| author | haftmann | 
| Tue, 03 Mar 2020 19:26:23 +0000 | |
| changeset 71517 | 7807d828a061 | 
| parent 68490 | eb53f944c8cd | 
| child 72797 | 402afc68f2f9 | 
| permissions | -rw-r--r-- | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26056 
diff
changeset
 | 
1  | 
(* Title: ZF/InfDatatype.thy  | 
| 13134 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
3  | 
Copyright 1994 University of Cambridge  | 
|
4  | 
*)  | 
|
5  | 
||
| 60770 | 6  | 
section\<open>Infinite-Branching Datatype Definitions\<close>  | 
| 13356 | 7  | 
|
| 
68490
 
eb53f944c8cd
simplified ZF theory names (in contrast to 6a0801279f4c): session-qualification already achieves disjointness;
 
wenzelm 
parents: 
61798 
diff
changeset
 | 
8  | 
theory InfDatatype imports Datatype Univ Finite Cardinal_AC begin  | 
| 13134 | 9  | 
|
| 46820 | 10  | 
lemmas fun_Limit_VfromE =  | 
| 13134 | 11  | 
Limit_VfromE [OF apply_funtype InfCard_csucc [THEN InfCard_is_Limit]]  | 
12  | 
||
13  | 
lemma fun_Vcsucc_lemma:  | 
|
| 
47071
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
14  | 
assumes f: "f \<in> D -> Vfrom(A,csucc(K))" and DK: "|D| \<le> K" and ICK: "InfCard(K)"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
15  | 
shows "\<exists>j. f \<in> D -> Vfrom(A,j) & j < csucc(K)"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
16  | 
proof (rule exI, rule conjI)  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
17  | 
show "f \<in> D \<rightarrow> Vfrom(A, \<Union>z\<in>D. \<mu> i. f`z \<in> Vfrom (A,i))"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
18  | 
proof (rule Pi_type [OF f])  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
19  | 
fix d  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
20  | 
assume d: "d \<in> D"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
21  | 
show "f ` d \<in> Vfrom(A, \<Union>z\<in>D. \<mu> i. f ` z \<in> Vfrom(A, i))"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
22  | 
proof (rule fun_Limit_VfromE [OF f d ICK])  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
23  | 
fix x  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
24  | 
assume "x < csucc(K)" "f ` d \<in> Vfrom(A, x)"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
25  | 
hence "f`d \<in> Vfrom(A, \<mu> i. f`d \<in> Vfrom (A,i))" using d  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
26  | 
by (fast elim: LeastI ltE)  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
27  | 
also have "... \<subseteq> Vfrom(A, \<Union>z\<in>D. \<mu> i. f ` z \<in> Vfrom(A, i))"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
28  | 
by (rule Vfrom_mono) (auto intro: d)  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
29  | 
finally show "f`d \<in> Vfrom(A, \<Union>z\<in>D. \<mu> i. f ` z \<in> Vfrom(A, i))" .  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
30  | 
qed  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
31  | 
qed  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
32  | 
next  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
33  | 
show "(\<Union>d\<in>D. \<mu> i. f ` d \<in> Vfrom(A, i)) < csucc(K)"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
34  | 
proof (rule le_UN_Ord_lt_csucc [OF ICK DK])  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
35  | 
fix d  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
36  | 
assume d: "d \<in> D"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
37  | 
show "(\<mu> i. f ` d \<in> Vfrom(A, i)) < csucc(K)"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
38  | 
proof (rule fun_Limit_VfromE [OF f d ICK])  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
39  | 
fix x  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
40  | 
assume "x < csucc(K)" "f ` d \<in> Vfrom(A, x)"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
41  | 
thus "(\<mu> i. f ` d \<in> Vfrom(A, i)) < csucc(K)"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
42  | 
by (blast intro: Least_le lt_trans1 lt_Ord)  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
43  | 
