| 
23854
 | 
     1  | 
(*  Title:      HOL/Library/Executable_Set.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Stefan Berghofer, TU Muenchen
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
header {* Implementation of finite sets by lists *}
 | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory Executable_Set
  | 
| 
27487
 | 
     9  | 
imports Plain "~~/src/HOL/List"
  | 
| 
23854
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
subsection {* Definitional rewrites *}
 | 
| 
 | 
    13  | 
  | 
| 
28522
 | 
    14  | 
definition subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
  | 
| 
 | 
    15  | 
  "subset = op \<le>"
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
declare subset_def [symmetric, code unfold]
  | 
| 
 | 
    18  | 
  | 
| 
28939
 | 
    19  | 
lemma [code]: "subset A B \<longleftrightarrow> (\<forall>x\<in>A. x \<in> B)"
  | 
| 
28522
 | 
    20  | 
  unfolding subset_def subset_eq ..
  | 
| 
23854
 | 
    21  | 
  | 
| 
28522
 | 
    22  | 
definition is_empty :: "'a set \<Rightarrow> bool" where
  | 
| 
 | 
    23  | 
  "is_empty A \<longleftrightarrow> A = {}"
 | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
definition eq_set :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
  | 
| 
 | 
    26  | 
  [code del]: "eq_set = op ="
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma [code]: "eq_set A B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
  | 
| 
 | 
    29  | 
  unfolding eq_set_def by auto
  | 
| 
26816
 | 
    30  | 
  | 
| 
29107
 | 
    31  | 
(* FIXME allow for Stefan's code generator:
  | 
| 
 | 
    32  | 
declare set_eq_subset[code unfold]
  | 
| 
 | 
    33  | 
*)
  | 
| 
 | 
    34  | 
  | 
| 
23854
 | 
    35  | 
lemma [code]:
  | 
| 
 | 
    36  | 
  "a \<in> A \<longleftrightarrow> (\<exists>x\<in>A. x = a)"
  | 
| 
 | 
    37  | 
  unfolding bex_triv_one_point1 ..
  | 
| 
 | 
    38  | 
  | 
| 
28939
 | 
    39  | 
definition filter_set :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where
 | 
| 
23854
 | 
    40  | 
  "filter_set P xs = {x\<in>xs. P x}"
 | 
| 
 | 
    41  | 
  | 
| 
29107
 | 
    42  | 
declare filter_set_def[symmetric, code unfold] 
  | 
| 
 | 
    43  | 
  | 
| 
23854
 | 
    44  | 
  | 
| 
 | 
    45  | 
subsection {* Operations on lists *}
 | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
subsubsection {* Basic definitions *}
 | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
definition
  | 
| 
 | 
    50  | 
  flip :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c" where
 | 
| 
 | 
    51  | 
  "flip f a b = f b a"
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
definition
  | 
| 
 | 
    54  | 
  member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool" where
  | 
| 
 | 
    55  | 
  "member xs x \<longleftrightarrow> x \<in> set xs"
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
definition
  | 
| 
 | 
    58  | 
  insertl :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
  | 
| 
 | 
    59  | 
  "insertl x xs = (if member xs x then xs else x#xs)"
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
lemma [code target: List]: "member [] y \<longleftrightarrow> False"
  | 
| 
 | 
    62  | 
  and [code target: List]: "member (x#xs) y \<longleftrightarrow> y = x \<or> member xs y"
  | 
| 
 | 
    63  | 
  unfolding member_def by (induct xs) simp_all
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
fun
  | 
| 
 | 
    66  | 
  drop_first :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | 
| 
 | 
    67  | 
  "drop_first f [] = []"
  | 
| 
 | 
    68  | 
