number_of v :: int) then number_of v'  | 
|
135  | 
else if neg (number_of v' :: int) then number_of v  | 
|
136  | 
else number_of (v + v'))"  | 
|
137  | 
by (force dest!: neg_nat  | 
|
138  | 
simp del: nat_number_of  | 
|
139  | 
simp add: nat_number_of_def nat_add_distrib [symmetric])  | 
|
140  | 
||
141  | 
||
142  | 
subsubsection{*Subtraction *}
 | 
|
143  | 
||
144  | 
lemma diff_nat_eq_if:  | 
|
145  | 
"nat z - nat z' =  | 
|
146  | 
(if neg z' then nat z  | 
|
147  | 
else let d = z-z' in  | 
|
148  | 
if neg d then 0 else nat d)"  | 
|
149  | 
apply (simp add: Let_def nat_diff_distrib [symmetric] neg_eq_less_0 not_neg_eq_ge_0)  | 
|
150  | 
done  | 
|
151  | 
||
152  | 
lemma diff_nat_number_of [simp]:  | 
|
153  | 
"(number_of v :: nat) - number_of v' =  | 
|
154  | 
(if neg (number_of v' :: int) then number_of v  | 
|
155  | 
else let d = number_of (v + uminus v') in  | 
|
156  | 
if neg d then 0 else nat d)"  | 
|
157  | 
by (simp del: nat_number_of add: diff_nat_eq_if nat_number_of_def)  | 
|
158  | 
||
159  | 
||
160  | 
||
161  | 
subsubsection{*Multiplication *}
 | 
|
162  | 
||
163  | 
lemma mult_nat_number_of [simp]:  | 
|
164  | 
"(number_of v :: nat) * number_of v' =  | 
|
165  | 
(if neg (number_of v :: int) then 0 else number_of (v * v'))"  | 
|
166  | 
by (force dest!: neg_nat  | 
|
167  | 
simp del: nat_number_of  | 
|
168  | 
simp add: nat_number_of_def nat_mult_distrib [symmetric])  | 
|
169  | 
||
170  | 
||
171  | 
||
172  | 
subsubsection{*Quotient *}
 | 
|
173  | 
||
174  | 
lemma div_nat_number_of [simp]:  | 
|
175  | 
"(number_of v :: nat) div number_of v' =  | 
|
176  | 
(if neg (number_of v :: int) then 0  | 
|
177  | 
else nat (number_of v div number_of v'))"  | 
|
178  | 
by (force dest!: neg_nat  | 
|
179  | 
simp del: nat_number_of  | 
|
180  | 
simp add: nat_number_of_def nat_div_distrib [symmetric])  | 
|
181  | 
||
182  | 
lemma one_div_nat_number_of [simp]:  | 
|
183  | 
"(Suc 0) div number_of v' = (nat (1 div number_of v'))"  | 
|
184  | 
by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric])  | 
|
185  | 
||
186  | 
||
187  | 
subsubsection{*Remainder *}
 | 
|
188  | 
||
189  | 
lemma mod_nat_number_of [simp]:  | 
|
190  | 
"(number_of v :: nat) mod number_of v' =  | 
|
191  | 
(if neg (number_of v :: int) then 0  | 
|
192  | 
else if neg (number_of v' :: int) then number_of v  | 
|
193  | 
else nat (number_of v mod number_of v'))"  | 
|
194  | 
by (force dest!: neg_nat  | 
|
195  | 
simp del: nat_number_of  | 
|
196  | 
simp add: nat_number_of_def nat_mod_distrib [symmetric])  | 
|
197  | 
||
198  | 
lemma one_mod_nat_number_of [simp]:  | 
|
199  | 
"(Suc 0) mod number_of v' =  | 
|
200  | 
(if neg (number_of v' :: int) then Suc 0  | 
|
201  | 
else nat (1 mod number_of v'))"  | 
|
202  | 
by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric])  | 
|
203  | 
||
204  | 
||
205  | 
subsubsection{* Divisibility *}
 | 
|
206  | 
||
207  | 
lemmas dvd_eq_mod_eq_0_number_of =  | 
|
208  | 
dvd_eq_mod_eq_0 [of "number_of x" "number_of y", standard]  | 
|
209  | 
||
210  | 
declare dvd_eq_mod_eq_0_number_of [simp]  | 
|
211  | 
||
212  | 
ML  | 
|
213  | 
{*
 | 
|
214  | 
val nat_number_of_def = thm"nat_number_of_def";  | 
|
215  | 
||
216  | 
val nat_number_of = thm"nat_number_of";  | 
|
217  | 
val nat_numeral_0_eq_0 = thm"nat_numeral_0_eq_0";  | 
|
218  | 
val nat_numeral_1_eq_1 = thm"nat_numeral_1_eq_1";  | 
|
219  | 
val numeral_1_eq_Suc_0 = thm"numeral_1_eq_Suc_0";  | 
|
220  | 
val numeral_2_eq_2 = thm"numeral_2_eq_2";  | 
|
221  | 
val nat_div_distrib = thm"nat_div_distrib";  | 
|
222  | 
val nat_mod_distrib = thm"nat_mod_distrib";  | 
|
223  | 
val int_nat_number_of = thm"int_nat_number_of";  | 
|
224  | 
val Suc_nat_eq_nat_zadd1 = thm"Suc_nat_eq_nat_zadd1";  | 
|
225  | 
val Suc_nat_number_of_add = thm"Suc_nat_number_of_add";  | 
|
226  | 
val Suc_nat_number_of = thm"Suc_nat_number_of";  | 
|
227  | 
val add_nat_number_of = thm"add_nat_number_of";  | 
|
228  | 
val diff_nat_eq_if = thm"diff_nat_eq_if";  | 
|
229  | 
val diff_nat_number_of = thm"diff_nat_number_of";  | 
|
230  | 
val mult_nat_number_of = thm"mult_nat_number_of";  | 
|
231  | 
val div_nat_number_of = thm"div_nat_number_of";  | 
|
232  | 
val mod_nat_number_of = thm"mod_nat_number_of";  | 
|
233  | 
*}  | 
|
234  | 
||
235  | 
||
236  | 
subsection{*Comparisons*}
 | 
|
237  | 
||
238  | 
subsubsection{*Equals (=) *}
 | 
|
239  | 
||
