| author | blanchet | 
| Thu, 30 Jan 2014 21:02:19 +0100 | |
| changeset 55193 | 78eb7fab3284 | 
| parent 37310 | 96e2b9a6f074 | 
| child 59058 | a78612c67ec0 | 
| permissions | -rw-r--r-- | 
| 13404 | 1 | (* Title: HOL/Tools/rewrite_hol_proof.ML | 
| 2 | Author: Stefan Berghofer, TU Muenchen | |
| 3 | ||
| 4 | Rewrite rules for HOL proofs | |
| 5 | *) | |
| 6 | ||
| 7 | signature REWRITE_HOL_PROOF = | |
| 8 | sig | |
| 9 | val rews: (Proofterm.proof * Proofterm.proof) list | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 10 | val elim_cong: typ list -> term option list -> Proofterm.proof -> (Proofterm.proof * Proofterm.proof) option | 
| 13404 | 11 | end; | 
| 12 | ||
| 13 | structure RewriteHOLProof : REWRITE_HOL_PROOF = | |
| 14 | struct | |
| 15 | ||
| 33388 | 16 | val rews = map (pairself (Proof_Syntax.proof_of_term @{theory} true) o
 | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 17 |     Logic.dest_equals o Logic.varify_global o Proof_Syntax.read_term @{theory} true propT)
 | 
| 13404 | 18 | |
| 19 | (** eliminate meta-equality rules **) | |
| 20 | ||
| 21 | ["(equal_elim % x1 % x2 %% \ | |
| 22 |  \    (combination % TYPE('T1) % TYPE('T2) % Trueprop % x3 % A % B %%  \
 | |
| 28712 
4f2954d995f0
Removed argument prf2 in rewrite rules for equal_elim to make them applicable
 berghofe parents: 
28262diff
changeset | 23 |  \      (axm.reflexive % TYPE('T3) % x4) %% prf1)) ==  \
 | 
| 13404 | 24 | \ (iffD1 % A % B %% \ | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 25 | \ (meta_eq_to_obj_eq % TYPE(bool) % A % B %% arity_type_bool %% prf1))", | 
| 13404 | 26 | |
| 27 |    "(equal_elim % x1 % x2 %% (axm.symmetric % TYPE('T1) % x3 % x4 %%  \
 | |
| 28 |  \    (combination % TYPE('T2) % TYPE('T3) % Trueprop % x5 % A % B %%  \
 | |
| 28712 
4f2954d995f0
Removed argument prf2 in rewrite rules for equal_elim to make them applicable
 berghofe parents: 
28262diff
changeset | 29 |  \      (axm.reflexive % TYPE('T4) % x6) %% prf1))) ==  \
 | 
| 13404 | 30 | \ (iffD2 % A % B %% \ | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 31 | \ (meta_eq_to_obj_eq % TYPE(bool) % A % B %% arity_type_bool %% prf1))", | 
| 13404 | 32 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 33 |    "(meta_eq_to_obj_eq % TYPE('U) % x1 % x2 %% prfU %%  \
 | 
| 36042 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 34 |  \    (combination % TYPE('T) % TYPE('U) % f % g % x % y %% prf1 %% prf2)) ==  \
 | 
| 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 35 |  \  (cong % TYPE('T) % TYPE('U) % f % g % x % y %%  \
 | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 36 |  \    (OfClass type_class % TYPE('T)) %% prfU %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 37 |  \    (meta_eq_to_obj_eq % TYPE('T => 'U) % f % g %% (OfClass type_class % TYPE('T => 'U)) %% prf1) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 38 |  \    (meta_eq_to_obj_eq % TYPE('T) % x % y %% (OfClass type_class % TYPE('T)) %% prf2))",
 | 
| 13404 | 39 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 40 |    "(meta_eq_to_obj_eq % TYPE('T) % x1 % x2 %% prfT %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 41 |  \    (axm.transitive % TYPE('T) % x % y % z %% prf1 %% prf2)) ==  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 42 |  \  (HOL.trans % TYPE('T) % x % y % z %% prfT %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 43 |  \    (meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %% prf1) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 44 |  \    (meta_eq_to_obj_eq % TYPE('T) % y % z %% prfT %% prf2))",
 | 
| 13404 | 45 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 46 |    "(meta_eq_to_obj_eq % TYPE('T) % x % x %% prfT %% (axm.reflexive % TYPE('T) % x)) ==  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 47 |  \  (HOL.refl % TYPE('T) % x %% prfT)",
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 48 | |
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 49 |    "(meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %%  \
 | 