| "drop_first f (x#xs) = (if f x then xs else x # drop_first f xs)"
  | 
| 
 | 
    69  | 
declare drop_first.simps [code del]
  | 
| 
 | 
    70  | 
declare drop_first.simps [code target: List]
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
declare remove1.simps [code del]
  | 
| 
 | 
    73  | 
lemma [code target: List]:
  | 
| 
 | 
    74  | 
  "remove1 x xs = (if member xs x then drop_first (\<lambda>y. y = x) xs else xs)"
  | 
| 
 | 
    75  | 
proof (cases "member xs x")
  | 
| 
 | 
    76  | 
  case False thus ?thesis unfolding member_def by (induct xs) auto
  | 
| 
 | 
    77  | 
next
  | 
| 
 | 
    78  | 
  case True
  | 
| 
 | 
    79  | 
  have "remove1 x xs = drop_first (\<lambda>y. y = x) xs" by (induct xs) simp_all
  | 
| 
 | 
    80  | 
  with True show ?thesis by simp
  | 
| 
 | 
    81  | 
qed
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
lemma member_nil [simp]:
  | 
| 
 | 
    84  | 
  "member [] = (\<lambda>x. False)"
  | 
| 
26816
 | 
    85  | 
proof (rule ext)
  | 
| 
23854
 | 
    86  | 
  fix x
  | 
| 
 | 
    87  | 
  show "member [] x = False" unfolding member_def by simp
  | 
| 
 | 
    88  | 
qed
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
lemma member_insertl [simp]:
  | 
| 
 | 
    91  | 
  "x \<in> set (insertl x xs)"
  | 
| 
 | 
    92  | 
  unfolding insertl_def member_def mem_iff by simp
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
lemma insertl_member [simp]:
  | 
| 
 | 
    95  | 
  fixes xs x
  | 
| 
 | 
    96  | 
  assumes member: "member xs x"
  | 
| 
 | 
    97  | 
  shows "insertl x xs = xs"
  | 
| 
 | 
    98  | 
  using member unfolding insertl_def by simp
  | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
lemma insertl_not_member [simp]:
  | 
| 
 | 
   101  | 
  fixes xs x
  | 
| 
 | 
   102  | 
  assumes member: "\<not> (member xs x)"
  | 
| 
 | 
   103  | 
  shows "insertl x xs = x # xs"
  | 
| 
 | 
   104  | 
  using member unfolding insertl_def by simp
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
lemma foldr_remove1_empty [simp]:
  | 
| 
 | 
   107  | 
  "foldr remove1 xs [] = []"
  | 
| 
 | 
   108  | 
  by (induct xs) simp_all
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
subsubsection {* Derived definitions *}
 | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
function unionl :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
  | 
| 
 | 
   114  | 
where
  | 
| 
 | 
   115  | 
  "unionl [] ys = ys"
  | 
| 
 | 
   116  | 
| "unionl xs ys = foldr insertl xs ys"
  | 
| 
 | 
   117  | 
by pat_completeness auto
  | 
| 
 | 
   118  | 
termination by lexicographic_order
  | 
| 
 | 
   119  | 
  | 
| 
26312
 | 
   120  | 
lemmas unionl_eq = unionl.simps(2)
  | 
| 
23854
 | 
   121  | 
  | 
| 
 | 
   122  | 
function intersect :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
  | 
| 
 | 
   123  | 
where
  | 
| 
 | 
   124  | 
  "intersect [] ys = []"
  | 
| 
 | 
   125  | 
| "intersect xs [] = []"
  | 
| 
 | 
   126  | 
| "intersect xs ys = filter (member xs) ys"
  | 
| 
 | 
   127  | 
by pat_completeness auto
  | 
| 
 | 
   128  | 
termination by lexicographic_order
  | 
| 
 | 
   129  | 
  | 
| 
26312
 | 
   130  | 
lemmas intersect_eq = intersect.simps(3)
  | 
| 
23854
 | 
   131  | 
  | 
| 
 | 
   132  | 
function subtract :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
  | 
| 
 | 
   133  | 
where
  | 
| 
 | 
   134  | 
  "subtract [] ys = ys"
  | 
| 
 | 
   135  | 
| "subtract xs [] = []"
  | 
| 
 | 
   136  | 
| "subtract xs ys = foldr remove1 xs ys"
  | 
| 
 | 
   137  | 
by pat_completeness auto
  | 
| 
 | 
   138  | 
termination by lexicographic_order