240  | 
lemma eq_nat_nat_iff:  | 
|
241  | 
"[| (0::int) <= z; 0 <= z' |] ==> (nat z = nat z') = (z=z')"  | 
|
242  | 
by (auto elim!: nonneg_eq_int)  | 
|
243  | 
||
244  | 
(*"neg" is used in rewrite rules for binary comparisons*)  | 
|
245  | 
lemma eq_nat_number_of [simp]:  | 
|
246  | 
"((number_of v :: nat) = number_of v') =  | 
|
247  | 
(if neg (number_of v :: int) then (iszero (number_of v' :: int) | neg (number_of v' :: int))  | 
|
248  | 
else if neg (number_of v' :: int) then iszero (number_of v :: int)  | 
|
249  | 
else iszero (number_of (v + uminus v') :: int))"  | 
|
250  | 
apply (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def  | 
|
251  | 
eq_nat_nat_iff eq_number_of_eq nat_0 iszero_def  | 
|
252  | 
split add: split_if cong add: imp_cong)  | 
|
253  | 
apply (simp only: nat_eq_iff nat_eq_iff2)  | 
|
254  | 
apply (simp add: not_neg_eq_ge_0 [symmetric])  | 
|
255  | 
done  | 
|
256  | 
||
257  | 
||
258  | 
subsubsection{*Less-than (<) *}
 | 
|
259  | 
||
260  | 
(*"neg" is used in rewrite rules for binary comparisons*)  | 
|
261  | 
lemma less_nat_number_of [simp]:  | 
|
262  | 
"((number_of v :: nat) < number_of v') =  | 
|
263  | 
(if neg (number_of v :: int) then neg (number_of (uminus v') :: int)  | 
|
264  | 
else neg (number_of (v + uminus v') :: int))"  | 
|
265  | 
by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def  | 
|
266  | 
nat_less_eq_zless less_number_of_eq_neg zless_nat_eq_int_zless  | 
|
267  | 
cong add: imp_cong, simp add: Pls_def)  | 
|
268  | 
||
269  | 
||
270  | 
(*Maps #n to n for n = 0, 1, 2*)  | 
|
271  | 
lemmas numerals = nat_numeral_0_eq_0 nat_numeral_1_eq_1 numeral_2_eq_2  | 
|
272  | 
||
273  | 
||
274  | 
subsection{*Powers with Numeric Exponents*}
 | 
|
275  | 
||
276  | 
text{*We cannot refer to the number @{term 2} in @{text Ring_and_Field.thy}.
 | 
|
277  | 
We cannot prove general results about the numeral @{term "-1"}, so we have to
 | 
|
278  | 
use @{term "- 1"} instead.*}
 | 
|
279  | 
||
| 23277 | 280  | 
lemma power2_eq_square: "(a::'a::recpower)\<twosuperior> = a * a"  | 
| 23164 | 281  | 
by (simp add: numeral_2_eq_2 Power.power_Suc)  | 
282  | 
||
| 23277 | 283  | 
lemma zero_power2 [simp]: "(0::'a::{semiring_1,recpower})\<twosuperior> = 0"
 | 
| 23164 | 284  | 
by (simp add: power2_eq_square)  | 
285  | 
||
| 23277 | 286  | 
lemma one_power2 [simp]: "(1::'a::{semiring_1,recpower})\<twosuperior> = 1"
 | 
| 23164 | 287  | 
by (simp add: power2_eq_square)  | 
288  | 
||
289  | 
lemma power3_eq_cube: "(x::'a::recpower) ^ 3 = x * x * x"  | 
|
290  | 
apply (subgoal_tac "3 = Suc (Suc (Suc 0))")  | 
|
291  | 
apply (erule ssubst)  | 
|
292  | 
apply (simp add: power_Suc mult_ac)  | 
|
293  | 
apply (unfold nat_number_of_def)  | 
|
294  | 
apply (subst nat_eq_iff)  | 
|
295  | 
apply simp  | 
|
296  | 
done  | 
|
297  | 
||
298  | 
text{*Squares of literal numerals will be evaluated.*}
 | 
|
299  | 
lemmas power2_eq_square_number_of =  | 
|
300  | 
power2_eq_square [of "number_of w", standard]  | 
|
301  | 
declare power2_eq_square_number_of [simp]  | 
|
302  | 
||
303  | 
||
304  | 
lemma zero_le_power2[simp]: "0 \<le> (a\<twosuperior>::'a::{ordered_idom,recpower})"
 | 
|
305  | 
by (simp add: power2_eq_square)  | 
|
306  | 
||
307  | 
lemma zero_less_power2[simp]:  | 
|
308  | 
     "(0 < a\<twosuperior>) = (a \<noteq> (0::'a::{ordered_idom,recpower}))"
 | 
|
309  | 
by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff)  | 
|
310  | 
||
311  | 
lemma power2_less_0[simp]:  | 
|
312  | 
  fixes a :: "'a::{ordered_idom,recpower}"
 | 
|
313  | 
shows "~ (a\<twosuperior> < 0)"  | 
|
314  | 
by (force simp add: power2_eq_square mult_less_0_iff)  | 
|
315  | 
||
316  | 
lemma zero_eq_power2[simp]:  | 
|
317  | 
     "(a\<twosuperior> = 0) = (a = (0::'a::{ordered_idom,recpower}))"
 | 
|
318  | 
by (force simp add: power2_eq_square mult_eq_0_iff)  | 
|
319  | 
||
320  | 
lemma abs_power2[simp]:  | 
|
321  | 
     "abs(a\<twosuperior>) = (a\<twosuperior>::'a::{ordered_idom,recpower})"
 | 
|
322  | 
by (simp add: power2_eq_square abs_mult abs_mult_self)  | 
|
323  | 
||
324  | 
lemma power2_abs[simp]:  | 
|
325  | 
     "(abs a)\<twosuperior> = (a\<twosuperior>::'a::{ordered_idom,recpower})"
 | 
|
326  | 
by (simp add: power2_eq_square abs_mult_self)  | 
|
327  | 
||
328  | 
lemma power2_minus[simp]:  | 
|
329  | 
     "(- a)\<twosuperior> = (a\<twosuperior>::'a::{comm_ring_1,recpower})"
 | 
|