| 13404 | 50 |  \    (axm.symmetric % TYPE('T) % x % y %% prf)) ==  \
 | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 51 |  \  (sym % TYPE('T) % x % y %% prfT %% (meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %% prf))",
 | 
| 13404 | 52 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 53 |    "(meta_eq_to_obj_eq % TYPE('T => 'U) % x1 % x2 %% prfTU %%  \
 | 
| 36042 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 54 |  \    (abstract_rule % TYPE('T) % TYPE('U) % f % g %% prf)) ==  \
 | 
| 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 55 |  \  (ext % TYPE('T) % TYPE('U) % f % g %%  \
 | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 56 |  \    (OfClass type_class % TYPE('T)) %% (OfClass type_class % TYPE('U)) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 57 |  \    (Lam (x::'T). meta_eq_to_obj_eq % TYPE('U) % f x % g x %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 58 |  \       (OfClass type_class % TYPE('U)) %% (prf % x)))",
 | 
| 13404 | 59 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 60 |    "(meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 61 |  \    (eq_reflection % TYPE('T) % x % y %% prfT %% prf)) == prf",
 | 
| 13404 | 62 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 63 |    "(meta_eq_to_obj_eq % TYPE('T) % x1 % x2 %% prfT %% (equal_elim % x3 % x4 %%  \
 | 
| 36042 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 64 |  \    (combination % TYPE('T) % TYPE(prop) % x7 % x8 % C % D %%  \
 | 
| 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 65 |  \      (combination % TYPE('T) % TYPE('T3) % op == % op == % A % B %%  \
 | 
| 13404 | 66 |  \        (axm.reflexive % TYPE('T4) % op ==) %% prf1) %% prf2) %% prf3)) ==  \
 | 
| 67 | \ (iffD1 % A = C % B = D %% \ | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 68 |  \    (cong % TYPE('T) % TYPE(bool) % op = A % op = B % C % D %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 69 | \ prfT %% arity_type_bool %% \ | 
| 36042 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 70 |  \      (cong % TYPE('T) % TYPE('T=>bool) %  \
 | 
| 13404 | 71 | \ (op = :: 'T=>'T=>bool) % (op = :: 'T=>'T=>bool) % A % B %% \ | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 72 |  \        prfT %% (OfClass type_class % TYPE('T=>bool)) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 73 |  \        (HOL.refl % TYPE('T=>'T=>bool) % (op = :: 'T=>'T=>bool) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 74 |  \           (OfClass type_class % TYPE('T=>'T=>bool))) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 75 |  \        (meta_eq_to_obj_eq % TYPE('T) % A % B %% prfT %% prf1)) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 76 |  \      (meta_eq_to_obj_eq % TYPE('T) % C % D %% prfT %% prf2)) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 77 |  \    (meta_eq_to_obj_eq % TYPE('T) % A % C %% prfT %% prf3))",
 | 
| 13404 | 78 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 79 |    "(meta_eq_to_obj_eq % TYPE('T) % x1 % x2 %% prfT %% (equal_elim % x3 % x4 %%  \
 | 
| 13404 | 80 |  \    (axm.symmetric % TYPE('T2) % x5 % x6 %%  \
 | 
| 36042 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 81 |  \      (combination % TYPE('T) % TYPE(prop) % x7 % x8 % C % D %%  \
 | 
| 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 82 |  \        (combination % TYPE('T) % TYPE('T3) % op == % op == % A % B %%  \
 | 
| 13404 | 83 |  \          (axm.reflexive % TYPE('T4) % op ==) %% prf1) %% prf2)) %% prf3)) ==  \
 | 
| 84 | \ (iffD2 % A = C % B = D %% \ | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 85 |  \    (cong % TYPE('T) % TYPE(bool) % op = A % op = B % C % D %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 86 | \ prfT %% arity_type_bool %% \ | 
| 36042 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 87 |  \      (cong % TYPE('T) % TYPE('T=>bool) %  \
 | 