qed  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
44  | 
qed  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
46820 
diff
changeset
 | 
45  | 
qed  | 
| 13134 | 46  | 
|
47  | 
lemma subset_Vcsucc:  | 
|
| 46820 | 48  | 
"[| D \<subseteq> Vfrom(A,csucc(K)); |D| \<le> K; InfCard(K) |]  | 
49  | 
==> \<exists>j. D \<subseteq> Vfrom(A,j) & j < csucc(K)"  | 
|
| 13134 | 50  | 
by (simp add: subset_iff_id fun_Vcsucc_lemma)  | 
51  | 
||
52  | 
(*Version for arbitrary index sets*)  | 
|
53  | 
lemma fun_Vcsucc:  | 
|
| 46820 | 54  | 
"[| |D| \<le> K; InfCard(K); D \<subseteq> Vfrom(A,csucc(K)) |] ==>  | 
55  | 
D -> Vfrom(A,csucc(K)) \<subseteq> Vfrom(A,csucc(K))"  | 
|
| 13134 | 56  | 
apply (safe dest!: fun_Vcsucc_lemma subset_Vcsucc)  | 
57  | 
apply (rule Vfrom [THEN ssubst])  | 
|
58  | 
apply (drule fun_is_rel)  | 
|
59  | 
(*This level includes the function, and is below csucc(K)*)  | 
|
| 46820 | 60  | 
apply (rule_tac a1 = "succ (succ (j \<union> ja))" in UN_I [THEN UnI2])  | 
| 13134 | 61  | 
apply (blast intro: ltD InfCard_csucc InfCard_is_Limit Limit_has_succ  | 
| 46820 | 62  | 
Un_least_lt)  | 
| 13134 | 63  | 
apply (erule subset_trans [THEN PowI])  | 
64  | 
apply (fast intro: Pair_in_Vfrom Vfrom_UnI1 Vfrom_UnI2)  | 
|
65  | 
done  | 
|
66  | 
||
67  | 
lemma fun_in_Vcsucc:  | 
|
| 46820 | 68  | 
"[| f: D -> Vfrom(A, csucc(K)); |D| \<le> K; InfCard(K);  | 
69  | 
D \<subseteq> Vfrom(A,csucc(K)) |]  | 
|
| 13134 | 70  | 
==> f: Vfrom(A,csucc(K))"  | 
71  | 
by (blast intro: fun_Vcsucc [THEN subsetD])  | 
|
72  | 
||
| 61798 | 73  | 
text\<open>Remove \<open>\<subseteq>\<close> from the rule above\<close>  | 
| 13134 | 74  | 
lemmas fun_in_Vcsucc' = fun_in_Vcsucc [OF _ _ _ subsetI]  | 
75  | 
||
76  | 
(** Version where K itself is the index set **)  | 
|
77  | 
||
78  | 
lemma Card_fun_Vcsucc:  | 
|
| 46820 | 79  | 
"InfCard(K) ==> K -> Vfrom(A,csucc(K)) \<subseteq> Vfrom(A,csucc(K))"  | 
| 13134 | 80  | 
apply (frule InfCard_is_Card [THEN Card_is_Ord])  | 
81  | 
apply (blast del: subsetI  | 
|
| 46820 | 82  | 
intro: fun_Vcsucc Ord_cardinal_le i_subset_Vfrom  | 
83  | 
lt_csucc [THEN leI, THEN le_imp_subset, THEN subset_trans])  | 
|
| 13134 | 84  | 
done  | 
85  | 
||
86  | 
lemma Card_fun_in_Vcsucc:  | 
|
87  | 
"[| f: K -> Vfrom(A, csucc(K)); InfCard(K) |] ==> f: Vfrom(A,csucc(K))"  | 
|
| 46820 | 88  | 
by (blast intro: Card_fun_Vcsucc [THEN subsetD])  | 
| 13134 | 89  | 
|
90  | 
lemma Limit_csucc: "InfCard(K) ==> Limit(csucc(K))"  | 
|
91  | 
by (erule InfCard_csucc [THEN InfCard_is_Limit])  | 
|
92  | 
||
93  | 
lemmas Pair_in_Vcsucc = Pair_in_VLimit [OF _ _ Limit_csucc]  | 
|
94  | 
lemmas Inl_in_Vcsucc = Inl_in_VLimit [OF _ Limit_csucc]  | 
|
95  | 
lemmas Inr_in_Vcsucc = Inr_in_VLimit [OF _ Limit_csucc]  | 
|
96  | 
lemmas zero_in_Vcsucc = Limit_csucc [THEN zero_in_VLimit]  | 
|
97  | 
lemmas nat_into_Vcsucc = nat_into_VLimit [OF _ Limit_csucc]  | 
|
98  | 
||
| 46820 | 99  | 
(*For handling Cardinals of the form  @{term"nat \<union> |X|"} *)
 | 
| 13134 | 100  | 
|
101  | 
lemmas InfCard_nat_Un_cardinal = InfCard_Un [OF InfCard_nat Card_cardinal]  | 
|
102  | 
||
103  | 
lemmas le_nat_Un_cardinal =  | 
|
104  | 
Un_upper2_le [OF Ord_nat Card_cardinal [THEN Card_is_Ord]]  | 
|
105  | 
||
106  | 
lemmas UN_upper_cardinal = UN_upper [THEN subset_imp_lepoll, THEN lepoll_imp_Card_le]  | 
|
107  | 
||
108  | 
(*The new version of Data_Arg.intrs, declared in Datatype.ML*)  | 
|
109  | 
lemmas Data_Arg_intros =  | 
|
110  | 
SigmaI InlI InrI  | 
|
| 46820 | 111  | 
Pair_in_univ Inl_in_univ Inr_in_univ  | 
| 13134 | 112  | 
zero_in_univ A_into_univ nat_into_univ UnCI  | 
113  | 
||
114  | 
(*For most K-branching datatypes with domain Vfrom(A, csucc(K)) *)  | 
|
115  | 
lemmas inf_datatype_intros =  | 
|
116  | 
InfCard_nat InfCard_nat_Un_cardinal  | 
|
| 46820 | 117  | 
Pair_in_Vcsucc Inl_in_Vcsucc Inr_in_Vcsucc  | 
| 13134 | 118  | 
zero_in_Vcsucc A_into_Vfrom nat_into_Vcsucc  | 
| 46820 | 119  | 
Card_fun_in_Vcsucc fun_in_Vcsucc' UN_I  | 
| 13134 | 120  | 
|
121  | 
end  | 
|
122  |