330  | 
by (simp add: power2_eq_square)  | 
|
331  | 
||
332  | 
lemma power2_le_imp_le:  | 
|
333  | 
  fixes x y :: "'a::{ordered_semidom,recpower}"
 | 
|
334  | 
shows "\<lbrakk>x\<twosuperior> \<le> y\<twosuperior>; 0 \<le> y\<rbrakk> \<Longrightarrow> x \<le> y"  | 
|
335  | 
unfolding numeral_2_eq_2 by (rule power_le_imp_le_base)  | 
|
336  | 
||
337  | 
lemma power2_less_imp_less:  | 
|
338  | 
  fixes x y :: "'a::{ordered_semidom,recpower}"
 | 
|
339  | 
shows "\<lbrakk>x\<twosuperior> < y\<twosuperior>; 0 \<le> y\<rbrakk> \<Longrightarrow> x < y"  | 
|
340  | 
by (rule power_less_imp_less_base)  | 
|
341  | 
||
342  | 
lemma power2_eq_imp_eq:  | 
|
343  | 
  fixes x y :: "'a::{ordered_semidom,recpower}"
 | 
|
344  | 
shows "\<lbrakk>x\<twosuperior> = y\<twosuperior>; 0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> x = y"  | 
|
345  | 
unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base, simp)  | 
|
346  | 
||
347  | 
lemma power_minus1_even[simp]: "(- 1) ^ (2*n) = (1::'a::{comm_ring_1,recpower})"
 | 
|
348  | 
apply (induct "n")  | 
|
349  | 
apply (auto simp add: power_Suc power_add)  | 
|
350  | 
done  | 
|
351  | 
||
352  | 
lemma power_even_eq: "(a::'a::recpower) ^ (2*n) = (a^n)^2"  | 
|
353  | 
by (subst mult_commute) (simp add: power_mult)  | 
|
354  | 
||
355  | 
lemma power_odd_eq: "(a::int) ^ Suc(2*n) = a * (a^n)^2"  | 
|
356  | 
by (simp add: power_even_eq)  | 
|
357  | 
||
358  | 
lemma power_minus_even [simp]:  | 
|
359  | 
     "(-a) ^ (2*n) = (a::'a::{comm_ring_1,recpower}) ^ (2*n)"
 | 
|
360  | 
by (simp add: power_minus1_even power_minus [of a])  | 
|
361  | 
||
362  | 
lemma zero_le_even_power'[simp]:  | 
|
363  | 
     "0 \<le> (a::'a::{ordered_idom,recpower}) ^ (2*n)"
 | 
|
364  | 
proof (induct "n")  | 
|
365  | 
case 0  | 
|
366  | 
show ?case by (simp add: zero_le_one)  | 
|
367  | 
next  | 
|
368  | 
case (Suc n)  | 
|
369  | 
have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)"  | 
|
370  | 
by (simp add: mult_ac power_add power2_eq_square)  | 
|
371  | 
thus ?case  | 
|
372  | 
by (simp add: prems zero_le_mult_iff)  | 
|
373  | 
qed  | 
|
374  | 
||
375  | 
lemma odd_power_less_zero:  | 
|
376  | 
     "(a::'a::{ordered_idom,recpower}) < 0 ==> a ^ Suc(2*n) < 0"
 | 
|
377  | 
proof (induct "n")  | 
|
378  | 
case 0  | 
|
| 23389 | 379  | 
then show ?case by (simp add: Power.power_Suc)  | 
| 23164 | 380  | 
next  | 
381  | 
case (Suc n)  | 
|
| 23389 | 382  | 
have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)"  | 
383  | 
by (simp add: mult_ac power_add power2_eq_square Power.power_Suc)  | 
|
384  | 
thus ?case  | 
|
385  | 
by (simp add: prems mult_less_0_iff mult_neg_neg)  | 
|
| 23164 | 386  | 
qed  | 
387  | 
||
388  | 
lemma odd_0_le_power_imp_0_le:  | 
|
389  | 
     "0 \<le> a  ^ Suc(2*n) ==> 0 \<le> (a::'a::{ordered_idom,recpower})"
 | 
|
390  | 
apply (insert odd_power_less_zero [of a n])  | 
|
391  | 
apply (force simp add: linorder_not_less [symmetric])  | 
|
392  | 
done  | 
|
393  | 
||
394  | 
text{*Simprules for comparisons where common factors can be cancelled.*}
 | 
|
395  | 
lemmas zero_compare_simps =  | 
|
396  | 
add_strict_increasing add_strict_increasing2 add_increasing  | 
|
397  | 
zero_le_mult_iff zero_le_divide_iff  | 
|
398  | 
zero_less_mult_iff zero_less_divide_iff  | 
|
399  | 
mult_le_0_iff divide_le_0_iff  | 
|
400  | 
mult_less_0_iff divide_less_0_iff  | 
|
401  | 
zero_le_power2 power2_less_0  | 
|
402  | 
||
403  | 
subsubsection{*Nat *}
 | 
|
404  | 
||
405  | 
lemma Suc_pred': "0 < n ==> n = Suc(n - 1)"  | 
|
406  | 
by (simp add: numerals)  | 
|
407  | 
||
408  | 
(*Expresses a natural number constant as the Suc of another one.  | 
|
409  | 
NOT suitable for rewriting because n recurs in the condition.*)  | 
|
410  | 
lemmas expand_Suc = Suc_pred' [of "number_of v", standard]  | 
|
411  | 
||
412  | 
subsubsection{*Arith *}
 | 
|
413  | 
||
414  | 
lemma Suc_eq_add_numeral_1: "Suc n = n + 1"  | 
|
415  | 
by (simp add: numerals)  | 
|
416  | 
||
417  | 
lemma Suc_eq_add_numeral_1_left: "Suc n = 1 + n"  | 
|
418  | 
by (simp add: numerals)  | 
|
419  | 
||
420  | 
(* These two can be useful when m = number_of... *)  | 
|
421  | 
||
422  | 
lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))"  | 
|
423  | 
apply (case_tac "m")  | 
|
424  | 
apply (simp_all add: numerals)  | 
|
425  | 
done  | 
|
426  | 
||
427  | 
lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))"  | 