| 13404 | 88 | \ (op = :: 'T=>'T=>bool) % (op = :: 'T=>'T=>bool) % A % B %% \ | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 89 |  \        prfT %% (OfClass type_class % TYPE('T=>bool)) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 90 |  \        (HOL.refl % TYPE('T=>'T=>bool) % (op = :: 'T=>'T=>bool) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 91 |  \           (OfClass type_class % TYPE('T=>'T=>bool))) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 92 |  \        (meta_eq_to_obj_eq % TYPE('T) % A % B %% prfT %% prf1)) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 93 |  \      (meta_eq_to_obj_eq % TYPE('T) % C % D %% prfT %% prf2)) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 94 |  \    (meta_eq_to_obj_eq % TYPE('T) % B % D %% prfT %% prf3))",
 | 
| 13404 | 95 | |
| 96 | (** rewriting on bool: insert proper congruence rules for logical connectives **) | |
| 97 | ||
| 98 | (* All *) | |
| 99 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 100 |    "(iffD1 % All P % All Q %% (cong % TYPE('T1) % TYPE('T2) % All % All % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 101 |  \    (HOL.refl % TYPE('T3) % x1 %% prfT3) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 102 |  \    (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') ==  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 103 |  \  (allI % TYPE('a) % Q %% prfa %%  \
 | 
| 13404 | 104 | \ (Lam x. \ | 
| 105 | \ iffD1 % P x % Q x %% (prf % x) %% \ | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 106 |  \         (spec % TYPE('a) % P % x %% prfa %% prf')))",
 | 
| 13404 | 107 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 108 |    "(iffD2 % All P % All Q %% (cong % TYPE('T1) % TYPE('T2) % All % All % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 109 |  \    (HOL.refl % TYPE('T3) % x1 %% prfT3) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 110 |  \    (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') ==  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 111 |  \  (allI % TYPE('a) % P %% prfa %%  \
 | 
| 13404 | 112 | \ (Lam x. \ | 
| 113 | \ iffD2 % P x % Q x %% (prf % x) %% \ | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 114 |  \         (spec % TYPE('a) % Q % x %% prfa %% prf')))",
 | 
| 13404 | 115 | |
| 116 | (* Ex *) | |
| 117 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 118 |    "(iffD1 % Ex P % Ex Q %% (cong % TYPE('T1) % TYPE('T2) % Ex % Ex % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 119 |  \    (HOL.refl % TYPE('T3) % x1 %% prfT3) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 120 |  \    (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') ==  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 121 |  \  (exE % TYPE('a) % P % EX x. Q x %% prfa %% prf' %%  \
 | 
| 13404 | 122 | \ (Lam x H : P x. \ | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 123 |  \        exI % TYPE('a) % Q % x %% prfa %%  \
 | 
| 13404 | 124 | \ (iffD1 % P x % Q x %% (prf % x) %% H)))", | 
| 125 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 126 |    "(iffD2 % Ex P % Ex Q %% (cong % TYPE('T1) % TYPE('T2) % Ex % Ex % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 127 |  \    (HOL.refl % TYPE('T3) % x1 %% prfT3) %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 128 |  \    (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') ==  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 129 |  \  (exE % TYPE('a) % Q % EX x. P x %% prfa %% prf' %%  \
 | 
| 13404 | 130 | \ (Lam x H : Q x. \ | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 131 |  \        exI % TYPE('a) % P % x %% prfa %%  \
 | 
| 13404 | 132 | \ (iffD2 % P x % Q x %% (prf % x) %% H)))", | 
| 133 | ||
| 134 | (* & *) | |
| 135 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 136 |    "(iffD1 % A & C % B & D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 137 |  \    (cong % TYPE('T3) % TYPE('T4) % op & % op & % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 138 |  \      (HOL.refl % TYPE('T5) % op & %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 139 | \ (conjI % B % D %% \ | 
| 140 | \ (iffD1 % A % B %% prf1 %% (conjunct1 % A % C %% prf3)) %% \ | |
| 141 | \ (iffD1 % C % D %% prf2 %% (conjunct2 % A % C %% prf3)))", | |
