| 0 |      1 | (*  Title: 	LCF/lcf.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Tobias Nipkow
 | 
|  |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Natural Deduction Rules for LCF
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
|  |      9 | LCF = FOL +
 | 
|  |     10 | 
 | 
|  |     11 | classes cpo < term
 | 
|  |     12 | 
 | 
|  |     13 | default cpo
 | 
|  |     14 | 
 | 
| 283 |     15 | types
 | 
|  |     16 |  tr
 | 
|  |     17 |  void
 | 
|  |     18 |  ('a,'b) "*"		(infixl 6)
 | 
|  |     19 |  ('a,'b) "+"		(infixl 5)
 | 
| 0 |     20 | 
 | 
| 283 |     21 | arities
 | 
|  |     22 |  fun, "*", "+" :: (cpo,cpo)cpo
 | 
|  |     23 |  tr,void       :: cpo
 | 
| 0 |     24 | 
 | 
|  |     25 | consts
 | 
|  |     26 |  UU	:: "'a"
 | 
|  |     27 |  TT,FF	:: "tr"
 | 
|  |     28 |  FIX	:: "('a => 'a) => 'a"
 | 
|  |     29 |  FST	:: "'a*'b => 'a"
 | 
|  |     30 |  SND	:: "'a*'b => 'b"
 | 
|  |     31 |  INL    :: "'a => 'a+'b"
 | 
|  |     32 |  INR    :: "'b => 'a+'b"
 | 
|  |     33 |  WHEN   :: "['a=>'c, 'b=>'c, 'a+'b] => 'c"
 | 
|  |     34 |  adm	:: "('a => o) => o"
 | 
|  |     35 |  VOID	:: "void"		("()")
 | 
|  |     36 |  PAIR	:: "['a,'b] => 'a*'b"	("(1<_,/_>)" [0,0] 100)
 | 
|  |     37 |  COND	:: "[tr,'a,'a] => 'a"	("(_ =>/ (_ |/ _))" [60,60,60] 60)
 | 
|  |     38 |  "<<"	:: "['a,'a] => o"	(infixl 50)
 | 
|  |     39 | rules
 | 
|  |     40 |   (** DOMAIN THEORY **)
 | 
|  |     41 | 
 | 
|  |     42 |   eq_def	"x=y == x << y & y << x"
 | 
|  |     43 | 
 | 
|  |     44 |   less_trans	"[| x << y; y << z |] ==> x << z"
 | 
|  |     45 | 
 | 
|  |     46 |   less_ext	"(ALL x. f(x) << g(x)) ==> f << g"
 | 
|  |     47 | 
 | 
|  |     48 |   mono		"[| f << g; x << y |] ==> f(x) << g(y)"
 | 
|  |     49 | 
 | 
|  |     50 |   minimal	"UU << x"
 | 
|  |     51 | 
 | 
|  |     52 |   FIX_eq	"f(FIX(f)) = FIX(f)"
 | 
|  |     53 | 
 | 
|  |     54 |   (** TR **)
 | 
|  |     55 | 
 | 
|  |     56 |   tr_cases	"p=UU | p=TT | p=FF"
 | 
|  |     57 | 
 | 
|  |     58 |   not_TT_less_FF "~ TT << FF"
 | 
|  |     59 |   not_FF_less_TT "~ FF << TT"
 | 
|  |     60 |   not_TT_less_UU "~ TT << UU"
 | 
|  |     61 |   not_FF_less_UU "~ FF << UU"
 | 
|  |     62 | 
 | 
|  |     63 |   COND_UU	"UU => x | y  =  UU"
 | 
|  |     64 |   COND_TT	"TT => x | y  =  x"
 | 
|  |     65 |   COND_FF	"FF => x | y  =  y"
 | 
|  |     66 | 
 | 
|  |     67 |   (** PAIRS **)
 | 
|  |     68 | 
 | 
|  |     69 |   surj_pairing	"<FST(z),SND(z)> = z"
 | 
|  |     70 | 
 | 
|  |     71 |   FST	"FST(<x,y>) = x"
 | 
|  |     72 |   SND	"SND(<x,y>) = y"
 | 
|  |     73 | 
 | 
|  |     74 |   (*** STRICT SUM ***)
 | 
|  |     75 | 
 | 
|  |     76 |   INL_DEF "~x=UU ==> ~INL(x)=UU"
 | 
|  |     77 |   INR_DEF "~x=UU ==> ~INR(x)=UU"
 | 
|  |     78 | 
 | 
|  |     79 |   INL_STRICT "INL(UU) = UU"
 | 
|  |     80 |   INR_STRICT "INR(UU) = UU"
 | 
|  |     81 | 
 | 
|  |     82 |   WHEN_UU  "WHEN(f,g,UU) = UU"
 | 
|  |     83 |   WHEN_INL "~x=UU ==> WHEN(f,g,INL(x)) = f(x)"
 | 
|  |     84 |   WHEN_INR "~x=UU ==> WHEN(f,g,INR(x)) = g(x)"
 | 
|  |     85 | 
 | 
|  |     86 |   SUM_EXHAUSTION
 | 
|  |     87 |     "z = UU | (EX x. ~x=UU & z = INL(x)) | (EX y. ~y=UU & z = INR(y))"
 | 
|  |     88 | 
 | 
|  |     89 |   (** VOID **)
 | 
|  |     90 | 
 | 
|  |     91 |   void_cases	"(x::void) = UU"
 | 
|  |     92 | 
 | 
|  |     93 |   (** INDUCTION **)
 | 
|  |     94 | 
 | 
|  |     95 |   induct	"[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
 | 
|  |     96 | 
 | 
|  |     97 |   (** Admissibility / Chain Completeness **)
 | 
|  |     98 |   (* All rules can be found on pages 199--200 of Larry's LCF book.
 | 
|  |     99 |      Note that "easiness" of types is not taken into account
 | 
|  |    100 |      because it cannot be expressed schematically; flatness could be. *)
 | 
|  |    101 | 
 | 
|  |    102 |   adm_less	"adm(%x.t(x) << u(x))"
 | 
|  |    103 |   adm_not_less	"adm(%x.~ t(x) << u)"
 | 
|  |    104 |   adm_not_free  "adm(%x.A)"
 | 
|  |    105 |   adm_subst	"adm(P) ==> adm(%x.P(t(x)))"
 | 
|  |    106 |   adm_conj	"[| adm(P); adm(Q) |] ==> adm(%x.P(x)&Q(x))"
 | 
|  |    107 |   adm_disj	"[| adm(P); adm(Q) |] ==> adm(%x.P(x)|Q(x))"
 | 
|  |    108 |   adm_imp	"[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x.P(x)-->Q(x))"
 | 
|  |    109 |   adm_all	"(!!y.adm(P(y))) ==> adm(%x.ALL y.P(y,x))"
 | 
|  |    110 | end
 |