|
428  | 
apply (case_tac "m")  | 
|
429  | 
apply (simp_all add: numerals)  | 
|
430  | 
done  | 
|
431  | 
||
432  | 
lemma power_eq_if: "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))"  | 
|
433  | 
apply (case_tac "m")  | 
|
434  | 
apply (simp_all add: numerals)  | 
|
435  | 
done  | 
|
436  | 
||
437  | 
||
438  | 
subsection{*Comparisons involving (0::nat) *}
 | 
|
439  | 
||
440  | 
text{*Simplification already does @{term "n<0"}, @{term "n\<le>0"} and @{term "0\<le>n"}.*}
 | 
|
441  | 
||
442  | 
lemma eq_number_of_0 [simp]:  | 
|
443  | 
"(number_of v = (0::nat)) =  | 
|
444  | 
(if neg (number_of v :: int) then True else iszero (number_of v :: int))"  | 
|
445  | 
by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] iszero_0)  | 
|
446  | 
||
447  | 
lemma eq_0_number_of [simp]:  | 
|
448  | 
"((0::nat) = number_of v) =  | 
|
449  | 
(if neg (number_of v :: int) then True else iszero (number_of v :: int))"  | 
|
450  | 
by (rule trans [OF eq_sym_conv eq_number_of_0])  | 
|
451  | 
||
452  | 
lemma less_0_number_of [simp]:  | 
|
453  | 
"((0::nat) < number_of v) = neg (number_of (uminus v) :: int)"  | 
|
454  | 
by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] Pls_def)  | 
|
455  | 
||
456  | 
||
457  | 
lemma neg_imp_number_of_eq_0: "neg (number_of v :: int) ==> number_of v = (0::nat)"  | 
|
458  | 
by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] iszero_0)  | 
|
459  | 
||
460  | 
||
461  | 
||
462  | 
subsection{*Comparisons involving  @{term Suc} *}
 | 
|
463  | 
||
464  | 
lemma eq_number_of_Suc [simp]:  | 
|
465  | 
"(number_of v = Suc n) =  | 
|
466  | 
(let pv = number_of (Numeral.pred v) in  | 
|
467  | 
if neg pv then False else nat pv = n)"  | 
|
468  | 
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less  | 
|
469  | 
number_of_pred nat_number_of_def  | 
|
470  | 
split add: split_if)  | 
|
471  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
472  | 
apply (auto simp add: nat_eq_iff)  | 
|
473  | 
done  | 
|
474  | 
||
475  | 
lemma Suc_eq_number_of [simp]:  | 
|
476  | 
"(Suc n = number_of v) =  | 
|
477  | 
(let pv = number_of (Numeral.pred v) in  | 
|
478  | 
if neg pv then False else nat pv = n)"  | 
|
479  | 
by (rule trans [OF eq_sym_conv eq_number_of_Suc])  | 
|
480  | 
||
481  | 
lemma less_number_of_Suc [simp]:  | 
|
482  | 
"(number_of v < Suc n) =  | 
|
483  | 
(let pv = number_of (Numeral.pred v) in  | 
|
484  | 
if neg pv then True else nat pv < n)"  | 
|
485  | 
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less  | 
|
486  | 
number_of_pred nat_number_of_def  | 
|
487  | 
split add: split_if)  | 
|
488  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
489  | 
apply (auto simp add: nat_less_iff)  | 
|
490  | 
done  | 
|
491  | 
||
492  | 
lemma less_Suc_number_of [simp]:  | 
|
493  | 
"(Suc n < number_of v) =  | 
|
494  | 
(let pv = number_of (Numeral.pred v) in  | 
|
495  | 
if neg pv then False else n < nat pv)"  | 
|
496  | 
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less  | 
|
497  | 
number_of_pred nat_number_of_def  | 
|
498  | 
split add: split_if)  | 
|
499  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
500  | 
apply (auto simp add: zless_nat_eq_int_zless)  | 
|
501  | 
done  | 
|
502  | 
||
503  | 
lemma le_number_of_Suc [simp]:  | 
|
504  | 
"(number_of v <= Suc n) =  | 
|
505  | 
(let pv = number_of (Numeral.pred v) in  | 
|
506  | 
if neg pv then True else nat pv <= n)"  | 
|
507  | 
by (simp add: Let_def less_Suc_number_of linorder_not_less [symmetric])  | 
|
508  | 
||
509  | 
lemma le_Suc_number_of [simp]:  | 
|
510  | 
"(Suc n <= number_of v) =  | 
|
511  | 
(let pv = number_of (Numeral.pred v) in  | 
|
512  | 
if neg pv then False else n <= nat pv)"  | 
|
513  | 
by (simp add: Let_def less_number_of_Suc linorder_not_less [symmetric])  | 
|
514  | 
||
515  | 
||
516  | 
lemma lemma1: "(m+m = n+n) = (m = (n::int))"  | 
|
517  | 
by auto  | 
|
518  | 
||
519  | 
lemma lemma2: "m+m ~= (1::int) + (n + n)"  | 
|
520  | 
apply auto  | 
|
521  | 
apply (drule_tac f = "%x. x mod 2" in arg_cong)  | 
|
522  | 
apply (simp add: zmod_zadd1_eq)  | 
|
523  | 
done  | 
|
524  | 
||
525  | 
lemma eq_number_of_BIT_BIT:  | 
|
526  | 
"((number_of (v BIT x) ::int) = number_of (w BIT y)) =  | 
|
527  | 
(x=y & (((number_of v) ::int) = number_of w))"  | 
|
528  | 
apply (simp only: number_of_BIT lemma1 lemma2 eq_commute  | 
|
529  | 