| 142 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 143 |    "(iffD2 % A & C % B & D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 144 |  \    (cong % TYPE('T3) % TYPE('T4) % op & % op & % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 145 |  \      (HOL.refl % TYPE('T5) % op & %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 146 | \ (conjI % A % C %% \ | 
| 147 | \ (iffD2 % A % B %% prf1 %% (conjunct1 % B % D %% prf3)) %% \ | |
| 148 | \ (iffD2 % C % D %% prf2 %% (conjunct2 % B % D %% prf3)))", | |
| 149 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 150 | "(cong % TYPE(bool) % TYPE(bool) % op & A % op & A % B % C %% prfb %% prfb %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 151 | \ (HOL.refl % TYPE(bool=>bool) % op & A %% prfbb)) == \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 152 | \ (cong % TYPE(bool) % TYPE(bool) % op & A % op & A % B % C %% prfb %% prfb %% \ | 
| 36042 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 153 | \ (cong % TYPE(bool) % TYPE(bool=>bool) % \ | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 154 | \ (op & :: bool=>bool=>bool) % (op & :: bool=>bool=>bool) % A % A %% \ | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 155 | \ prfb %% prfbb %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 156 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op & :: bool=>bool=>bool) %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 157 | \ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 158 | \ (HOL.refl % TYPE(bool) % A %% prfb)))", | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 159 | |
| 13404 | 160 | (* | *) | 
| 161 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 162 |    "(iffD1 % A | C % B | D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 163 |  \    (cong % TYPE('T3) % TYPE('T4) % op | % op | % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 164 |  \      (HOL.refl % TYPE('T5) % op | %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 165 | \ (disjE % A % C % B | D %% prf3 %% \ | 
| 166 | \ (Lam H : A. disjI1 % B % D %% (iffD1 % A % B %% prf1 %% H)) %% \ | |
| 167 | \ (Lam H : C. disjI2 % D % B %% (iffD1 % C % D %% prf2 %% H)))", | |
| 168 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 169 |    "(iffD2 % A | C % B | D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 170 |  \    (cong % TYPE('T3) % TYPE('T4) % op | % op | % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 171 |  \      (HOL.refl % TYPE('T5) % op | %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 172 | \ (disjE % B % D % A | C %% prf3 %% \ | 
| 173 | \ (Lam H : B. disjI1 % A % C %% (iffD2 % A % B %% prf1 %% H)) %% \ | |
| 174 | \ (Lam H : D. disjI2 % C % A %% (iffD2 % C % D %% prf2 %% H)))", | |
| 175 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 176 | "(cong % TYPE(bool) % TYPE(bool) % op | A % op | A % B % C %% prfb %% prfb %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 177 | \ (HOL.refl % TYPE(bool=>bool) % op | A %% prfbb)) == \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 178 | \ (cong % TYPE(bool) % TYPE(bool) % op | A % op | A % B % C %% prfb %% prfb %% \ | 
| 36042 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 179 | \ (cong % TYPE(bool) % TYPE(bool=>bool) % \ | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 180 | \ (op | :: bool=>bool=>bool) % (op | :: bool=>bool=>bool) % A % A %% \ | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 181 | \ prfb %% prfbb %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 182 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op | :: bool=>bool=>bool) %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 183 | \ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 184 | \ (HOL.refl % TYPE(bool) % A %% prfb)))", | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 185 | |
| 13404 | 186 | (* --> *) | 
