1459
|
1 |
(* Title: FOLP/classical
|
0
|
2 |
ID: $Id$
|
1459
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
0
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
Like Provers/classical but modified because match_tac is unsuitable for
|
|
7 |
proof objects.
|
|
8 |
|
|
9 |
Theorem prover for classical reasoning, including predicate calculus, set
|
|
10 |
theory, etc.
|
|
11 |
|
|
12 |
Rules must be classified as intr, elim, safe, hazardous.
|
|
13 |
|
|
14 |
A rule is unsafe unless it can be applied blindly without harmful results.
|
|
15 |
For a rule to be safe, its premises and conclusion should be logically
|
|
16 |
equivalent. There should be no variables in the premises that are not in
|
|
17 |
the conclusion.
|
|
18 |
*)
|
|
19 |
|
|
20 |
signature CLASSICAL_DATA =
|
|
21 |
sig
|
1459
|
22 |
val mp: thm (* [| P-->Q; P |] ==> Q *)
|
|
23 |
val not_elim: thm (* [| ~P; P |] ==> R *)
|
|
24 |
val swap: thm (* ~P ==> (~Q ==> P) ==> Q *)
|
|
25 |
val sizef : thm -> int (* size function for BEST_FIRST *)
|
0
|
26 |
val hyp_subst_tacs: (int -> tactic) list
|
|
27 |
end;
|
|
28 |
|
|
29 |
(*Higher precedence than := facilitates use of references*)
|
|
30 |
infix 4 addSIs addSEs addSDs addIs addEs addDs;
|
|
31 |
|
|
32 |
|
|
33 |
signature CLASSICAL =
|
|
34 |
sig
|
|
35 |
type claset
|
|
36 |
val empty_cs: claset
|
|
37 |
val addDs : claset * thm list -> claset
|
|
38 |
val addEs : claset * thm list -> claset
|
|
39 |
val addIs : claset * thm list -> claset
|
|
40 |
val addSDs: claset * thm list -> claset
|
|
41 |
val addSEs: claset * thm list -> claset
|
|
42 |
val addSIs: claset * thm list -> claset
|
|
43 |
val print_cs: claset -> unit
|
4653
|
44 |
val rep_cs: claset ->
|
0
|
45 |
{safeIs: thm list, safeEs: thm list, hazIs: thm list, hazEs: thm list,
|
|
46 |
safe0_brls:(bool*thm)list, safep_brls: (bool*thm)list,
|
|
47 |
haz_brls: (bool*thm)list}
|
|
48 |
val best_tac : claset -> int -> tactic
|
|
49 |
val contr_tac : int -> tactic
|
|
50 |
val fast_tac : claset -> int -> tactic
|
|
51 |
val inst_step_tac : int -> tactic
|
|
52 |
val joinrules : thm list * thm list -> (bool * thm) list
|
|
53 |
val mp_tac: int -> tactic
|
|
54 |
val safe_tac : claset -> tactic
|
|
55 |
val safe_step_tac : claset -> int -> tactic
|
|
56 |
val slow_step_tac : claset -> int -> tactic
|
|
57 |
val step_tac : claset -> int -> tactic
|
|
58 |
val swapify : thm list -> thm list
|
|
59 |
val swap_res_tac : thm list -> int -> tactic
|
|
60 |
val uniq_mp_tac: int -> tactic
|
|
61 |
end;
|
|
62 |
|
|
63 |
|
|
64 |
functor ClassicalFun(Data: CLASSICAL_DATA): CLASSICAL =
|
|
65 |
struct
|
|
66 |
|
|
67 |
local open Data in
|
|
68 |
|
|
69 |
(** Useful tactics for classical reasoning **)
|
|
70 |
|
|
71 |
val imp_elim = make_elim mp;
|
|
72 |
|
|
73 |
(*Solve goal that assumes both P and ~P. *)
|
1459
|
74 |
val contr_tac = etac not_elim THEN' assume_tac;
|
0
|
75 |
|
|
76 |
(*Finds P-->Q and P in the assumptions, replaces implication by Q *)
|
|
77 |
fun mp_tac i = eresolve_tac ([not_elim,imp_elim]) i THEN assume_tac i;
|
|
78 |
|
|
79 |
(*Like mp_tac but instantiates no variables*)
|
|
80 |
fun uniq_mp_tac i = ematch_tac ([not_elim,imp_elim]) i THEN uniq_assume_tac i;
|
|
81 |
|
|
82 |
(*Creates rules to eliminate ~A, from rules to introduce A*)
|
|
83 |
fun swapify intrs = intrs RLN (2, [swap]);
|
|
84 |
|
|
85 |
(*Uses introduction rules in the normal way, or on negated assumptions,
|
|
86 |
trying rules in order. *)
|
|
87 |
fun swap_res_tac rls =
|
|
88 |
let fun tacf rl = rtac rl ORELSE' etac (rl RSN (2,swap))
|
|
89 |
in assume_tac ORELSE' contr_tac ORELSE' FIRST' (map tacf rls)
|
|
90 |
end;
|
|
91 |
|
|
92 |
|
|
93 |
(*** Classical rule sets ***)
|
|
94 |
|
|
95 |
datatype claset =
|
|
96 |
CS of {safeIs: thm list,
|
1459
|
97 |
safeEs: thm list,
|
|
98 |
hazIs: thm list,
|
|
99 |
hazEs: thm list,
|
|
100 |