OrderedGroup.add_left_cancel add_assoc OrderedGroup.add_0_left  | 
|
530  | 
split add: bit.split)  | 
|
531  | 
apply simp  | 
|
532  | 
done  | 
|
533  | 
||
534  | 
lemma eq_number_of_BIT_Pls:  | 
|
535  | 
"((number_of (v BIT x) ::int) = Numeral0) =  | 
|
536  | 
(x=bit.B0 & (((number_of v) ::int) = Numeral0))"  | 
|
537  | 
apply (simp only: simp_thms add: number_of_BIT number_of_Pls eq_commute  | 
|
538  | 
split add: bit.split cong: imp_cong)  | 
|
539  | 
apply (rule_tac x = "number_of v" in spec, safe)  | 
|
540  | 
apply (simp_all (no_asm_use))  | 
|
541  | 
apply (drule_tac f = "%x. x mod 2" in arg_cong)  | 
|
542  | 
apply (simp add: zmod_zadd1_eq)  | 
|
543  | 
done  | 
|
544  | 
||
545  | 
lemma eq_number_of_BIT_Min:  | 
|
546  | 
"((number_of (v BIT x) ::int) = number_of Numeral.Min) =  | 
|
547  | 
(x=bit.B1 & (((number_of v) ::int) = number_of Numeral.Min))"  | 
|
548  | 
apply (simp only: simp_thms add: number_of_BIT number_of_Min eq_commute  | 
|
549  | 
split add: bit.split cong: imp_cong)  | 
|
550  | 
apply (rule_tac x = "number_of v" in spec, auto)  | 
|
551  | 
apply (drule_tac f = "%x. x mod 2" in arg_cong, auto)  | 
|
552  | 
done  | 
|
553  | 
||
554  | 
lemma eq_number_of_Pls_Min: "(Numeral0 ::int) ~= number_of Numeral.Min"  | 
|
555  | 
by auto  | 
|
556  | 
||
557  | 
||
558  | 
||
559  | 
subsection{*Max and Min Combined with @{term Suc} *}
 | 
|
560  | 
||
561  | 
lemma max_number_of_Suc [simp]:  | 
|
562  | 
"max (Suc n) (number_of v) =  | 
|
563  | 
(let pv = number_of (Numeral.pred v) in  | 
|
564  | 
if neg pv then Suc n else Suc(max n (nat pv)))"  | 
|
565  | 
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def  | 
|
566  | 
split add: split_if nat.split)  | 
|
567  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
568  | 
apply auto  | 
|
569  | 
done  | 
|
570  | 
||
571  | 
lemma max_Suc_number_of [simp]:  | 
|
572  | 
"max (number_of v) (Suc n) =  | 
|
573  | 
(let pv = number_of (Numeral.pred v) in  | 
|
574  | 
if neg pv then Suc n else Suc(max (nat pv) n))"  | 
|
575  | 
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def  | 
|
576  | 
split add: split_if nat.split)  | 
|
577  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
578  | 
apply auto  | 
|
579  | 
done  | 
|
580  | 
||
581  | 
lemma min_number_of_Suc [simp]:  | 
|
582  | 
"min (Suc n) (number_of v) =  | 
|
583  | 
(let pv = number_of (Numeral.pred v) in  | 
|
584  | 
if neg pv then 0 else Suc(min n (nat pv)))"  | 
|
585  | 
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def  | 
|
586  | 
split add: split_if nat.split)  | 
|
587  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
588  | 
apply auto  | 
|
589  | 
done  | 
|
590  | 
||
591  | 
lemma min_Suc_number_of [simp]:  | 
|
592  | 
"min (number_of v) (Suc n) =  | 
|
593  | 
(let pv = number_of (Numeral.pred v) in  | 
|
594  | 
if neg pv then 0 else Suc(min (nat pv) n))"  | 
|
595  | 
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def  | 
|
596  | 
split add: split_if nat.split)  | 
|
597  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
598  | 
apply auto  | 
|
599  | 
done  | 
|
600  | 
||
601  | 
subsection{*Literal arithmetic involving powers*}
 | 
|
602  | 
||
603  | 
lemma nat_power_eq: "(0::int) <= z ==> nat (z^n) = nat z ^ n"  | 
|
604  | 
apply (induct "n")  | 
|
605  | 
apply (simp_all (no_asm_simp) add: nat_mult_distrib)  | 
|
606  | 
done  | 
|
607  | 
||
608  | 
lemma power_nat_number_of:  | 
|
609  | 
"(number_of v :: nat) ^ n =  | 
|
610  | 
(if neg (number_of v :: int) then 0^n else nat ((number_of v :: int) ^ n))"  | 
|
611  | 
by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def nat_power_eq  | 
|
612  | 
split add: split_if cong: imp_cong)  | 
|
613  | 
||
614  | 
||
615  | 
lemmas power_nat_number_of_number_of = power_nat_number_of [of _ "number_of w", standard]  | 
|
616  | 
declare power_nat_number_of_number_of [simp]  | 
|
617  | 
||
618  | 
||
619  | 
||
| 23294 | 620  | 
text{*For arbitrary rings*}
 | 
| 23164 | 621  | 
|
| 23294 | 622  | 
lemma power_number_of_even:  | 
623  | 
  fixes z :: "'a::{number_ring,recpower}"
 | 
|
624  | 
shows "z ^ number_of (w BIT bit.B0) = (let w = z ^ (number_of w) in w * w)"  | 
|
| 23164 | 625  | 
unfolding Let_def nat_number_of_def number_of_BIT bit.cases  | 
626  | 
apply (rule_tac x = "number_of w" in spec, clarify)  | 
|
627  | 
apply (case_tac " (0::int) <= x")  | 
|
628  | 