| 187 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 188 |    "(iffD1 % A --> C % B --> D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 189 |  \    (cong % TYPE('T3) % TYPE('T4) % op --> % op --> % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 190 |  \      (HOL.refl % TYPE('T5) % op --> %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 191 | \ (impI % B % D %% (Lam H: B. iffD1 % C % D %% prf2 %% \ | 
| 192 | \ (mp % A % C %% prf3 %% (iffD2 % A % B %% prf1 %% H))))", | |
| 193 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 194 |    "(iffD2 % A --> C % B --> D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 195 |  \    (cong % TYPE('T3) % TYPE('T4) % op --> % op --> % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 196 |  \      (HOL.refl % TYPE('T5) % op --> %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 197 | \ (impI % A % C %% (Lam H: A. iffD2 % C % D %% prf2 %% \ | 
| 198 | \ (mp % B % D %% prf3 %% (iffD1 % A % B %% prf1 %% H))))", | |
| 199 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 200 | "(cong % TYPE(bool) % TYPE(bool) % op --> A % op --> A % B % C %% prfb %% prfb %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 201 | \ (HOL.refl % TYPE(bool=>bool) % op --> A %% prfbb)) == \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 202 | \ (cong % TYPE(bool) % TYPE(bool) % op --> A % op --> A % B % C %% prfb %% prfb %% \ | 
| 36042 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 203 | \ (cong % TYPE(bool) % TYPE(bool=>bool) % \ | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 204 | \ (op --> :: bool=>bool=>bool) % (op --> :: bool=>bool=>bool) % A % A %% \ | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 205 | \ prfb %% prfbb %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 206 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op --> :: bool=>bool=>bool) %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 207 | \ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 208 | \ (HOL.refl % TYPE(bool) % A %% prfb)))", | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 209 | |
| 13404 | 210 | (* ~ *) | 
| 211 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 212 |    "(iffD1 % ~ P % ~ Q %% (cong % TYPE('T1) % TYPE('T2) % Not % Not % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 213 |  \    (HOL.refl % TYPE('T3) % Not %% prfT3) %% prf1) %% prf2) ==  \
 | 
| 13404 | 214 | \ (notI % Q %% (Lam H: Q. \ | 
| 215 | \ notE % P % False %% prf2 %% (iffD2 % P % Q %% prf1 %% H)))", | |
| 216 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 217 |    "(iffD2 % ~ P % ~ Q %% (cong % TYPE('T1) % TYPE('T2) % Not % Not % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 218 |  \    (HOL.refl % TYPE('T3) % Not %% prfT3) %% prf1) %% prf2) ==  \
 | 
| 13404 | 219 | \ (notI % P %% (Lam H: P. \ | 
| 220 | \ notE % Q % False %% prf2 %% (iffD1 % P % Q %% prf1 %% H)))", | |
| 221 | ||
| 222 | (* = *) | |
| 223 | ||
| 224 | "(iffD1 % B % D %% \ | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 225 |  \    (iffD1 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 226 |  \      (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 227 |  \        (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 228 | \ (iffD1 % C % D %% prf2 %% \ | 
| 229 | \ (iffD1 % A % C %% prf3 %% (iffD2 % A % B %% prf1 %% prf4)))", | |
| 230 | ||
| 231 | "(iffD2 % B % D %% \ | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 232 |  \    (iffD1 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 233 |  \      (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 234 |  \        (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 235 | \ (iffD1 % A % B %% prf1 %% \ | 
| 236 | \ (iffD2 % A % C %% prf3 %% (iffD2 % C % D %% prf2 %% prf4)))", | |
| 237 | ||
| 238 | "(iffD1 % A % C %% \ | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 239 |  \    (iffD2 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 240 |  \      (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 241 |  \        (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4)==  \
 | 
| 13404 | 242 | \ (iffD2 % C % D %% prf2 %% \ | 
| 243 | \ (iffD1 % B % D %% prf3 %% (iffD1 % A % B %% prf1 %% prf4)))", | |
| 244 | ||