  | 
| 
 | 
   139  | 
  | 
| 
26312
 | 
   140  | 
lemmas subtract_eq = subtract.simps(3)
  | 
| 
23854
 | 
   141  | 
  | 
| 
 | 
   142  | 
function map_distinct :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list"
 | 
| 
 | 
   143  | 
where
  | 
| 
 | 
   144  | 
  "map_distinct f [] = []"
  | 
| 
 | 
   145  | 
| "map_distinct f xs = foldr (insertl o f) xs []"
  | 
| 
 | 
   146  | 
by pat_completeness auto
  | 
| 
 | 
   147  | 
termination by lexicographic_order
  | 
| 
 | 
   148  | 
  | 
| 
26312
 | 
   149  | 
lemmas map_distinct_eq = map_distinct.simps(2)
  | 
| 
23854
 | 
   150  | 
  | 
| 
 | 
   151  | 
function unions :: "'a list list \<Rightarrow> 'a list"
  | 
| 
 | 
   152  | 
where
  | 
| 
 | 
   153  | 
  "unions [] = []"
  | 
| 
 | 
   154  | 
| "unions xs = foldr unionl xs []"
  | 
| 
 | 
   155  | 
by pat_completeness auto
  | 
| 
 | 
   156  | 
termination by lexicographic_order
  | 
| 
 | 
   157  | 
  | 
| 
26312
 | 
   158  | 
lemmas unions_eq = unions.simps(2)
  | 
| 
23854
 | 
   159  | 
  | 
| 
 | 
   160  | 
consts intersects :: "'a list list \<Rightarrow> 'a list"
  | 
| 
 | 
   161  | 
primrec
  | 
| 
 | 
   162  | 
  "intersects (x#xs) = foldr intersect xs x"
  | 
| 
 | 
   163  | 
  | 
| 
 | 
   164  | 
definition
  | 
| 
 | 
   165  | 
  map_union :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list" where
 | 
| 
 | 
   166  | 
  "map_union xs f = unions (map f xs)"
  | 
| 
 | 
   167  | 
  | 
| 
 | 
   168  | 
definition
  | 
| 
 | 
   169  | 
  map_inter :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list" where
 | 
| 
 | 
   170  | 
  "map_inter xs f = intersects (map f xs)"
  | 
| 
 | 
   171  | 
  | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
subsection {* Isomorphism proofs *}
 | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
lemma iso_member:
  | 
| 
 | 
   176  | 
  "member xs x \<longleftrightarrow> x \<in> set xs"
  | 
| 
 | 
   177  | 
  unfolding member_def mem_iff ..
  | 
| 
 | 
   178  | 
  | 
| 
 | 
   179  | 
lemma iso_insert:
  | 
| 
 | 
   180  | 
  "set (insertl x xs) = insert x (set xs)"
  | 
| 
 | 
   181  | 
  unfolding insertl_def iso_member by (simp add: Set.insert_absorb)
  | 
| 
 | 
   182  | 
  | 
| 
 | 
   183  | 
lemma iso_remove1:
  | 
| 
 | 
   184  | 
  assumes distnct: "distinct xs"
  | 
| 
 | 
   185  | 
  shows "set (remove1 x xs) = set xs - {x}"
 | 
| 
 | 
   186  | 
  using distnct set_remove1_eq by auto
  | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
lemma iso_union:
  | 
| 
 | 
   189  | 
  "set (unionl xs ys) = set xs \<union> set ys"
  | 
| 
26312
 | 
   190  | 
  unfolding unionl_eq
  | 
| 
23854
 | 
   191  | 
  by (induct xs arbitrary: ys) (simp_all add: iso_insert)
  | 
| 
 | 
   192  | 
  | 
| 
 | 
   193  | 
lemma iso_intersect:
  | 
| 
 | 
   194  | 
  "set (intersect xs ys) = set xs \<inter> set ys"
  | 
| 
26312
 | 
   195  | 
  unfolding intersect_eq Int_def by (simp add: Int_def iso_member) auto
  | 
| 
23854
 | 
   196  | 
  | 
| 
 | 
   197  | 
definition
  | 
| 
 | 
   198  | 
  subtract' :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
  | 
| 
 | 
   199  | 
  "subtract' = flip subtract"
  | 
| 
 | 
   200  | 
  | 
| 
 | 
   201  | 
lemma iso_subtract:
  | 
| 
 | 
   202  | 
  fixes ys
  | 
| 
 | 
   203  | 
  assumes distnct: "distinct ys"
  | 
| 
 | 
   204  | 
  shows "set (subtract' ys xs) = set ys - set xs"
  | 
| 
 | 
   205  | 
    and "distinct (subtract' ys xs)"
  | 
| 
26312
 | 
   206  | 
  unfolding subtract'_def flip_def subtract_eq
  | 
| 
23854
 | 
   207  | 
  using distnct by (induct xs arbitrary: ys) auto