(*the following are computed from the above*)
|
|
101 |
safe0_brls: (bool*thm)list,
|
|
102 |
safep_brls: (bool*thm)list,
|
|
103 |
haz_brls: (bool*thm)list};
|
0
|
104 |
|
4653
|
105 |
fun rep_cs (CS x) = x;
|
0
|
106 |
|
|
107 |
(*For use with biresolve_tac. Combines intrs with swap to catch negated
|
|
108 |
assumptions. Also pairs elims with true. *)
|
|
109 |
fun joinrules (intrs,elims) =
|
|
110 |
map (pair true) (elims @ swapify intrs) @ map (pair false) intrs;
|
|
111 |
|
|
112 |
(*Note that allE precedes exI in haz_brls*)
|
|
113 |
fun make_cs {safeIs,safeEs,hazIs,hazEs} =
|
|
114 |
let val (safe0_brls, safep_brls) = (*0 subgoals vs 1 or more*)
|
|
115 |
partition (apl(0,op=) o subgoals_of_brl)
|
4440
|
116 |
(sort (make_ord lessb) (joinrules(safeIs, safeEs)))
|
0
|
117 |
in CS{safeIs=safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=hazEs,
|
1459
|
118 |
safe0_brls=safe0_brls, safep_brls=safep_brls,
|
4440
|
119 |
haz_brls = sort (make_ord lessb) (joinrules(hazIs, hazEs))}
|
0
|
120 |
end;
|
|
121 |
|
|
122 |
(*** Manipulation of clasets ***)
|
|
123 |
|
|
124 |
val empty_cs = make_cs{safeIs=[], safeEs=[], hazIs=[], hazEs=[]};
|
|
125 |
|
|
126 |
fun print_cs (CS{safeIs,safeEs,hazIs,hazEs,...}) =
|
|
127 |
(writeln"Introduction rules"; prths hazIs;
|
|
128 |
writeln"Safe introduction rules"; prths safeIs;
|
|
129 |
writeln"Elimination rules"; prths hazEs;
|
|
130 |
writeln"Safe elimination rules"; prths safeEs;
|
|
131 |
());
|
|
132 |
|
|
133 |
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addSIs ths =
|
|
134 |
make_cs {safeIs=ths@safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=hazEs};
|
|
135 |
|
|
136 |
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addSEs ths =
|
|
137 |
make_cs {safeIs=safeIs, safeEs=ths@safeEs, hazIs=hazIs, hazEs=hazEs};
|
|
138 |
|
|
139 |
fun cs addSDs ths = cs addSEs (map make_elim ths);
|
|
140 |
|
|
141 |
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addIs ths =
|
|
142 |
make_cs {safeIs=safeIs, safeEs=safeEs, hazIs=ths@hazIs, hazEs=hazEs};
|
|
143 |
|
|
144 |
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addEs ths =
|
|
145 |
make_cs {safeIs=safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=ths@hazEs};
|
|
146 |
|
|
147 |
fun cs addDs ths = cs addEs (map make_elim ths);
|
|
148 |
|
|
149 |
(*** Simple tactics for theorem proving ***)
|
|
150 |
|
|
151 |
(*Attack subgoals using safe inferences*)
|
|
152 |
fun safe_step_tac (CS{safe0_brls,safep_brls,...}) =
|
|
153 |
FIRST' [uniq_assume_tac,
|
1459
|
154 |
uniq_mp_tac,
|
|
155 |
biresolve_tac safe0_brls,
|
|
156 |
FIRST' hyp_subst_tacs,
|
|
157 |
biresolve_tac safep_brls] ;
|
0
|
158 |
|
|
159 |
(*Repeatedly attack subgoals using safe inferences*)
|
|
160 |
fun safe_tac cs = DETERM (REPEAT_FIRST (safe_step_tac cs));
|
|
161 |
|
|
162 |
(*These steps could instantiate variables and are therefore unsafe.*)
|
|
163 |
val inst_step_tac = assume_tac APPEND' contr_tac;
|
|
164 |
|
|
165 |
(*Single step for the prover. FAILS unless it makes progress. *)
|
|
166 |
fun step_tac (cs as (CS{haz_brls,...})) i =
|
|
167 |
FIRST [safe_tac cs,
|
|
168 |
inst_step_tac i,
|
|
169 |
biresolve_tac haz_brls i];
|
|
170 |
|
|
171 |
(*** The following tactics all fail unless they solve one goal ***)
|
|
172 |
|
|
173 |
(*Dumb but fast*)
|
|
174 |
fun fast_tac cs = SELECT_GOAL (DEPTH_SOLVE (step_tac cs 1));
|
|
175 |
|
|
176 |
(*Slower but smarter than fast_tac*)
|
|
177 |
fun best_tac cs =
|
|
178 |
SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (step_tac cs 1));
|
|
179 |
|
|
180 |
(*Using a "safe" rule to instantiate variables is unsafe. This tactic
|
|
181 |
allows backtracking from "safe" rules to "unsafe" rules here.*)
|
|
182 |
fun slow_step_tac (cs as (CS{haz_brls,...})) i =
|
|
183 |
safe_tac cs ORELSE (assume_tac i APPEND biresolve_tac haz_brls i);
|
|
184 |
|
|
185 |
end;
|
|
186 |
end;
|