apply (auto simp add: nat_mult_distrib power_even_eq power2_eq_square)  | 
|
629  | 
done  | 
|
630  | 
||
| 23294 | 631  | 
lemma power_number_of_odd:  | 
632  | 
  fixes z :: "'a::{number_ring,recpower}"
 | 
|
633  | 
shows "z ^ number_of (w BIT bit.B1) = (if (0::int) <= number_of w  | 
|
| 23164 | 634  | 
then (let w = z ^ (number_of w) in z * w * w) else 1)"  | 
635  | 
unfolding Let_def nat_number_of_def number_of_BIT bit.cases  | 
|
636  | 
apply (rule_tac x = "number_of w" in spec, auto)  | 
|
637  | 
apply (simp only: nat_add_distrib nat_mult_distrib)  | 
|
638  | 
apply simp  | 
|
| 23294 | 639  | 
apply (auto simp add: nat_add_distrib nat_mult_distrib power_even_eq power2_eq_square neg_nat power_Suc)  | 
| 23164 | 640  | 
done  | 
641  | 
||
| 23294 | 642  | 
lemmas zpower_number_of_even = power_number_of_even [where 'a=int]  | 
643  | 
lemmas zpower_number_of_odd = power_number_of_odd [where 'a=int]  | 
|
| 23164 | 644  | 
|
| 23294 | 645  | 
lemmas power_number_of_even_number_of [simp] =  | 
646  | 
power_number_of_even [of "number_of v", standard]  | 
|
| 23164 | 647  | 
|
| 23294 | 648  | 
lemmas power_number_of_odd_number_of [simp] =  | 
649  | 
power_number_of_odd [of "number_of v", standard]  | 
|
| 23164 | 650  | 
|
651  | 
||
652  | 
||
653  | 
ML  | 
|
654  | 
{*
 | 
|
655  | 
val numerals = thms"numerals";  | 
|
656  | 
val numeral_ss = simpset() addsimps numerals;  | 
|
657  | 
||
658  | 
val nat_bin_arith_setup =  | 
|
| 24093 | 659  | 
LinArith.map_data  | 
| 23164 | 660  | 
   (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} =>
 | 
661  | 
     {add_mono_thms = add_mono_thms, mult_mono_thms = mult_mono_thms,
 | 
|
662  | 
inj_thms = inj_thms,  | 
|
663  | 
lessD = lessD, neqE = neqE,  | 
|
664  | 
simpset = simpset addsimps [Suc_nat_number_of, int_nat_number_of,  | 
|
665  | 
not_neg_number_of_Pls,  | 
|
666  | 
neg_number_of_Min,neg_number_of_BIT]})  | 
|
667  | 
*}  | 
|
668  | 
||
| 24075 | 669  | 
declaration {* K nat_bin_arith_setup *}
 | 
| 23164 | 670  | 
|
671  | 
(* Enable arith to deal with div/mod k where k is a numeral: *)  | 
|
672  | 
declare split_div[of _ _ "number_of k", standard, arith_split]  | 
|
673  | 
declare split_mod[of _ _ "number_of k", standard, arith_split]  | 
|
674  | 
||
675  | 
lemma nat_number_of_Pls: "Numeral0 = (0::nat)"  | 
|
676  | 
by (simp add: number_of_Pls nat_number_of_def)  | 
|
677  | 
||
678  | 
lemma nat_number_of_Min: "number_of Numeral.Min = (0::nat)"  | 
|
679  | 
apply (simp only: number_of_Min nat_number_of_def nat_zminus_int)  | 
|
680  | 
done  | 
|
681  | 
||
682  | 
lemma nat_number_of_BIT_1:  | 
|
683  | 
"number_of (w BIT bit.B1) =  | 
|
684  | 
(if neg (number_of w :: int) then 0  | 
|
685  | 
else let n = number_of w in Suc (n + n))"  | 
|
686  | 
apply (simp only: nat_number_of_def Let_def split: split_if)  | 
|
687  | 
apply (intro conjI impI)  | 
|
688  | 
apply (simp add: neg_nat neg_number_of_BIT)  | 
|
689  | 
apply (rule int_int_eq [THEN iffD1])  | 
|
690  | 
apply (simp only: not_neg_nat neg_number_of_BIT int_Suc zadd_int [symmetric] simp_thms)  | 
|
691  | 
apply (simp only: number_of_BIT zadd_assoc split: bit.split)  | 
|
692  | 
apply simp  | 
|
693  | 
done  | 
|
694  | 
||
695  | 
lemma nat_number_of_BIT_0:  | 
|
696  | 
"number_of (w BIT bit.B0) = (let n::nat = number_of w in n + n)"  | 
|
697  | 
apply (simp only: nat_number_of_def Let_def)  | 
|
698  | 
apply (cases "neg (number_of w :: int)")  | 
|
699  | 
apply (simp add: neg_nat neg_number_of_BIT)  | 
|
700  | 
apply (rule int_int_eq [THEN iffD1])  | 
|
701  | 
apply (simp only: not_neg_nat neg_number_of_BIT int_Suc zadd_int [symmetric] simp_thms)  | 
|
702  | 
apply (simp only: number_of_BIT zadd_assoc)  | 
|
703  | 
apply simp  | 
|
704  | 
done  | 
|
705  | 
||
706  | 
lemmas nat_number =  | 
|
707  | 
nat_number_of_Pls nat_number_of_Min  | 
|
708  | 
nat_number_of_BIT_1 nat_number_of_BIT_0  | 
|
709  | 
||
710  | 
lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)"  | 
|
711  | 
by (simp add: Let_def)  | 
|
712  | 
||
713  | 
lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::{number_ring,recpower})"
 | 
|
| 23294 | 714  | 
by (simp add: power_mult power_Suc);  | 
| 23164 | 715  | 
|
716  | 
lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::{number_ring,recpower})"
 | 
|
717  | 
by (simp add: power_mult power_Suc);  | 
|
718  | 
||
719  | 
||
720  | 
subsection{*Literal arithmetic and @{term of_nat}*}
 | 
|
721  | 
||