  | 
| 
 | 
   208  | 
  | 
| 
 | 
   209  | 
lemma iso_map_distinct:
  | 
| 
 | 
   210  | 
  "set (map_distinct f xs) = image f (set xs)"
  | 
| 
26312
 | 
   211  | 
  unfolding map_distinct_eq by (induct xs) (simp_all add: iso_insert)
  | 
| 
23854
 | 
   212  | 
  | 
| 
 | 
   213  | 
lemma iso_unions:
  | 
| 
 | 
   214  | 
  "set (unions xss) = \<Union> set (map set xss)"
  | 
| 
26312
 | 
   215  | 
  unfolding unions_eq
  | 
| 
23854
 | 
   216  | 
proof (induct xss)
  | 
| 
 | 
   217  | 
  case Nil show ?case by simp
  | 
| 
 | 
   218  | 
next
  | 
| 
 | 
   219  | 
  case (Cons xs xss) thus ?case by (induct xs) (simp_all add: iso_insert)
  | 
| 
 | 
   220  | 
qed
  | 
| 
 | 
   221  | 
  | 
| 
 | 
   222  | 
lemma iso_intersects:
  | 
| 
 | 
   223  | 
  "set (intersects (xs#xss)) = \<Inter> set (map set (xs#xss))"
  | 
| 
 | 
   224  | 
  by (induct xss) (simp_all add: Int_def iso_member, auto)
  | 
| 
 | 
   225  | 
  | 
| 
 | 
   226  | 
lemma iso_UNION:
  | 
| 
 | 
   227  | 
  "set (map_union xs f) = UNION (set xs) (set o f)"
  | 
| 
 | 
   228  | 
  unfolding map_union_def iso_unions by simp
  | 
| 
 | 
   229  | 
  | 
| 
 | 
   230  | 
lemma iso_INTER:
  | 
| 
 | 
   231  | 
  "set (map_inter (x#xs) f) = INTER (set (x#xs)) (set o f)"
  | 
| 
 | 
   232  | 
  unfolding map_inter_def iso_intersects by (induct xs) (simp_all add: iso_member, auto)
  | 
| 
 | 
   233  | 
  | 
| 
 | 
   234  | 
definition
  | 
| 
 | 
   235  | 
  Blall :: "'a list \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
 | 
   236  | 
  "Blall = flip list_all"
  | 
| 
 | 
   237  | 
definition
  | 
| 
 | 
   238  | 
  Blex :: "'a list \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
 | 
   239  | 
  "Blex = flip list_ex"
  | 
| 
 | 
   240  | 
  | 
| 
 | 
   241  | 
lemma iso_Ball:
  | 
| 
 | 
   242  | 
  "Blall xs f = Ball (set xs) f"
  | 
| 
 | 
   243  | 
  unfolding Blall_def flip_def by (induct xs) simp_all
  | 
| 
 | 
   244  | 
  | 
| 
 | 
   245  | 
lemma iso_Bex:
  | 
| 
 | 
   246  | 
  "Blex xs f = Bex (set xs) f"
  | 
| 
 | 
   247  | 
  unfolding Blex_def flip_def by (induct xs) simp_all
  | 
| 
 | 
   248  | 
  | 
| 
 | 
   249  | 
lemma iso_filter:
  | 
| 
 | 
   250  | 
  "set (filter P xs) = filter_set P (set xs)"
  | 
| 
 | 
   251  | 
  unfolding filter_set_def by (induct xs) auto
  | 
| 
 | 
   252  | 
  | 
| 
 | 
   253  | 
subsection {* code generator setup *}
 | 
| 
 | 
   254  | 
  | 
| 
 | 
   255  | 
ML {*
 | 
| 
 | 
   256  | 
nonfix inter;
  | 
| 
 | 
   257  | 
nonfix union;
  | 
| 
 | 
   258  | 
nonfix subset;
  | 
| 
 | 
   259  | 
*}
  | 
| 
 | 
   260  | 
  | 
| 
 | 
   261  | 
subsubsection {* const serializations *}
 | 
| 
 | 
   262  | 
  | 
| 
 | 
   263  | 
consts_code
  | 
| 
 | 
   264  | 
  "{}" ("{*[]*}")
 | 
| 
 | 
   265  | 
  insert ("{*insertl*}")
 | 
| 
28522
 | 
   266  | 
  is_empty ("{*null*}")
 | 
| 
23854
 | 
   267  | 
  "op \<union>" ("{*unionl*}")
 | 
| 
 | 
   268  | 
  "op \<inter>" ("{*intersect*}")
 | 
| 
 | 
   269  | 
  "op - \<Colon> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" ("{* flip subtract *}")
 | 
| 
 | 
   270  | 
  image ("{*map_distinct*}")
 | 
| 
 | 
   271  | 
  Union ("{*unions*}")
 | 
| 
 | 
   272  | 
  Inter ("{*intersects*}")
 | 
| 
 | 
   273  | 
  UNION ("{*map_union*}")
 | 
| 
 | 
   274  | 
  INTER ("{*map_inter*}")
 | 
| 
 | 
   275  | 
  Ball ("{*Blall*}")
 | 
| 
 | 
   276  | 
  Bex ("{*Blex*}")
 | 
| 
 | 
   277  | 
  filter_set ("{*filter*}")
 | 
| 
29110
 | 
   278  | 
  fold ("{* foldl o flip *}")
 | 
| 
23854
 | 
   279  | 
  | 
| 
 | 
   280  | 
end
  |