| 245 | "(iffD2 % A % C %% \ | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 246 |  \    (iffD2 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 247 |  \      (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %%  \
 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 248 |  \        (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 249 | \ (iffD2 % A % B %% prf1 %% \ | 
| 250 | \ (iffD2 % B % D %% prf3 %% (iffD1 % C % D %% prf2 %% prf4)))", | |
| 251 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 252 | "(cong % TYPE(bool) % TYPE(bool) % op = A % op = A % B % C %% prfb %% prfb %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 253 | \ (HOL.refl % TYPE(bool=>bool) % op = A %% prfbb)) == \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 254 | \ (cong % TYPE(bool) % TYPE(bool) % op = A % op = A % B % C %% prfb %% prfb %% \ | 
| 36042 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
35845diff
changeset | 255 | \ (cong % TYPE(bool) % TYPE(bool=>bool) % \ | 
| 13404 | 256 | \ (op = :: bool=>bool=>bool) % (op = :: bool=>bool=>bool) % A % A %% \ | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 257 | \ prfb %% prfbb %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 258 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op = :: bool=>bool=>bool) %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 259 | \ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \ | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 260 | \ (HOL.refl % TYPE(bool) % A %% prfb)))", | 
| 13404 | 261 | |
| 13916 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 262 | (** transitivity, reflexivity, and symmetry **) | 
| 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 263 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 264 | "(iffD1 % A % C %% (HOL.trans % TYPE(bool) % A % B % C %% prfb %% prf1 %% prf2) %% prf3) == \ | 
| 13404 | 265 | \ (iffD1 % B % C %% prf2 %% (iffD1 % A % B %% prf1 %% prf3))", | 
| 266 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 267 | "(iffD2 % A % C %% (HOL.trans % TYPE(bool) % A % B % C %% prfb %% prf1 %% prf2) %% prf3) == \ | 
| 13404 | 268 | \ (iffD2 % A % B %% prf1 %% (iffD2 % B % C %% prf2 %% prf3))", | 
| 269 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 270 | "(iffD1 % A % A %% (HOL.refl % TYPE(bool) % A %% prfb) %% prf) == prf", | 
| 13404 | 271 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 272 | "(iffD2 % A % A %% (HOL.refl % TYPE(bool) % A %% prfb) %% prf) == prf", | 
| 13404 | 273 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 274 | "(iffD1 % A % B %% (sym % TYPE(bool) % B % A %% prfb %% prf)) == (iffD2 % B % A %% prf)", | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 275 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 276 | "(iffD2 % A % B %% (sym % TYPE(bool) % B % A %% prfb %% prf)) == (iffD1 % B % A %% prf)", | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 277 | |
| 13404 | 278 | (** normalization of HOL proofs **) | 
| 279 | ||
| 280 | "(mp % A % B %% (impI % A % B %% prf)) == prf", | |
| 281 | ||
| 282 | "(impI % A % B %% (mp % A % B %% prf)) == prf", | |
| 283 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 284 |    "(spec % TYPE('a) % P % x %% prfa %% (allI % TYPE('a) % P %% prfa %% prf)) == prf % x",
 | 
| 13404 | 285 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 286 |    "(allI % TYPE('a) % P %% prfa %% (Lam x::'a. spec % TYPE('a) % P % x %% prfa %% prf)) == prf",
 | 
| 13404 | 287 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 288 |    "(exE % TYPE('a) % P % Q %% prfa %% (exI % TYPE('a) % P % x %% prfa %% prf1) %% prf2) == (prf2 % x %% prf1)",
 | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 289 | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 290 |    "(exE % TYPE('a) % P % Q %% prfa %% prf %% (exI % TYPE('a) % P %% prfa)) == prf",
 | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 291 | |
| 13404 | 292 | "(disjE % P % Q % R %% (disjI1 % P % Q %% prf1) %% prf2 %% prf3) == (prf2 %% prf1)", | 
| 293 | ||
| 294 | "(disjE % P % Q % R %% (disjI2 % Q % P %% prf1) %% prf2 %% prf3) == (prf3 %% prf1)", | |