722  | 
lemma of_nat_double:  | 
|
723  | 
"0 \<le> x ==> of_nat (nat (2 * x)) = of_nat (nat x) + of_nat (nat x)"  | 
|
724  | 
by (simp only: mult_2 nat_add_distrib of_nat_add)  | 
|
725  | 
||
726  | 
lemma nat_numeral_m1_eq_0: "-1 = (0::nat)"  | 
|
727  | 
by (simp only: nat_number_of_def)  | 
|
728  | 
||
729  | 
lemma of_nat_number_of_lemma:  | 
|
730  | 
"of_nat (number_of v :: nat) =  | 
|
731  | 
(if 0 \<le> (number_of v :: int)  | 
|
732  | 
then (number_of v :: 'a :: number_ring)  | 
|
733  | 
else 0)"  | 
|
734  | 
by (simp add: int_number_of_def nat_number_of_def number_of_eq of_nat_nat);  | 
|
735  | 
||
736  | 
lemma of_nat_number_of_eq [simp]:  | 
|
737  | 
"of_nat (number_of v :: nat) =  | 
|
738  | 
(if neg (number_of v :: int) then 0  | 
|
739  | 
else (number_of v :: 'a :: number_ring))"  | 
|
740  | 
by (simp only: of_nat_number_of_lemma neg_def, simp)  | 
|
741  | 
||
742  | 
||
743  | 
subsection {*Lemmas for the Combination and Cancellation Simprocs*}
 | 
|
744  | 
||
745  | 
lemma nat_number_of_add_left:  | 
|
746  | 
"number_of v + (number_of v' + (k::nat)) =  | 
|
747  | 
(if neg (number_of v :: int) then number_of v' + k  | 
|
748  | 
else if neg (number_of v' :: int) then number_of v + k  | 
|
749  | 
else number_of (v + v') + k)"  | 
|
750  | 
by simp  | 
|
751  | 
||
752  | 
lemma nat_number_of_mult_left:  | 
|
753  | 
"number_of v * (number_of v' * (k::nat)) =  | 
|
754  | 
(if neg (number_of v :: int) then 0  | 
|
755  | 
else number_of (v * v') * k)"  | 
|
756  | 
by simp  | 
|
757  | 
||
758  | 
||
759  | 
subsubsection{*For @{text combine_numerals}*}
 | 
|
760  | 
||
761  | 
lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)"  | 
|
762  | 
by (simp add: add_mult_distrib)  | 
|
763  | 
||
764  | 
||
765  | 
subsubsection{*For @{text cancel_numerals}*}
 | 
|
766  | 
||
767  | 
lemma nat_diff_add_eq1:  | 
|
768  | 
"j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)"  | 
|
769  | 
by (simp split add: nat_diff_split add: add_mult_distrib)  | 
|
770  | 
||
771  | 
lemma nat_diff_add_eq2:  | 
|
772  | 
"i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))"  | 
|
773  | 
by (simp split add: nat_diff_split add: add_mult_distrib)  | 
|
774  | 
||
775  | 
lemma nat_eq_add_iff1:  | 
|
776  | 
"j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)"  | 
|
777  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
778  | 
||
779  | 
lemma nat_eq_add_iff2:  | 
|
780  | 
"i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)"  | 
|
781  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
782  | 
||
783  | 
lemma nat_less_add_iff1:  | 
|
784  | 
"j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)"  | 
|
785  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
786  | 
||
787  | 
lemma nat_less_add_iff2:  | 
|
788  | 
"i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)"  | 
|
789  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
790  | 
||
791  | 
lemma nat_le_add_iff1:  | 
|
792  | 
"j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)"  | 
|
793  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
794  | 
||
795  | 
lemma nat_le_add_iff2:  | 
|
796  | 
"i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)"  | 
|
797  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
798  | 
||
799  | 
||
800  | 
subsubsection{*For @{text cancel_numeral_factors} *}
 | 
|
801  | 
||
802  | 
lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)"  | 
|
803  | 
by auto  | 
|
804  | 
||
805  | 
lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)"  | 
|
806  | 
by auto  | 
|
807  | 
||
808  | 
lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)"  | 
|
809  | 
by auto  | 
|
810  | 
||
811  | 
lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)"  | 
|
812  | 
by auto  | 
|
813  | 
||
| 23969 | 814  | 
lemma nat_mult_dvd_cancel_disj[simp]:  | 
815  | 
"(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))"  | 
|
816  | 
by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric])  | 
|
817  | 
||
818  | 
lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)"  | 
|
819  | 
by(auto)  | 
|
820  | 
||
| 23164 | 821  | 
|
822  | 
subsubsection{*For @{text cancel_factor} *}
 | 
|
823  | 
||
824  | 
lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)"  | 
|
825  | 
by auto  | 
|
826  | 
||
827  | 
lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)"  | 
|
828  | 
by auto  | 
|
829  | 
||
830  | 
lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)"  | 
|
831  | 
by auto  | 
|
832  | 
||
| 23969 | 833  | 
lemma nat_mult_div_cancel_disj[simp]:  | 
| 23164 | 834  | 
"(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)"  | 
835  | 
by (simp add: nat_mult_div_cancel1)  | 
|
836  | 
||
837  | 
||
838  | 
subsection {* legacy ML bindings *}
 | 
|
839  | 
||
840  | 
ML  | 
|
841  | 
{*
 | 
|
842  | 
val eq_nat_nat_iff = thm"eq_nat_nat_iff";  | 
|
843  | 
val eq_nat_number_of = thm"eq_nat_number_of";  | 
|
844  | 
val less_nat_number_of = thm"less_nat_number_of";  | 
|
845  | 
val power2_eq_square = thm "power2_eq_square";  | 
|
846  | 
val zero_le_power2 = thm "zero_le_power2";  | 
|
847  | 
val zero_less_power2 = thm "zero_less_power2";  | 
|
848  | 
val zero_eq_power2 = thm "zero_eq_power2";  | 
|
849  | 
val abs_power2 = thm "abs_power2";  | 
|
850  | 
val power2_abs = thm "power2_abs";  | 
|
851  | 
val power2_minus = thm "power2_minus";  | 
|
852  | 
val power_minus1_even = thm "power_minus1_even";  | 
|
853  | 
val power_minus_even = thm "power_minus_even";  | 
|
854  | 
val odd_power_less_zero = thm "odd_power_less_zero";  | 
|
855  | 
val odd_0_le_power_imp_0_le = thm "odd_0_le_power_imp_0_le";  | 
|
856  | 
||
857  | 
val Suc_pred' = thm"Suc_pred'";  | 
|
858  | 
val expand_Suc = thm"expand_Suc";  | 
|
859  | 
val Suc_eq_add_numeral_1 = thm"Suc_eq_add_numeral_1";  | 
|
860  | 
val Suc_eq_add_numeral_1_left = thm"Suc_eq_add_numeral_1_left";  | 
|
861  | 
val add_eq_if = thm"add_eq_if";  | 
|
862  | 
val mult_eq_if = thm"mult_eq_if";  | 
|
863  | 
val power_eq_if = thm"power_eq_if";  | 
|
864  | 
val eq_number_of_0 = thm"eq_number_of_0";  | 
|
865  | 
val eq_0_number_of = thm"eq_0_number_of";  | 
|
866  | 
val less_0_number_of = thm"less_0_number_of";  | 
|
867  | 
val neg_imp_number_of_eq_0 = thm"neg_imp_number_of_eq_0";  | 
|
868  | 
val eq_number_of_Suc = thm"eq_number_of_Suc";  | 
|
869  | 
val Suc_eq_number_of = thm"Suc_eq_number_of";  | 
|
870  | 
val less_number_of_Suc = thm"less_number_of_Suc";  | 
|
871  | 
val less_Suc_number_of = thm"less_Suc_number_of";  | 
|
872  | 
val le_number_of_Suc = thm"le_number_of_Suc";  | 
|
873  | 
val le_Suc_number_of = thm"le_Suc_number_of";  | 
|
874  | 
val eq_number_of_BIT_BIT = thm"eq_number_of_BIT_BIT";  | 
|
875  | 
val eq_number_of_BIT_Pls = thm"eq_number_of_BIT_Pls";  | 
|
876  | 
val eq_number_of_BIT_Min = thm"eq_number_of_BIT_Min";  | 
|
877  | 
val eq_number_of_Pls_Min = thm"eq_number_of_Pls_Min";  | 
|
878  | 
val of_nat_number_of_eq = thm"of_nat_number_of_eq";  | 
|
879  | 
val nat_power_eq = thm"nat_power_eq";  | 
|
880  | 
val power_nat_number_of = thm"power_nat_number_of";  | 
|
881  | 
val zpower_number_of_even = thm"zpower_number_of_even";  | 
|
882  | 
val zpower_number_of_odd = thm"zpower_number_of_odd";  | 
|
883  | 
val nat_number_of_Pls = thm"nat_number_of_Pls";  | 
|
884  | 
val nat_number_of_Min = thm"nat_number_of_Min";  | 
|
885  | 
val Let_Suc = thm"Let_Suc";  | 
|
886  | 
||
887  | 
val nat_number = thms"nat_number";  | 
|
888  | 
||
889  | 
val nat_number_of_add_left = thm"nat_number_of_add_left";  | 
|
890  | 
val nat_number_of_mult_left = thm"nat_number_of_mult_left";  | 
|
891  | 
val left_add_mult_distrib = thm"left_add_mult_distrib";  | 
|
892  | 
val nat_diff_add_eq1 = thm"nat_diff_add_eq1";  | 
|
893  | 
val nat_diff_add_eq2 = thm"nat_diff_add_eq2";  | 
|
894  | 
val nat_eq_add_iff1 = thm"nat_eq_add_iff1";  | 
|
895  | 
val nat_eq_add_iff2 = thm"nat_eq_add_iff2";  | 
|
896  | 
val nat_less_add_iff1 = thm"nat_less_add_iff1";  | 
|
897  | 
val nat_less_add_iff2 = thm"nat_less_add_iff2";  | 
|
898  | 
val nat_le_add_iff1 = thm"nat_le_add_iff1";  | 
|
899  | 
val nat_le_add_iff2 = thm"nat_le_add_iff2";  | 
|
900  | 
val nat_mult_le_cancel1 = thm"nat_mult_le_cancel1";  | 
|
901  | 
val nat_mult_less_cancel1 = thm"nat_mult_less_cancel1";  | 
|
902  | 
val nat_mult_eq_cancel1 = thm"nat_mult_eq_cancel1";  | 
|
903  | 
val nat_mult_div_cancel1 = thm"nat_mult_div_cancel1";  | 
|
904  | 
val nat_mult_le_cancel_disj = thm"nat_mult_le_cancel_disj";  | 
|
905  | 
val nat_mult_less_cancel_disj = thm"nat_mult_less_cancel_disj";  | 
|
906  | 
val nat_mult_eq_cancel_disj = thm"nat_mult_eq_cancel_disj";  | 
|
907  | 
val nat_mult_div_cancel_disj = thm"nat_mult_div_cancel_disj";  | 
|
908  | 
||
909  | 
val power_minus_even = thm"power_minus_even";  | 
|
910  | 
*}  | 
|
911  | 
||
912  | 
end  |