| 295 | ||
| 296 | "(conjunct1 % P % Q %% (conjI % P % Q %% prf1 %% prf2)) == prf1", | |
| 297 | ||
| 298 | "(conjunct2 % P % Q %% (conjI % P % Q %% prf1 %% prf2)) == prf2", | |
| 299 | ||
| 300 | "(iffD1 % A % B %% (iffI % A % B %% prf1 %% prf2)) == prf1", | |
| 301 | ||
| 302 | "(iffD2 % A % B %% (iffI % A % B %% prf1 %% prf2)) == prf2"]; | |
| 303 | ||
| 304 | ||
| 305 | (** Replace congruence rules by substitution rules **) | |
| 306 | ||
| 28801 
fc45401bdf6f
ProofSyntax.proof_of_term: removed obsolete disambiguisation table;
 wenzelm parents: 
28712diff
changeset | 307 | fun strip_cong ps (PThm (_, (("HOL.cong", _, _), _)) % _ % _ % SOME x % SOME y %%
 | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 308 | prfa %% prfT %% prf1 %% prf2) = strip_cong (((x, y), (prf2, prfa)) :: ps) prf1 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 309 |   | strip_cong ps (PThm (_, (("HOL.refl", _, _), _)) % SOME f %% _) = SOME (f, ps)
 | 
| 15531 | 310 | | strip_cong _ _ = NONE; | 
| 13404 | 311 | |
| 37310 | 312 | val subst_prf = fst (Proofterm.strip_combt (fst (Proofterm.strip_combP (Thm.proof_of subst)))); | 
| 313 | val sym_prf = fst (Proofterm.strip_combt (fst (Proofterm.strip_combP (Thm.proof_of sym)))); | |
| 13404 | 314 | |
| 315 | fun make_subst Ts prf xs (_, []) = prf | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 316 | | make_subst Ts prf xs (f, ((x, y), (prf', clprf)) :: ps) = | 
| 13404 | 317 | let val T = fastype_of1 (Ts, x) | 
| 318 | in if x aconv y then make_subst Ts prf (xs @ [x]) (f, ps) | |
| 37310 | 319 | else Proofterm.change_type (SOME [T]) subst_prf %> x %> y %> | 
| 13404 | 320 |           Abs ("z", T, list_comb (incr_boundvars 1 f,
 | 
| 321 | map (incr_boundvars 1) xs @ Bound 0 :: | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 322 | map (incr_boundvars 1 o snd o fst) ps)) %% clprf %% prf' %% | 
| 13404 | 323 | make_subst Ts prf (xs @ [x]) (f, ps) | 
| 324 | end; | |
| 325 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36042diff
changeset | 326 | fun make_sym Ts ((x, y), (prf, clprf)) = | 
| 37310 | 327 | ((y, x), | 
| 328 | (Proofterm.change_type (SOME [fastype_of1 (Ts, x)]) sym_prf %> x %> y %% clprf %% prf, clprf)); | |
| 13404 | 329 | |
| 22277 | 330 | fun mk_AbsP P t = AbsP ("H", Option.map HOLogic.mk_Trueprop P, t);
 | 
| 13916 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 331 | |
| 33722 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 wenzelm parents: 
33388diff
changeset | 332 | fun elim_cong_aux Ts (PThm (_, (("HOL.iffD1", _, _), _)) % _ % _ %% prf1 %% prf2) =
 | 
| 15570 | 333 | Option.map (make_subst Ts prf2 []) (strip_cong [] prf1) | 
| 33722 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 wenzelm parents: 
33388diff
changeset | 334 |   | elim_cong_aux Ts (PThm (_, (("HOL.iffD1", _, _), _)) % P % _ %% prf) =
 | 
| 15570 | 335 | Option.map (mk_AbsP P o make_subst Ts (PBound 0) []) | 
| 37310 | 336 | (strip_cong [] (Proofterm.incr_pboundvars 1 0 prf)) | 
| 33722 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 wenzelm parents: 
33388diff
changeset | 337 |   | elim_cong_aux Ts (PThm (_, (("HOL.iffD2", _, _), _)) % _ % _ %% prf1 %% prf2) =
 | 
| 15570 | 338 | Option.map (make_subst Ts prf2 [] o | 
| 13404 | 339 | apsnd (map (make_sym Ts))) (strip_cong [] prf1) | 
| 33722 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 wenzelm parents: 
33388diff
changeset | 340 |   | elim_cong_aux Ts (PThm (_, (("HOL.iffD2", _, _), _)) % _ % P %% prf) =
 | 
| 15570 | 341 | Option.map (mk_AbsP P o make_subst Ts (PBound 0) [] o | 
| 37310 | 342 | apsnd (map (make_sym Ts))) (strip_cong [] (Proofterm.incr_pboundvars 1 0 prf)) | 
| 33722 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 wenzelm parents: 
33388diff
changeset | 343 | | elim_cong_aux _ _ = NONE; | 
| 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 wenzelm parents: 
33388diff
changeset | 344 | |
| 37310 | 345 | fun elim_cong Ts hs prf = Option.map (rpair Proofterm.no_skel) (elim_cong_aux Ts prf); | 
| 13404 | 346 | |
| 347 | end; |